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The concept of contagion has steadily expanded from its original
grounding in epidemic disease to describe a vast array of processes
that spread across networks, notably social phenomena such as fads,
political opinions, the adoption of new technologies, and financial
decisions. Traditionalmodels of social contagion have been based on
physical analogieswith biological contagion, inwhich theprobability
that an individual is affected by the contagion grows monotonically
with the size of his or her “contact neighborhood”—the number of
affected individuals with whom he or she is in contact. Whereas this
contact neighborhood hypothesis has formed the underpinning of
essentially all current models, it has been challenging to evaluate it
due to the difficulty in obtainingdetailed data on individual network
neighborhoods during the course of a large-scale contagion process.
Here we study this question by analyzing the growth of Facebook, a
rare example of a social process with genuinely global adoption. We
find that the probability of contagion is tightly controlled by the
number of connected components in an individual’s contact neigh-
borhood, rather than by the actual size of the neighborhood. Sur-
prisingly, once this “structural diversity” is controlled for, the size of
the contact neighborhood is in fact generally a negative predictor of
contagion. More broadly, our analysis shows how data at the size
and resolution of the Facebook network make possible the identifi-
cationof subtle structural signals thatgoundetectedat smaller scales
yet hold pivotal predictive roles for the outcomes of social processes.

social networks | systems

Social networks play host to a wide range of important social
and nonsocial contagion processes (1–8). The microfounda-

tions of social contagion can, however, be significantly more
complex, as social decisions can depend much more subtly on
social network structure (9–17). In this study we show how the
details of the network neighborhood structure can play a signifi-
cant role in empirically predicting the decisions of individuals.
We perform our analysis on two social contagion processes that

take place on the social networking site Facebook: the process
whereby users join the site in response to an invitation e-mail from
an existing Facebook user (henceforth termed “recruitment”) and
the process whereby users eventually become engaged users after
joining (henceforth termed “engagement”). Although the two
processes we study formally pertain to Facebook, their details
differ considerably; the consistency of our results across these
differing processes, as well as across different national populations
(Materials and Methods), suggests that the phenomena we observe
are not specific to any one modality or locale.
The social network neighborhoods of individuals commonly

consist of several significant and well-separated clusters, reflecting
distinct social contexts within an individual’s life or life history (18–
20). We find that this multiplicity of social contexts, which we term
structural diversity, plays a key role in predicting the decisions of
individuals that underlie the social contagion processes we study.
We develop means of quantifying such structural diversity for

network neighborhoods, broadly applicable at many different
scales. The recruitment process we study primarily features small
neighborhoods, but the on-site neighborhoods that we study in the
context of engagement can be considerably larger. For small
neighborhoods, structural diversity is succinctly measured by the
number of connected components of the neighborhood. For larger
neighborhoods, however, merely counting connected components

fails to distinguish how substantial the components are in their size
and connectivity. To determine whether the structural diversity of
on-site neighborhoods is a strong predictor of on-site engagement,
we evaluate several variations of the connected component con-
cept that identify and enumerate substantial structural contexts
within large neighborhood graphs. We find that all of the different
structural diversity measures we consider robustly predict en-
gagement. For both recruitment and engagement, structural di-
versity emerges as an important predictor for the study of social
contagion processes.

Results
User Recruitment. To study the spread of Facebook as it recruits
new members, we require information not just about Facebook’s
users but also about individuals who are not yet users. Thus,
suppose that an individual A is not a user of Facebook; it is still
possible to identify a set of Facebook users that A may know
because these users have all imported A’s e-mail address into
Facebook. We define this set of Facebook users possessing A’s
e-mail address to be A’s contact neighborhood in Facebook. This
contact neighborhood is the subset of potential future friendship
ties that can be determined from the presence of A’s e-mail
address (Fig. 1A). Whereas A may in fact know many other
people on Facebook as well, such additional friendship ties re-
main unknown for individuals who do not choose to register and
so cannot be studied as a predictor of recruitment. The e-mail
contact neighborhoods we study are generally quite small, typi-
cally on the order of five or fewer nodes.
We can now study an individual’s decision to join Facebook as

follows. Facebook provides a tool through which its users can
e-mail friends not on Facebook to invite them to join; such an
e-mail invitation contains not only a presentation of Facebook
and a profile of the inviter, but also a list of the other members of
the individual’s contact neighborhood. We analyze a corpus of 54
million such invitation e-mails, and the fundamental question we
consider is the following: How does an individual’s probability of
accepting an invitation depend on the structure of his or her
contact neighborhood?
Traditional hypotheses suggest that this probability should

grow monotonically in the size of the contact neighborhood (3, 9,
10). What we find instead, however, is a striking stratification of
acceptance probabilities by the number of connected compo-
nents in the contact neighborhood (Fig. 1 B–D and Fig. S1).
When going beyond component count, one may suspect that
edge density has a significant impact on the recruitment con-
version rate: Among the single-component neighborhoods of
a given size, there is a considerable structural difference between
neighborhoods connected as a tree and those connected as a
clique. However, within the controlled conditional datasets of
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one-component neighborhoods of sizes 4–6, we see that edge
density has no discernible effect (Fig. 2A).
Moreover, we see that once component count is controlled for

(Fig. 2B), neighborhood size is largely a negative indicator of con-
version. In effect, it is not the number of people who have invited
you, nor the number of links among them, but instead the number
of connected components they form that captures your probability
of accepting the invitation. Note that this analysis has been per-
formed in aggregate and thus unavoidably reflects the decisions of
different individuals. The ability to reliably estimate acceptance
probabilities as a function of something as specific as the precise
topology of the contact neighborhood is possible only because the
scale of the dataset provides us with sufficiently many instances of
each possible contact neighborhood topology (up through size 5).
We view the component count as a measure of “structural di-

versity,” because each connected component of an individual’s
contact neighborhood hints at a potentially distinct social context
in that individual’s life. Under this view, it is the number of dis-
tinct social contexts represented on Facebook that predicts the
probability of joining. We show that the effect of this structural
diversity persists even when other factors are controlled for. In
particular, the number of connected components in the contact
neighborhood remains a predictor of invitation acceptance even
when restricted to individuals whose neighborhoods are de-
mographically homogeneous (in terms of sex, age, and national-
ity; Fig. S2), thus controlling for a type of demographic diversity
that is potentially distinct from structural diversity. The compo-
nent count also remains a predictor of acceptance even when we
compare neighborhoods that exhibit precisely the same mixture
of “bridging” and “embedded” links (Fig. S3), the key distinction
in sociological arguments based on information novelty (19, 20).
For contact neighborhoods consisting of two nodes, we observe

that the probability an invitation is accepted is much higher when
the two nodes in the neighborhood are not connected by a link
(hence forming two connected components, Fig. 1B) compared
with when they are connected (forming one component). Is there
a way to identify cases where people are likely to know each other,
even if they are not linked on Facebook? The photo tagging
feature on Facebook suggests such a mechanism. Photographs
uploaded to Facebook are commonly annotated by users with
“tags” denoting the people present in the photographs. We can
use these tags to deduce whether two unlinked nodes in a contact
neighborhood have been jointly tagged in any photos, a property
we refer to as “co-tagging,” which serves as an indication of
a social tie through copresence at an event (21).
Using photo co-tagging, we find strong effects even in cases

where the presence of a friendship tie is only implicit. If a con-
tact neighborhood consists of two unlinked nodes that have

nevertheless been co-tagged in a photo, then the invitation ac-
ceptance probability drops to approximately what it is for a neigh-
borhood of two linked nodes (Fig. 2C). In other words, being co-
tagged in a photo indicates roughly the same lack of diversity as
being connected by a friendship link. We interpret this result as
further evidence that diverse endorsement is key to predicting
recruitment. Meanwhile, when the two nodes are friends, co-tags
offer a proxy for tie strength, and we see that if the two nodes have
also been co-tagged, then the probability of an accepted invitation
decreases further. From this we can interpret tie strength as an

A B C D

Fig. 1. Contact neighborhoods during recruitment. (A) An illustration of a small friendship neighborhood and a highlighted contact neighborhood con-
sisting of four nodes and three components. (B–D) The relative conversion rates for two-node, three-node, and four-node contact neighborhood graphs.
Shading indicates differences in component count. For five-node neighborhoods, see Fig. S1. Invitation conversion rates are reported on a relative scale,
where 1.0 signifies the conversion rate of one-node neighborhoods. Error bars represent 95% confidence intervals and implicitly reveal the relative frequency
of the different topologies.

A

B C

Fig. 2. Recruitment contact neighborhoods and component structure. (A)
Conversion as a function of edge count neighborhoods with one connected
component (1 CC) with four to six nodes, where variations in edge count
predict no meaningful difference in conversion. (B) Conversion as a function
of neighborhood size, separated by CC count. When component count is
controlled for, size is a negative indicator of conversion. (C) Conversion as
a function of tie strength in two-node neighborhoods, measured by photo
co-tags, a negative indicator of predicted conversion. Recruitment conver-
sion rates are reported on a relative scale, where 1.0 signifies the conversion
rate of one-node neighborhoods. Error bars represent 95% confidence
intervals.
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extension of context, because two strongly tied nodes plausibly
constitute an even less diverse endorsement neighborhood.
Finally, we study the position of the inviter within the neigh-

borhood topologies. When studying recruitment, one might
suspect that the structural position of the inviter—the person
who extended the invitation—might signify differences in tie
strength with the invitee and therefore might significantly affect
the predicted conversion rate. We find that inviter position fig-
ures only slightly in the conversion rate (Fig. 3), with invitations
stemming from a high-degree position in the contact neighbor-
hood predicting only a slightly higher conversion rate than if the
inviter is a peripheral node.

User Engagement. Participation in a social system such as Facebook
is built upon a spectrum of social decisions, beginning with the
decision to join (recruitment) and continuing on to decisions about
how to choose a level of engagement.We now show how structural
diversity also plays an analogous role in this latter type of decision
process, studying long-term user engagement in the Facebook
service.Whereas recruitment is a function of the complex interplay
betweenmultiple acts of endorsement, engagement is a function of
the social utility a user derives from the service. Our study of en-
gagement focuses on users who registered for Facebook during
2010, analyzing the diversity of their social neighborhoods 1 week
after registration as a basis for predicting whether they will become
highly engaged users 3 months later.
Users are considered engaged at a given time point if they have

interacted with the service during at least 6 of the last 7 days.
Facebook had 845 million monthly active users on December 31,
2011, and during the month of December 2011, an average of 360
million users were active on at least 6 out of the last 7 days. We
define engagement on a weekly timescale to stabilize the con-
siderable weekly variability of user visits. Our goal is therefore to
predict whether a newly registered user will visit Facebook at
least 6 of 7 days per week 3 months after registration.
Friendship neighborhoods on Facebook are significantly larger

than the e-mail contact neighborhoods from our recruitment
study. We focus our engagement study on a population of ∼10
million users who registered during 2010 and had assembled
neighborhoods consisting of exactly 10, 20, 30, 40, or 50 friends 1
week after registration. For social network neighborhoods of this
size, we find that a neighborhood containing a large number of
connected components primarily indicates a large number of
one-node components, or “singletons”, and as such, it is not an
accurate reflection of social context diversity.

To address this, we evaluate three distinct parametric gener-
alizations of component count. First, we measure diversity simply
by considering only components over a certain size k. Second, we
measure diversity by the component count of the k-core of the
neighborhood graph (22), the subgraph formed by repeatedly
deleting all vertices of degree less than k. Third, we define a
measure that isolates dense social contexts by removing edges
according to their embeddedness, the number of common neigh-
bors shared by their two endpoints; intuitively this is an analog, for
edges, of the type of node removal that defines the k-core.
Adapting earlier work on embeddedness by Cohen (23), we define
the k-brace of a graph to be the subgraph formed by repeatedly
deleting all edges of embeddedness less than k and then deleting
all single-node connected components. (Cohen’s work was con-
cerned with a definition equivalent to the largest connected
component of the k-brace; because we deal with the full subgraph
of all nontrivial components, it is useful to adapt the definitions as
needed.) Examples of these three measures applied to a neigh-
borhood graph are shown in Fig. 4 A and B, illustrating the

Fig. 3. Inviter position during recruitment. Shown is recruitment conversion
as a function of neighborhood graph topology and inviter position in
neighborhoods of size 4. The position of the inviter within the neighbor-
hood graph is described exactly (up to symmetries) by node degree. Shading
indicates differences in component count. Recruitment conversion rates are
reported on a relative scale, where 1.0 signifies the conversion rate of one-
node neighborhoods. Error bars represent 95% confidence intervals.

A B

C D

E F

Fig. 4. Engagement and structural diversity for 50-node friendship neigh-
borhoods. (A) Illustration of the connected components in a friendship
neighborhood, delineating connected components and components of size
≥3. (B) Illustration of the k-core and the k-brace, delineating the connected
components of the 2-core and the 1-brace. (C) Engagement as a function of
connected component count. (D) Engagement as a function of the number of
components of size ≥    k, for k ¼ 2; 3; 4; 8, with connected component (CC)
count shown for comparison. (E) Engagement as a function of k-core com-
ponent count for k ¼ 1; 2; 3, with CC count shown for comparison. (F) En-
gagement as a function of k-brace component count for k ¼ 1; 2, with CC
count shown for comparison. Engagement rates are reported on a relative
scale, where 1.0 signifies the average conversion rate of all 50-node neigh-
borhoods. All error bars are 95% confidence intervals. For other neighbor-
hood sizes, see Fig. S4.
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connected components of size 3 or greater, the connected com-
ponents of the 2-core, and the connected components of the
1-brace. We see that the three parametric measures we evaluate
differ measurably in how they isolate “substantial” social contexts.
The k-core component count for k ¼ 0 is simply the compo-

nent count of the original graph, the same as we analyzed when
examining recruitment. For k ¼ 1, the k-core component count is
the count of nonsingleton components, whereas for k ¼ 2, all
tree-like components are discarded and the remaining compo-
nents are counted. When considering the k-brace, observe that
for all graphs the k-brace is a subgraph of the ðkþ 1Þ-core: in-
deed, because each node in the k-brace is incident to at least one
edge, and each edge in the k-brace has embeddedness at least k,
all nodes in the k-brace must have degree at least kþ 1. It is
therefore reasonable to compare the 1-brace to the 2-core. Both
of these restrictions discard tree-like components, but the 1-
brace will tend to break up components further than the 2-core
does—the operation defining the 1-brace continues to cleave
components in cases where sets of nodes forming triangles are
linked together by unembedded edges or where a component
contains cycles but no triangles. The notion of the k-core has
been applied both to the study of critical phenomena in random
graphs (24, 25) and to models of the Internet (26, 27), but to our
knowledge the k-brace has not been studied extensively (see SI
Text for some basic results on the k-brace and ref. 23 for analysis
of a related definition).
When studying the structural diversity of 1-week Facebook

friendship neighborhoods as a predictor of long-term engagement,
simply counting connected components leads to a muddled view of
predicted engagement (Fig. 4C). However, extending the notion of
diversity according to any of the definitions above suffices to provide
positive predictors of future long-term engagement. Specifically,
when considering the components of the 1-brace, which removes
small components and severs unembedded edges, we see that di-
versity (captured by the presence of multiple components) emerges
as a significant positive predictor of future long-term engagement
(Fig. 4F). We also see that the closely related 2-core component
count is a clean predictor (Fig. 4E). Finally, if we consider simply the
number of components of size k or larger in the original neigh-
borhood (without applying the core or brace definitions), we see
that small values of k are not enough (Fig. 4D); but even here, when
k is increased to make the selection over components sufficiently
astringent (in particular, when we count only components of size 8
or larger), a clean indicator of engagement again emerges.
When considering the k-brace, it is sufficient to consider the

component count of the 1-brace for our purposes, but larger
values of k may be useful for analyzing larger neighborhoods in
other domains. We note that the presence of several components
in the k-core and the k-brace is fundamentally limited by the size
of the core/brace, and we perform a control of this potentially
confounding factor (Fig. S5). The conventional wisdom for social
systems such as Facebook is that their utility depends crucially
upon the presence of a strong social context. Our findings vali-
date this view, observing that the predicted engagement for users
who lack any strong context (e.g., those who have zero compo-
nents in their neighborhood 1-brace) is much lower than for
those with such a context. Our analysis importantly extends this
view, finding that the presence of multiple contexts introduces
a sizable additional increase in predicted engagement.
A cruder approach to diversity might consider measuring di-

versity through the edge density of a neighborhood, figuring that
sparse neighborhoods would be more varied in context. In Fig. 5
we see how this approach results in a complicated view where the
optimal edge density for predicting engagement lies at an internal
and size-dependent optimum.Given what our component analysis
reveals, we interpret this observation as a superposition of two
effects: Too few edges imply a lack of context (4) but too many
edges imply a lacking diversity of contexts, with a nontrivial

interior clearly dominating the boundary conditions. FromFig. 5 it
also becomes clear that internal neighborhood structure is at least
as important as size, with a 20-node neighborhood featuring a
well-balanced density predicting higher conversion than a sparse
or dense 50-node neighborhood.

Discussion
Detailed traces of Facebook adoption provide natural sources of
data for studying social contagion processes. Our analysis pro-
vides a high-resolution view of a massive social contagion process
as it unfolded over time and suggests a rethinking of the un-
derlying mechanics by which such processes operate. Rather than
treating a person’s number of neighbors as the crucial parameter,
consider instead the number of distinct social contexts that these
neighbors represent as the driving mechanism of social contagion.
The role of neighborhood diversity in contagion processes sug-

gests interesting further directions to pursue, both for mathemat-
ical modeling and for potential broader applications. Mathematical
models in areas including interacting particle systems (28, 29) and
threshold contagion (3, 30) have explored some of the global phe-
nomena that arise from contagion processes in networks for
which the behavior at a given node has a nontrivial dependence
on the full set of behaviors at neighboring nodes. Neighborhood
diversity could be naturally incorporated into such models by
basing the underlying contagion probability, for example, on the
number of connected components formed by a node’s affected
neighbors. It then becomes a basic question to understand how
the global properties of these processes change when such factors
are incorporated.
More broadly, across a range of further domains, these find-

ings suggest an alternate perspective for recruitment to political
causes, the promotion of health practices, and marketing; to
convince individuals to change their behavior, it may be less
important that they receive many endorsements than that they
receive the message from multiple directions. In this way, our
findings propose a potential revision of core theories for the
roles that networks play across social and economic domains.

Materials and Methods
Recruitment Data Collection. Here we discuss details of the e-mail recruitment
data. All user data were analyzed in an anonymous, aggregated form. The
contact neighborhood individuals included in invitation e-mails are limited to
nine in number, and so we have restricted our analysis to neighborhoods
(inviter plus contact importers) of 10 nodes or less. In cases with more than
nine candidate “other people you may know,” the invitation tool selects a
randomized subset of nine for inclusion in the e-mail.

We conditioned our data collection upon several criteria. First, we con-
sidered only first invitations to join the site. Subsequent invitations to an
e-mail address are handled differently by the invitation tool, and so we have
not included them in our study. Second, we considered only invitations where

Fig. 5. Engagement as a function of edge density. For five different
neighborhood sizes, n ¼ 10; 20;30;40; 50, we see that when component
count is not accounted for, an internal engagement optimum is observed,
showing the combined forces of focused context and structural heteroge-
neity. Engagement rates are reported on a relative scale, where 1.0 signifies
the average conversion rate of all 50-node neighborhoods. All error bars are
95% confidence intervals.
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the inviter invited at most 20 e-mail addresses on the date of the invitation.
This conditioning is meant to omit invitation batches where the inviter
opted to “select all” within the contact import tool and focuses our inves-
tigation on socially selective invitations.

Invitations were sent during an 11-week period spanning July 12, 2010 to
September 26, 2010. An e-mail address was considered to have converted to
a registered user account if the address was registered for an account within
14 days of the invitation, counting both individuals who signed up via links
provided in the invitation e-mail and users who signed up by visiting the
Facebook website directly within 14 days. Only contact import events that
occurred before the invitation event are considered. Likewise, only friendship
edges that existed before the invitation event are considered to be part of
the neighborhood.

Many of the findings we investigate are governed by complex nonlinear
effects, which make traditional regression controls generally inadequate. In
an attempt to control for confounding signals in our data, several parallel
observation groups were maintained, against which all findings were vali-
dated. As a means of capturing potential artifacts from duplicitous private/
business e-mail address use, a first such validation group was constructed
by conditioning upon e-mail invitations sent to a small set of common
and commonly private e-mail providers: Hotmail, Yahoo!, Gmail, AOL, and
Yahoo! France. As a means of observing any differences between already
established and growing Facebook markets, two parallel validation groups
were constructed to observe established markets (United States) and
emerging Facebook markets (Brazil, Germany, Japan, and Russia), classified
by the most recently resolved country of login for the inviting Facebook
account. Whereas invitation conversion rates were generally higher in
emergingmarkets, none of the conditional datasets were observed to deviate
from the complete dataset with regard to internal structural findings.

Highly sparse neighborhoods were a very common occurrence in these
data, owing to the fact that the neighborhoods we study here are only partial
observations of an individual’s actual connection to Facebook. We are able
to infer links only to those site users who have used the contact importer
tool and maintain active e-mail communication with the e-mail address in
question, criteria that induce a sampled subgraph that we then observe. The
probability of sampling an edge uniformly at random in any neighborhood

with low edge density is therefore quite low, and the probability that all
sampled nodes come from the same cluster within a clustered neighborhood
is lower still. From the perspective of communication multiplexity (31), we
should in fact expect that our randomly induced subgraph sample is biased
toward strongly connected ties that tend to communicate on multiple
mediums, but this expectation is not at issue with our results. The real
matter of the fact is that contact neighborhoods where the induced sub-
graph consists of a single connected component are likely to come from very
tightly connected neighborhood graphs.

Although the contact importer tool and invitation tool are prominently
featured as part of the new user experience on Facebook, they are also
heavily used by experienced users of the site: Themedian site age of an inviter
in our dataset was 262 days. Although e-mail invitations constitute only
a small portion of Facebook’s growth, they provide a valuable window into
the otherwise invisible growth process of the Facebook product.

For the analysis of photo co-tags, only co-tags since January 1, 2010 were
considered.

Engagement Data Collection. We consider users engaged at a given time point
if they have interacted with the application during at least 6 of the last 7 days.
As with any measure of user behavior, this metric is a heuristic merely meant
to approximate a broader notion of involvement on the site. Highly engaged
users who do not access the Internet on weekends will never qualify as “six-
plus engaged,”whereas users who simply log in on a daily basis to check their
messages will qualify. Our analysis is restricted to the population level, so
such confounders are not a problem.

Due to the technical nature of how engagement data are stored at Face-
book, it is impractical to retrieve six-plus engagement measures for dates
exactly 3 months after registration. As an appropriate surrogate, we consider
the six-plus engagement of users on thefirst day of their third calendarmonth
as users.
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