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Abstract
Lysosomal storage diseases (LSDs) are inherited metabolic disorders caused by deficient activity
of a single lysosomal enzyme or other defects resulting in deficient catabolism of large substrates
in lysosomes. There are more than 40 forms of inherited LSDs known to occur in humans, with an
aggregate incidence estimated at 1 in 7,000 live births. Clinical signs result from the inability of
lysosomes to degrade large substrates; because most lysosomal enzymes are ubiquitously
expressed, a deficiency in a single enzyme can affect multiple organ systems. Thus LSDs are
associated with high morbidity and mortality and represent a significant burden on patients, their
families, the health care system, and society. Because lysosomal enzymes are trafficked by a
mannose 6-phosphate receptor mechanism, normal enzyme provided to deficient cells can be
localized to the lysosome to reduce and prevent storage. However, many LSDs remain untreatable,
and gene therapy holds the promise for effective therapy. Other therapies for some LSDs do exist,
or are under evaluation, including heterologous bone marrow or cord blood transplantation
(BMT), enzyme replacement therapy (ERT), and substrate reduction therapy (SRT), but these
treatments are associated with significant concerns, including high morbidity and mortality
(BMT), limited positive outcomes (BMT), incomplete response to therapy (BMT, ERT, and SRT),
life-long therapy (ERT, SRT), and cost (BMT, ERT, SRT). Gene therapy represents a potential
alternative, albeit with its own attendant concerns, including levels and persistence of expression
and insertional mutagenesis resulting in neoplasia. Naturally occurring animal homologues of
LSDs have been described in all common domestic animals (and in some that are less common)
and these animal models play a critical role in evaluating the efficacy and safety of therapy.
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Lysosomal Storage Diseases
Lysosomal storage diseases (LSDs1) are characterized by disruption of normal lysosomal
function and subsequent accumulation of incompletely degraded substrates. Over 40
characterized genetic conditions are classified as LSDs (Scriver et al. 2001). Inheritance is
autosomal recessive, with the exception of the two X-linked diseases,
mucopolysaccharidosis (MPS1) II and Fabry disease, neither of which has a natural animal
model. Lysosomal enzymes are post-translationally modified in the Golgi apparatus by the
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addition of mannose 6-phosphate (M6P1) and delivered to the lysosome by M6P receptor-
mediated transport. Most LSDs are caused by loss of normal function of a specific
lysosomal acid hydrolase, which degrades large complex substrates in a stepwise fashion,
with each step requiring the action of the previous hydrolase to modify the substrate; if one
step in the process fails, further degradation ceases and the partially degraded substrate
accumulates.

LSDs are not homogeneous as not all disorders are caused by a defect in the coding
sequence of a single hydrolase. Modifications and activator proteins are necessary for
normal function of certain hydrolases, which can be defective. For example, a mutation in
the post-translational addition of the M6P moiety to most hydrolases results in low
intracellular activity of many enzymes, with concomitant high serum activities, and is the
defect in the severe LSD known as mucolipidosis II (ML II, or I-cell disease; reviewed in
Kornfeld and Sly 2001). A cat model of ML II exists (Bosshard et al. 1996; Mazrier et al.
2003) but has not yet been used in gene therapy trials.

The lysosomal accumulation of partially degraded substrate affects the architecture and
function of cells, tissues, and organs. The pathogenesis of many of the metabolic alterations
are not completely understood, such as the mechanisms of inflammation in synovial joints
and the central nervous system (CNS1). The clinical course of these diseases is chronic,
progressive, and very often lethal before or during early adulthood. Rarely, the accumulated
substrate may be cytotoxic, as in galactocerebrosidosis. The signs associated with LSDs are
often neurological, but they can also be multisystemic, with skeletal, CNS, cardiovascular,
and ocular system involvement. Frequently, the clinical signs are related to increased cell
size; but scientists are just beginning to understand the pathogenesis of the skeletal disease.
In many syndromes with CNS dysfunction, the neurons are swollen and lysosomes contain
lamellar inclusions. The pathogenesis of the CNS lesions includes, but is not limited to, the
development of meganeurites and neurite sprouting with synapse formation, which appears
to be correlated to primary or secondary alterations in ganglioside degradation (Siegel and
Walkley 1994; Walkley 1987, 1998; Walkley et al. 1988, 1990, 2000). Microglia activation
and inflammation also occur in the CNS in multiple LSDs (Jeyakumar et al. 2003; Ohmi et
al. 2003).

Therapy for most LSDs requires the provision of normal enzyme to the lysosomes of
abnormal cells. In a process critically important to therapy, a proportion of the M6P-
modified enzyme may leave the cell via secretory granules, enter the extracellular fluid, and
be taken up by other cells by the M6P receptor (M6Pr) present in the plasma membrane of
most cells (Distler et al. 1979; Kaplan et al. 1977; Natowicz et al. 1979). Researchers first
demonstrated these normal physiological processes of mannose 6-phosphorylation, release,
and receptor-mediated uptake of lysosomal enzymes using media from cultured fibroblasts
(Fratantoni et al. 1968; Neufeld and Fratantoni 1970). Providing normal enzyme to
abnormal cells in a patient permits that enzyme to be taken up by the plasma membrane
receptor, resulting in delivery of the normal enzyme to the lysosome where it can catabolize
stored substrate. A general rule for these diseases is that early treatment improves the
outcome, which argues for the screening of newborns for LSDs.

The following sections provide brief descriptions of current approaches for delivering
normal enzyme to abnormal cells.

Parenteral Injection of Purified Recombinant Enzyme (Enzyme Replacement Therapy, ERT)
Injection of purified recombinant enzyme, which is usually produced in Chinese hamster
ovary cells, has been the standard therapy for nonneuronopathic Gaucher patients for more
than a decade and is approved or under evaluation for treatment of Fabry disease, Pompe
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disease, and MPS I, II, and VI (Breunig and Wanner 2008; Clarke 2008; Harmatz et al.
2008; Koskenvuo et al. 2008; Parini et al. 2008; Rohrbach and Clarke 2007; Rossi et al.
2007; Wraith 2001). The efficacy of ERT has been tested in various animal models
including MPS VII mice (Sands et al. 1994; Vogler et al. 1993, 1996), MPS I dogs (Kakkis
et al. 1996) and cats (Kakkis et al. 2001), MPS VI cats (Brooks et al. 1997; Byers et al.
1997, 2000; Crawley et al. 1996), and glycogen storage disease in Japanese quail (Kikuchi et
al. 1998; Yang et al. 1998). Researchers have evaluated enzyme derived from rabbit milk
(Raben et al. 2003) and from Chinese hamster ovary cells (Kakkis et al. 1996, 2001).

Heterologous Bone Marrow Transplantation (BMT)
This procedure has been performed for decades (reviewed in Brochstein 1992; Haskins
1996; Haskins et al. 1977; Hoogerbrugge and Valerio 1998; Krivit et al. 1999; O'Marcaigh
and Cowan 1997) and provides both normal bone marrow and bone marrow–derived cells,
which release normal enzyme continuously. Importantly, normal monocytes may cross the
blood brain barrier and become microglia, secreting enzyme for uptake by neurons.
Individual reports of BMT in animals include fucosidosis dogs (Taylor et al. 1992),
mannosidosis cats (Walkley et al. 1994), MPS VI cats (Dial et al. 1997; Norrdin et al. 1993,
1995), and MPS VII dogs (Sammarco et al. 2000). A newer approach uses hematopoietic
stem cells derived from placental cord blood rather than bone marrow and, with early
implementation, has demonstrated clinical benefit in a variety of LSDs (Martin et al. 2006).

Use of a Viral Vector or Other Gene Transfer Agent to Transfer a Copy of the Normal
Enzyme's cDNA to a Patient's Own Cells

This procedure enables the cells to act as a source of normal enzyme and is defined as gene
therapy (reviewed in Barranger and Novelli 2001; Cabrera-Salazar et al. 2002; Caillaud and
Poenaru 2000; Cheng and Smith 2003; Eto and Ohashi 2002; Gieselmann et al. 2003;
Ioannou 2000; Kaye and Sena-Esteves 2002; Poenaru 2001; Watson and Wolfe 2003; Yew
and Cheng 2001). The amount of normal enzyme released by successfully transduced cells
will in large part affect the degree of correction—the more enzyme secreted, the more
available for uptake by diseased cells.

Animal Models of LSDs
One of the most valuable uses of animals with homologous human genetic diseases is in
tests of new therapies, and the monogenic inborn errors of metabolism are particularly
attractive targets for gene therapy. The major hurdles for successful gene therapy are (1) the
difficulty of obtaining adequate levels of gene product in specific tissues such as the CNS,
(2) maintaining in vivo expression, and (3) regulating gene expression. Large species such
as the dog and cat are more similar to human patients than mice in terms of their
heterogeneous genetic background, size (which is more suitable for surgical manipulations
and clinical evaluations, including imaging), physiological and pathological measurements,
and longevity (which permits assessment of the long-term consequences of gene therapy
over years). These advantages, along with the accumulated background of physiological and
clinical veterinary knowledge in these species, make them more analogous to the human
patients that will eventually be the recipients of gene therapy. In addition, because large
animal models are discovered due to their clinical phenotype, they have disease, in contrast
to some knockout or point mutation mouse models that may have histological lesions but
lack clinical disease such as seen in the Tay-Sachs, Fabry, cystinosis, and Gaucher mice
(Cherqui et al. 2002; Cohen-Tannoudji et al. 1995; Ohshima et al. 1997; Phaneuf et al. 1996;
Xu et al. 2003), or that die within days of birth such as the Types 2 and 3 Gaucher mice (Liu
et al. 1998; Xu et al. 2003).
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Several animal species were diagnosed clinically and pathologically with an LSD before
investigators defined the cause of this group of diseases by the deficiency in activity of a
lysosomal enzyme. Because of the distinctive central and peripheral nervous system lesions,
one of the first of these identified diseases was globoid cell leukodystrophy in Cairn and
West Highland white terriers (Fankhauser et al. 1963), two breeds of dog now known to
share a mutation (Victoria et al. 1996) that apparently originated in the 19th century before
the two breeds were clearly developed. The first etiologically defined LSD identified in
nonhumans was GM1 gangliosidosis in a Siamese cat in 1971 (Baker et al. 1971). Since
then, researchers have recognized naturally occurring LSDs in the mouse, rat, dog, cat, goat,
cow, sheep, pig, guinea pig, emu, quail, flamingo (Haskins and Giger 2008), and black bear
(EH Kolodny, New York University, personal communication, February 2008). Breeding
colonies exist for many LSDs of various species.

Gene Therapy and LSDs
Gene therapy is an attractive approach to treat many LSDs for several reasons. The
phenomenon of cross correction obviates the need to transfer genes to all cells, allowing for
the possibility that a small percentage of transduced cells can be therapeutic at the organ or
whole animal level. Also, the amount of enzyme needed in the lysosome for phenotypic
correction of an individual cell is only a small percent of normal. For many tissues,
circulating enzyme from any transduced somatic cell type should be sufficient to target other
deficient cells, permitting uptake and correction of storage. However, because of the blood
brain barrier, somatic cells that produce and secrete large enzyme proteins may not target the
CNS. This is critical as at least 75% of all LSDs have significant CNS lesions. Intracerebral
gene therapy represents a promising approach for the treatment of CNS disease as it has the
potential to provide a permanent source of the deficient enzyme on the parenchymal side of
the blood brain barrier. Direct intracranial injection of viral gene vectors has resulted in
reduced lysosomal storage and functional improvement in some large animal models of
LSDs (see below). Another approach to the CNS has been to provide a high dose of serum
enzyme that appeared to cross the blood brain barrier in adult MPS VII mice (Vogler et al.
2005). Gene therapy experiments in MPS I and VII dogs have supported this approach as
dogs with high serum enzyme activity had more improvement in CNS storage than did those
with less activity (Traas et al. 2007; Haskins, unpublished data)(see below).

Feline Mucopolysaccharidosis I
The enzyme that is deficient in activity and therefore produces this MPS disorder is α-L-
iduronidase (IDUA1) with storage of the glycosaminoglycans dermatan and heparan sulfates
(Haskins et al. 1979, 1983). The mutation results from a three base pair (bp) deletion,
leading to the loss of a conserved aspartate residue (He et al. 1999). The MPS I cats have
facial deformity, lameness, corneal opacity, and cardiac murmurs. In an initial experiment
that treated 12 neonatal MPS I kittens with a retroviral (RV) vector containing the canine
IDUA cDNA (the feline cDNA was unavailable), all kittens had serum expression up to
eight times normal (Liu et al. 2003). However, the serum activity dropped to untreated
affected levels by 60 days after treatment. One kitten that died at 10 days had liver activity
almost three times normal, but liver biopsies from the remaining kittens at 90 days had no
detectable IDUA activity. A subsequent study reported a CTL response to transduced
hepatocytes (Ponder et al. 2006), which explained the loss of expression. An additional two
kittens then received the same vector as well as four intravenous injections of CTLA4-Ig,
which prevented the CTL response. These cats have expressed IDUA for 3 years and have
shown improvement in facial dysmorphia, corneal clouding, and mobility (Haskins and
Ponder, unpublished data).
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Canine Mucopolysaccharidosis I
Dogs with MPS I are similar to the MPS I cats but have more significant skeletal disease
(Shull et al. 1984; Stoltzfus et al. 1992). The disorder results from a null mutation, a G>A
transition in the donor splice site of intron 1, creating a premature termination codon at the
exon-intron junction (Menon et al. 1992). Six MPS I dogs were treated with in vitro RV
vector–transduced bone marrow cells and developed an antibody response, and two dogs
that were retreated had an anamnestic response (Shull et al. 1996). Three MPS I dogs were
treated by intramuscular gene therapy by plasmid injection or injection of ex vivo RV vector
transduction of myoblasts. However, an immune response to the vector and/or enzyme in the
null mutant MPS I dog also abrogated these therapies (Lutzko et al. 1999a). Autologous
marrow cells modified in vitro by an RV vector also failed due to an apparent humoral
response to the enzyme and serum components of the culture media (Lutzko et al. 1999b).
To try to avoid the immune response, in vitro IDUA-transduced MPS I marrow cells were
transplanted into preimmune, midgestation fetal MPS I pups. Neither IDUA activity nor
proviral-specific transcripts were detected in the blood or marrow leukocytes of any of the
pups and all died at 8 to 11 months of age from complications of MPS I disease, with no
evidence of amelioration of the clinical phenotype. However, there was no evidence of an
immune response to the enzyme (Lutzko et al. 1999b).

Neonatal MPS I dogs were injected intravenously with an RV vector containing the canine
IDUA cDNA (Traas et al. 2007). This resulted in stable serum IDUA activity of 28-fold
normal for up to 1.8 years, which likely was primarily from secretion by transduced liver
cells. RV vector–treated dogs had decreased severity and/or incidence of hernias, chest
deformities, facial dysmorphia, corneal clouding, valvular heart disease, and aortic dilation.
A marked reduction in lysosomal storage in the brain of these dogs may have been due in
part to expression from the LTR of the vector in cells in the brain or to high serum activity
permitting distribution across the blood brain barrier. Radiographic features of the skeleton
revealed less improvement in the cervical spine than other synovial joints (Herati et al.
2008), similar to observations in MPS VII dogs (Herati et al. 2008) and MPS VI cats
(Haskins, unpublished data).

The efficacy and safety of stereotaxic injection of recombinant adeno-associated viral
(AAV) vectors coding for IDUA were tested in MPS I–affected dogs. Because, as seen
above, the dogs produce antibodies against the protein, intracerebral vector injections were
combined with an immunosuppressive regimen. The vector genome was widely distributed
in the brain of immunosuppressed dogs and prevented glycosaminoglycan and secondary
ganglioside accumulations. However, in dogs with only partial immunosuppression, vector
injection was associated with subacute encephalitis (Ciron et al. 2006).

An alternative approach to somatic gene therapy is to deliver a therapeutic protein by
implanting “universal” recombinant cells in alginate microcapsules that provide
immunological protection from graft rejection. This strategy was used to deliver IDUA in
the MPS I dog (Barsoum et al. 2003). Canine kidney cells were genetically modified to
express canine IDUA and then enclosed in alginate-poly-L-lysine-alginate microcapsules of
about 500 μm in diameter. The encapsulated cells were implanted into the brain under
stereotaxic guidance. The brains were monitored with computed tomographic scans before
and after surgery and examined biochemically and histologically after sacrifice. Delivery of
IDUA in plasma, cerebrospinal fluid, and various regions of the brain was extremely low but
detectable. However, an extensive inflammatory reaction limited the success of this
approach.
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Feline Mucopolysaccharidosis VI
The cause of MPS VI is the deficient activity of N-acetylgalactosamine 4-sulfatase
(arylsulfatase B, ASB) and is associated with storage of dermatan sulfate (Haskins et al.
1979a; Jezyk et al. 1977). The severe form of feline MPS VI results from a point mutation
that causes a leucine to proline substitution at amino acid residue 476 (L476P) (Yogalingam
et al. 1996). Affected cats are dwarfed and have facial deformity, corneal opacity, lameness,
joint swelling and stiffness, pectus excavatum, and fusion of the cervical and lumbar spine.
Fibroblast-mediated in vitro gene therapy was evaluated in the MPS VI cat (Yogalingam et
al. 1999). RV vector–transduced cultured skin fibroblasts overexpressing ASB were
implanted under the renal capsule of three MPS VI kittens at 8 to 16 weeks of age. A
transient low level of enzyme activity was detected in peripheral blood leukocytes shortly
after implantation but was lost 3 to 8 weeks after implantation. Long-term biochemical and
clinical evaluation revealed no benefit from the therapy (Yogalingam et al. 1999). A similar
clinical and biochemical outcome was found using RV vector–transduced cultured
autologous bone marrow cells. Interestingly, engraftment of marked cells persisted despite
the lack of conditioning (Simonaro et al. 1999).

A protocol to target the retinal pigment epithelium in MPS VI cats entailed unilateral
subretinal or intravitreal injection of AAV vector containing feline ASB cDNA into the eyes
of affected cats (Ho et al. 2002). Contralateral eyes received AAV vector with the green
fluorescent protein (GFP) reporter gene as a control. Based on ophthalmoscopy and
histological analyses, GFP was evident as early as 4 weeks and persisted through the latest
time point (11 months). As retinal function is normal in MPS VI cats, there was no
evaluation of the electroretinograph. However, histological evaluation revealed that the
untreated and control GFP-treated diseased retinas contained massively hypertrophied
retinal pigment epithelium cells typical of MPS VI, while the eyes treated subretinally with
the ASB-expressing AAV vector had minimal cytoplasmic inclusions and consequently
were not hypertrophied.

In a preliminary experiment, three neonatal MPS VI kittens received intravenous injections
of an RV vector containing the feline ASB cDNA (Haskins, unpublished data). Serum ASB
activity has remained stable for more than 3 years at 5- to 16-fold normal levels, the facial
dysmorphia typical of the disease has been reduced, and after more than a year corneal
clouding improved. However, the cervical spine lesions are not significantly improved.
Synovial joint lesions are particularly resistant to enzyme replacement or gene therapy,
perhaps because the articular cartilage is poorly vascularized and chondrocytes are
embedded in a dense extracellular matrix. Glycosaminoglycan storage in animal models of
the MPS disorders has previously been shown to lead to inflammation and apoptosis in
cartilage and the findings have been extended to show that synovial fibroblasts and fluid
displayed elevated expression of numerous inflammatory molecules, including several
proteins important for lipopolysaccharide signaling (Simonaro et al. 2008). The expression
of tumor necrosis factor, in particular, was elevated up to 50-fold. Studies of the
pathogenesis of the synovial joint lesions may lead to alternate approaches to gene therapy
beyond supplying the normal enzyme, such as modulation of the expression of cytokines,
cathepsins, or matrix metalloproteinases.

Neonatal MPS VI cats have also received injections of an AAV vector expressing feline
ASB under the control of liver-specific, muscle-specific, or universally active promoters
(Tessitore et al. 2008). Systemic or intramuscular administration of AAV led to therapeutic
levels of circulating ASB, resulting in skeletal improvements and a significant decrease in
glycosaminoglycan storage, inflammation, and apoptosis. However, widespread
dissemination of vector occurred after intramuscular AAV administration, resulting in
secretion of therapeutic levels of ASB with the use of the universally active, but not the
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muscle-specific, promoter, suggesting that transduction of extramuscular sites rather than
enzyme secretion from muscle occurred after the muscle injection.

Canine Mucopolysaccharidosis VII
Mucopolysaccharidosis VII, caused by deficient activity of β-glucuronidase (GUSB), was
first described in a child in 1973 (Sly et al. 1973). The disease has multisystemic
manifestations including organomegaly and skeletal, CNS, cardiovascular, and ocular
abnormalities. The importance of MPS VII models in therapy stems from a number of
factors, including the early identification, characterization, and establishment of breeding
colonies of animals with the disease. The first animal model described was in German
shepherd dogs in 1984 (Haskins et al. 1984), just a decade after the identification of the
human disorder. Murine and feline MPS VII were subsequently described (Birkenmeier et
al. 1989; Fyfe et al. 1999; Schultheiss et al. 2000) and colonies established. For all three
models, the cDNA sequences are known, the mutations have been identified (Fyfe et al.
1999; Ray et al. 1998; Sands and Birkenmeier 1993), and all have a clinical phenotype that
is similar to that of children with the disease.

Mucopolysaccharidosis VII has become a research paradigm for LSD therapy because
GUSB has the following properties that make it extremely useful in the assessment of gene
targeting and therapy:

Transduced cells release large amounts of it.

Very high levels appear to have few if any serious side effects (Vogler et al. 2003),
negating the need for regulated expression.

Histochemical staining permits the direct visualization of the enzyme's location and an
estimate of the amount of GUSB activity.

The heat stability of the enzyme is significant but variable among species, allowing
experiments in normal dogs and cats using the very thermostable human enzyme.

In addition, affected animals have a clear and striking phenotype, with severe clinical signs
of skeletal, ocular, and cardiovascular disease and clear histological lesions in the CNS.

The models also have the following drawbacks:

MPS VII is one of the rarest of the LSDs in humans.

Due to the severe nature of the orthopedic and ocular disease, and shortened life span, a
clear and unambiguous evaluation of the pathogenesis and therapeutic efficacy of the
CNS disease alone in dogs and cats is difficult.

As with all LSD models, direct extrapolation to other LSDs is limited because each has
its own set of idiosyncratic therapeutic challenges.

But relative to the advantages, these are minor issues and any perusal of the literature will
reveal the extensive use of the MPS VII models, especially the mouse, in therapeutic
evaluations.

Insights from experiments in MPS VII mice led to the testing of intravenous RV vectors
with and without hepatocyte growth factor in neonatal dogs, and these tests indicated that
the natural hepatocellular division in the canine neonatal period was sufficient for significant
RV integration (Xu et al. 2002). This preliminary step was followed by neonatal intravenous
RV gene therapy in dogs with MPS VII, yielding impressive results (Mango et al. 2003;
Ponder et al. 2002; Sleeper et al. 2004). The series of canine experiments involved treatment
of 2- to 3-day-old pups with the canine cDNA; the dogs have had stable serum GUSB
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activity of between 40% and 6000% of normal for over 8 years. The M6P moiety was
present in approximately 30% of the serum enzyme, a percentage equivalent to normal dogs,
indicating a significant level of enzyme available for cross correction. Important clinical
signs of disease, such as cardiac abnormalities, were absent or minimal (Sleeper et al. 2004).
There was a marked improvement in the dogs' growth, and the dysostosis multiplex, a
hallmark of MPS VII, was improved in many long bones (Mango et al. 2003; Ponder et al.
2002), but not the vertebrae (Herati et al. 2008). The dogs have remained ambulatory to
beyond 8 years of age (unlike most affected dogs, which are unable to stand or walk by 6
months of age), corneal clouding has been absent or very mild, and the males are fully
fertile. In addition to the transduction of up to 20% of hepatocytes, this treatment transduced
hematopoietic stem cells, as peripheral white blood cells have remained vector- and GUSB
expression–positive for 8 years. CNS lesions were significantly improved in a dog with
eight-fold normal serum activity (Haskins and Ponder, unpublished data), an outcome
reminiscent of the adult MPS VII mouse ERT experience (Vogler et al. 2005).

Canine Globoid Cell Leukodystrophy
A canine model of Krabbe disease, which is characterized by a genetic deficiency in
galactocerebrosidase (GALC) activity, occurs in West Highland white and Cairn terriers
(Fankhauser et al. 1963; McGowan et al. 2000; Wenger et al. 1999). The mutation is an A to
C change at bp 473 (Victoria et al. 1996). The CNS and peripheral nervous system are
affected early and severely by progressive demyelination due to the accumulation of small
amounts of psychosine. This is the only LSD with a natural mouse (Suzuki and Suzuki
1995) and nonhuman primate model (Baskin et al. 1998) in addition to the dog model. In
preliminary experiments, the direct intravenous injection of an RV vector with the canine
GALC cDNA into neonatal globoid cell leukodystrophy puppies resulted in little serum or
peripheral white blood cell activity and no clinical improvement (Haskins and Wenger,
unpublished data).

Feline α-Mannosidosis
Mannosidosis is a glycoprotein storage disease caused by a deficiency of lysosomal acidic
α-mannosidase and it results in the accumulation of mannose-rich oligosaccharides (Jezyk et
al. 1986; Vite et al. 2001). The mutation in the feline model is a 4 bp deletion, leading to a
frame shift and premature termination codon (Berg et al. 1997). Affected cats exhibit
generalized action tremors, intention tremors of the head and neck, loss of balance,
nystagmus, spinal ataxia, and dysmetria, and have widespread neuronal storage. All signs
are progressive and euthanasia is usually performed at 18 to 20 weeks of age for humane
reasons. Heterologous bone marrow transplantation yielded dramatic results in the treatment
of the CNS disease in cats with mannosidosis, even though therapy began when mild clinical
signs were present (Walkley et al. 1994). This result raised the possibility of a significant
therapeutic effect in the CNS using gene transfer, avoiding the complications of bone
marrow transplantation. Results of brain-directed AAV vector–mediated gene therapy for 8-
week-old α-mannosidosis cats showed marked and impressive improvement in brain α-
mannosidase activity, myelination abnormalities, and neuronal swelling, as well as in
magnetic resonance imaging abnormalities, clinical signs of disease, and life span (Vite et
al. 2005).

Canine α-Fucosidosis
Canine α-fucosidosis, another glycoproteinosis, results from a 14 bp deletion at the end of
exon 1, leading to a frame shift and premature stop codon in the transcript of the canine gene
for α-fucosidase (Healy et al. 1984; Kelly et al. 1983; Skelly et al. 1996). This model has
been treated by heterologous bone marrow transplantation, which showed efficacy for the
CNS disease with the administration of therapy at an early age (Taylor et al. 1992).
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However, transplantation of irradiated affected dogs with in vitro RV vector–transduced
allogeneic autologous bone marrow resulted in early graft failure (Ferrara et al. 1997).

Canine Glycogen Storage Disease Ia
Glycogen storage disease Ia in the Maltese dog due to defective glucose-6-phosphatase
(G6Pase) activity is similar clinically, biochemically, and pathologically to the human
disease (Brix et al. 1995; Kishnani et al. 2001; Walvoort et al. 1982). The cause is a point
mutation that produces a methionine to isoleucine substitution at codon 121 (Kishnani et al.
1997). Affected puppies exhibited tremors, weakness, and neurologic signs when
hypoglycemic, as well as postnatal growth retardation and progressive hepatomegaly.
Biochemical abnormalities included fasting hypoglycemia, hyperlactacidemia,
hypercholesterolemia, hypertriglyceridemia, and hyperuricemia. Histologically, tissues from
affected puppies showed diffuse, marked hepatocellular vacuolation. Intravenous
administration of AAV vector containing the canine cDNA to three neonatal affected dogs
resulted in reduction of liver glycogen following hepatic expression of canine G6Pase
(Beaty et al. 2002). Two months after AAV vector administration, one affected dog had
normalization of fasting glucose, cholesterol, triglycerides, and lactic acid. Six weeks after
vector administration, the level of vector DNA signal in each dog varied from one to five
copies per cell, consistent with variation in the efficiency of transduction and histological
improvements in the liver.

In a separate experiment using an AAV vector containing a small human G6Pase transgene,
three GSD Ia dogs survived more than 11 months (Koeberl et al. 2008). Urinary biomarkers,
including lactate and 3-hydroxybutyrate, were corrected by G6Pase expression solely in the
liver, where glycogen accumulation fell almost to the normal level.

Conclusions
LSDs are a set of diseases that respond to treatment by gene transfer technology because a
subset of a patient's cells can be transduced and the relevant enzyme can be secreted into the
extracellular fluid, transported to nontransduced cells by the circulation, taken up by distant
cells, and directed to the lysosome where the substrate can be degraded. However, while
most of the more than 40 LSDs share this basic therapeutic approach, each disorder has its
own set of characteristics dependent on the properties of the enzyme involved and the
substrate(s) that accumulate. Thus, testing the various vector systems and evaluating the
outcomes can best be done in animal models for each disorder. While mouse models are
invaluable for the initial evaluation of gene therapy, the use of large animals with these
natural diseases is a critical step in moving toward clinical trials. In particular, dogs and cats
with LSDs have a heterogeneous genetic background, a size suitable for surgical
manipulations and clinical evaluation over time in individuals, and a longevity that permits
assessment of the long-term expression and risks of gene therapy over years. Currently, at
least 18 LSDs have been described in dogs and cats (Haskins and Giger 2008), and 13 exist
in research colonies available for gene therapy trials.

The future of therapy for LSDs is likely to involve multiple approaches, but all will depend
on early diagnosis, increasing the need for newborn screening for these genetic diseases.
While early gene therapy in MPS VII dogs achieved very high serum activity by 1 week of
age, with a dramatic improvement in many clinical signs, it did not prevent all
manifestations. The CNS and synovial joints remain sites that are difficult to reach by
systemic therapy, and the pathogenesis of the lesions in these tissues, such as the
development of inappropriate neurite synapses and defects in collagen biosynthesis, is
challenging. Multiple approaches using different vectors, different transgenes, local
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administration, and a combination of therapies will continue to rely on the use of large
animal models of LSDs to lead the way.
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