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Dysregulation of the transcriptional repressor element-1 silencing
transcription factor (REST)/neuron-restrictive silencer factor is
important in a broad range of diseases, including cancer, di-
abetes, and heart disease. The role of REST-dependent epigenetic
modifications in neurodegeneration is less clear. Here, we show
that neuronal insults trigger activation of REST and CoREST in
a clinically relevant model of ischemic stroke and that REST binds
a subset of “transcriptionally responsive” genes (gria2, grin1,
chrnb2, nefh, nfκb2, trpv1, chrm4, and syt6), of which the AMPA
receptor subunit GluA2 is a top hit. Genes with enriched REST
exhibited decreased mRNA and protein. We further show that
REST assembles with CoREST, mSin3A, histone deacetylases 1
and 2, histone methyl-transferase G9a, and methyl CpG binding
protein 2 at the promoters of target genes, where it orchestrates
epigenetic remodeling and gene silencing. RNAi-mediated deple-
tion of REST or administration of dominant-negative REST deliv-
ered directly into the hippocampus in vivo prevents epigenetic
modifications, restores gene expression, and rescues hippocam-
pal neurons. These findings document a causal role for REST-de-
pendent epigenetic remodeling in the neurodegeneration
associated with ischemic stroke and identify unique therapeutic
targets for the amelioration of hippocampal injury and cognitive
deficits.

chromatin remodeling | global ischemia | CA1 | synaptic plasticity

The transcriptional repressor element-1 (RE1) silencing tran-
scription factor (REST)/neuron-restrictive silencer factor

(NRSF) is a gene silencing transcription factor that is widely
expressed during embryogenesis and is critical to elaboration of
the neuronal phenotype (1–3). In pluripotent stem cells and
neural progenitors, REST actively represses a large array of
coding and noncoding neuron-specific genes important to syn-
aptic plasticity and structural remodeling, including synaptic
vesicle proteins, neuroreceptors and channels, and microRNAs
that regulate networks of nonneuronal genes (1–4). In neural
progenitor cells, REST is regulated at the level of protein sta-
bility by a balance between β-transducin repeat containing
protein (β-TrCP)-mediated, ubiquitin-based proteasomal degra-
dation (5, 6) and herpesvirus-associated ubiquitin-specific pro-
tease (HAUSP)-mediated deubiquitylation (7); during terminal
neuronal differentiation, ubiquitin-based proteasomal degrada-
tion of REST is required for acquisition of the neural phenotype
(8). Disruption or ectopic expression of REST during embryo-
genesis results in cellular apoptosis, aberrant differentiation, and
lethality (9, 10). In mature neurons, REST is quiescent but can
be activated in selectively vulnerable hippocampal neurons by
insults, such as global ischemia (11, 12) and epileptic seizures
(13), and aberrantly accumulates in selectively vulnerable striatal
neurons in humans with Huntington disease (14, 15).
A fundamental mechanism by which REST silences target

genes is that of epigenetic remodeling (16). REST binds the RE1
element of target genes and recruits C-terminal cofactor for
REST (CoREST) (17, 18) and mSin3A (19–21), corepressor

platforms that recruit histone deacetylases (HDACs) 1 and 2.
HDACs deacetylate core histone proteins (16, 22). In addition,
REST recruits the site-specific histone methyl-transferase G9a,
which promotes dimethylation of histone 3 at lysine 9 (H3K9me2)
via CoREST-dependent (8) and independent (23) mechanisms;
the site-specific histone demethylase LSD1, which removes
methyl groups from histone 3 mono- or dimethylated at lysine 4
(H3K4me1, HSK4me2) (24, 25); andmethyl CpG binding protein
2 (MeCP2) (8, 26), a protein that reads epigenetic marks on core
histones and hotspots of DNA methylation. Whereas histone
deacetylation is primarily a mark of dynamic gene repression,
histone and DNA methylation are implicated in long-term, stable
gene repression (16, 22).
REST is essential for repressing neuronal genes in neural

progenitors (1–3). A prevailing view is that down-regulation of
REST during the late stages of neuronal differentiation is critical
to acquisition and maintenance of the neuronal phenotype (8).
An earlier paper by our group broadened this view (11).
Experiments involving molecular and genetic approaches showed
that REST is activated in mature hippocampal neurons in re-
sponse to ischemic insults and that the increase in REST corre-
lates with a decrease in histone acetylation and gene silencing of
GluA2 (11). Acute knockdown of REST in hippocampal slices
subjected to oxygen glucose deprivation (OGD), an in vitro
model of ischemia, prevented GluA2 down-regulation and neu-
ronal death (11). Although compelling, these findings raise new
questions. Are other synaptic proteins regulated by REST in
insulted neurons? Are REST and corepressors recruited to the
promoters of target genes, and if so, does the corepressor com-
plex orchestrate epigenetic remodeling and gene silencing? Is
REST causally related to neuronal death in ischemic stroke?
These findings advance previous studies in that they show that

in addition to gria2, other genes essential for synaptic function
(e.g., grin1, trpv1, nfκb2; gene names are provided in Table 1)
are targets of REST in postischemic neurons and document
a causal role for REST in neuronal death in a clinically relevant
model of global ischemia in vivo. We further show that REST
recruits corepressors [CoREST, mSin3A, HDAC1 and HDAC2,
G9a, and MeCP2] to the promoters of target genes, which to-
gether orchestrate epigenetic remodeling and gene silencing.
Consistent with this, the HDAC inhibitor trichostatin A (TSA)
rescues CA1 neurons, linking histone deacetylation and epige-
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netic remodeling to ischemia-induced neuronal death. RNAi-
mediated silencing of REST or dominant-negative (dn) REST
delivered directly into the hippocampus of live animals via the
lentivirus expression system prevents epigenetic remodeling, re-
stores gene expression, and rescues hippocampal neurons des-
tined to die. These findings document a causal role for REST in
epigenetic remodeling of plasticity genes and neuronal death, and
identify therapeutic targets for amelioration of the neurodegen-
eration and cognitive deficits associated with ischemic stroke.

Results
Global Ischemia Increases REST and CoREST but Not mSin3A
Expression in Hippocampal CA1. We first examined the impact of
ischemia on members of the REST–corepressor complex in CA1
from animals subjected to a clinically relevant model of stroke.
Transient forebrain or global ischemia in rats provides a well-

established model of neuronal insult in which cell death occurs
primarily in CA1 pyramidal neurons and is delayed by 3–4 d,
allowing examination of molecular mechanisms that underlie cell
death (27–29). Ischemia induced amarked up-regulation ofREST
(Fig. 1A) and CoREST (Fig. 1B) mRNA in vulnerable CA1 neu-
rons. The increase in REST and CoREST mRNA was subfield-
specific in that changes did not occur in resistant CA3 (Fig. 1A and
B). Ischemia caused a transient reduction in mSin3A mRNA in
CA1 and CA3, evident at 12 h; by 24 h, mSin3A mRNA was at
control levels in CA1 but slightly increased in CA3 (Fig. 1C). Be-
cause alterations in mRNA abundance do not necessarily predict
alterations in protein, we next examined the impact of ischemia on
levels of corepressor proteins. Ischemia induced an increase in
REST in the nuclear fraction of CA1 (to ∼180% of control at 6 h;
Fig. 1D) and in nuclei of individual pyramidal neurons (11). The
increase inRESTprotein (Fig. 1D) preceded the increase inREST

Table 1. Target genes that exhibit REST enrichment at promoter sites in CA1 at 24 and 48 h after ischemia

Chr Gene symbol Gene name Gene function

1 Peg12/Frat3 Paternally expressed 12 Imprinted gene that encodes a modulator of Wnt signaling; mutations
in Frat3 are implicated in Angelman and Prader–Willi syndromes

1 Slc22a12† Solute carrier family 22 (organic anion/
urate transporter), member 12

Uric acid transporter and uric acid-anion exchanger
that regulates the level of uric acid in the blood

1 Nfκb2 Nuclear factor of κ light chain
enhancer in B cells 2, p49/p100

Transcription factor implicated in neuronal
survival, synaptic plasticity, and memory

2 Gria2*‡ AMPAR GluA2 AMPAR subunit that assembles with GluA1 or GluA3 subunit to form
channels with reduced conductance, pronounced inward rectification,
and low Ca2+ permeability; regulates AMPAR targeting to synapses

2 Chrnb2*‡ Nicotinic cholinergic receptor
β-2 (neuronal)

Nicotinic ACh receptor subunit expressed in neurons; mutations in Chrnb2
are associated with autosomal-dominant nocturnal frontal lobe epilepsy

3 Grin1 NMDAR GluN1 NMDAR subunit that assembles with GluN2 subunits to form channels
with high Ca2+ permeability and voltage-dependent sensitivity to Mg2+

3 Csrnp3 Cysteine-serine-rich nuclear
protein 3

Transcription factor that binds to the consensus sequence 5′-AGAGTG-3′
and is implicated in apoptosis (TGF-β–induced apoptosis protein 3)

5 Nppa‡ Natriuretic peptide precursor A 13,000-Mr precursor protein that is processed to generate members
of the natriuretic peptide family; brain natriuretic peptide is secreted
by the ventricles of the heart in response to myocardial dysfunction,
and its physiological action is to decrease systemic vascular resistance
and central venous pressure and to increase natriuresis

8 Slc22a13† Solute carrier family 22 (organic
anion transporter), member 13

Member of the organic-cation transporter family that mediates
uptake of uric acid; a high-affinity nicotinic acid exchanger
in kidneys and intestine

9 Scg2*‡ Secretogranin II (chromogranin C) Neuroendocrine secretory granule protein and precursor for
biologically active peptides

10 Fdxr* Ferredoxin reductase Mitochondrial flavoprotein that initiates electron transport
for cytochrome P450; accepts electrons from NADPH and
catalyzes the reduction of ferredoxin

14 Nefh†‡ Neurofilament, heavy
polypeptide

Subunit that assembles to form neurofilaments, proteins that
mediate intracellular transport in axons and dendrites; commonly
used as a biomarker of neuronal damage; mutations in the NEFH
gene are associated with susceptibility to ALS

X Syp*‡ Synaptophysin Synaptic trafficking protein involved in exocytosis of synaptic vesicles at
nerve terminals; important to short- and long-term synaptic plasticity

Chr, chromosome.
*Overlap with Abrajano et al. (48).
†Overlap with Otto et al. (32).
‡Overlap with Johnson et al. (30).

Noh et al. PNAS | Published online February 27, 2012 | E963

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S



mRNA (Fig. 1A), consistent with regulation of REST at the level
of protein stability (5–8). CoREST was also increased in the nu-
clear fraction of CA1 (to ∼150% of control at 24 h and ∼220% at
48 h) but with a delay relative to REST (Fig. 1E). mSin3A protein
abundance was unchanged in the nuclear fraction of CA1 at all
times examined (Fig. 1F).
To examine whether REST is functional, we performed oli-

goprecipitation with a biotinylated 21-bp oligonucleotide corre-
sponding to the sequence of the RE1 regulatory element and
probed Western blots for REST. Ischemia increased association
of REST with the RE1 sequence in CA1 samples, evident at 12 h,
24 h, and 48 h (Fig. 1G), but not in CA3 samples. In contrast,
ischemia did not increase association of β-actin (which lacks RE1
sites) with the RE1 oligonucleotide in CA1. These findings in-
dicate target and subfield specificity of REST activity. To ex-
amine the spatial and temporal pattern of CoREST and mSin3A
protein expression in CA1, we performed immunocytochemistry.
CoREST was constitutively expressed in the nuclei of CA1 py-
ramidal neurons under physiological conditions; ischemia in-
duced an increase in CoREST protein in nuclei of individual CA1

pyramidal neurons (Fig. 1H). mSin3A was abundantly expressed
in the nuclei and cytosol of CA1 neurons, and was not altered
by ischemia (Fig. 1I). Thus, ischemic insults up-regulate and ac-
tivate REST and its corepressor CoREST (but not mSin3A) in
the nuclei of selectively vulnerable CA1 neurons.

ChIP-on-Chip Analysis Reveals That REST Binds to a Discrete Subset of
Target Genes in CA1. To address recruitment of REST to target
genes, we applied a targeted ChIP-on-chip approach to identify
genes with altered REST occupancy in the selectively vulnerable
CA1 following transient global ischemia. ChIP-on-chip analysis
enables identification of loci with enhancedREST association and
provides broad-based, genome-wide information at high resolu-
tion about epigenomic dysregulation of REST targets critical to
ischemia-induced neurodegeneration. We used a custom tiling
microarray, in which a total of 385,000 overlapping, isothermal
probes interrogated 0.63% (17.3 Mb) of the rat genome encom-
passing 230 genes (Table 1). The genomic regions were selected to
include 73 coding and 7 noncoding neuron-specific genes that
contain RE1 sites and are validated targets of REST (of which 6
encode ionotropic glutamate receptors gria2, grin1, grin2B, grin2C,
grik2, and grik5); an additional 8 genes that encode ionotropic
glutamate receptors (of which some contain RE1 sites but are not,
as yet, validated targets of REST); six “negative control” regions
of the genome, including imprinted loci and immunoglobulins
(which are not expressed in brain); and 136 additional coding
geneswith no knownRE1 sites in regions adjacent toREST targets
(Table 1 and Table S1). Thus, the microarray contained 14 of 18
genes (5.4 Mb) encoding ionotropic glutamate receptors.
Loci with aberrant REST association in CA1 from animals

subjected to global ischemia were compared with corresponding
loci in samples of CA1 from control, sham-operated animals.
ChIP-on-chip analysis revealed REST enrichment at the pro-
moter regions (within 2 kb upstream or downstream from the
transcriptional start sites) of 58 target genes at 24 h, 50 target
genes at 48 h, and 13 target genes of 230 total genes at both 24 and
48 h after ischemia (Fig. 2A, Table 1, and Table S2). A list of the
13 genes exhibiting marked enrichment of REST in CA1 at both
24 and 48 h after ischemia, relative to that of control CA1, is
presented in Table 1. Genes with marked REST enrichment at
their promoters at 24 and/or 48 h after ischemia included gria2
[AMPA receptor (AMPAR), GluA2 subunit], grin1 [NMDA re-
ceptor (NMDAR), GluN1 subunit], chrnb2 (neuronal nicotinic
AChR, β2 subunit), nefh (neurofilament, heavy polypeptide),
nfκb2 (NF-κB2, a transcription factor), trpv1 [transient receptor
potential cation channel, subfamily V, member 1 (TRPV1)],
chrm4 (muscarinic AchR, M4 subunit), syt6 (synaptotagmin VI,
a component of the SNARE complex), and slc22a12/13 (solute
carrier family 22, member 12/13) (Fig. 2A and Table 1). Of note,
REST occupancy was markedly enriched at three loci in close
proximity to the RE1 site within the gria2 proximal promoter
region (Fig. 2A). REST occupancy was also increased at the
promoters of genes encoding other neurotransmitter receptors,
such as the nicotinic receptor β2 and the muscarinic receptor M4,
implicated in hippocampal synaptic plasticity; synaptotagmin VI,
a component of the SNARE complex involved in exocytosis of
synaptic vesicles at nerve terminals and implicated in short- and
long-term synaptic plasticity; and NF-κB2, a transcription factor
implicated in synaptic plasticity and memory. A modest increase
in the μ-opioid receptor (Mor1) was observed (not illustrated) in
confirmation of the findings of Formisano et al. (12). Searching
the JASPARCORE database (http://jaspar.genereg.net/) revealed
an RE1-consensus sequence at each of these loci. Thus, REST
associates with a discrete subset of target genes in postischemic
neurons. REST enrichment localized not only to gene promoters
but to inter- and intragenic regions (Table 1). Moreover, REST
enrichment was not limited to loci with RE1 elements. These
findings are consistent with a model whereby REST binding to
DNA can occur via association with noncanonical RE1 motifs
and/or with other DNA binding proteins, which recruit REST to
their cognate recognition sequence (30–32).
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Fig. 1. Global ischemia increases REST and CoREST (but not mSin3A) ex-
pression in CA1. RT-qPCR shows a marked increase in REST (A) and CoREST (B)
mRNA expression in selectively vulnerable CA1, but not resistant CA3, at
times after ischemia (n = 3 animals per group). (C) mSin3A exhibited a small
but significant increase in CA3 (but not CA1). Cycle threshold values of sam-
ples were normalized to hypoxanthine phosphoribosyl transferase (“house-
keeping” mRNA) and to corresponding samples from control (sham) animals
(relative expression ratio, normalized to sham ± 1). Representative Western
blots show a marked increase in REST (D) and CoREST (E), but not mSin3A (F),
in the nuclear (Nu), but not cytosolic (Cy), fraction of CA1, but not CA3 (REST),
at times after ischemia (n = 6 animals per group). Values for ischemic animals
were normalized to nucleolin or actin and to corresponding samples for
control animals. (G) RE1-oligoprecipitation shows that REST (but not actin)
binds the RE1 consensus sequence in CA1 (but not CA3) of ischemic (but not
control) animals. Proteins bound to biotin-labeled RE1 oligonucleotide were
captured with streptavidin beads and analyzed by Western blot. Immuno-
labeling of brain sections at the level of the dorsal hippocampus shows in-
creased expression of CoREST (H), but not mSin3A (I), in nuclei of individual
neurons in CA1 at times after ischemia at low (Left), intermediate (Center),
and high (Right) magnification. Bars represent the mean ± SEM. Statistical
significance was assessed by the randomization test. *P < 0.05; **P < 0.01;
***P < 0.001 in CA1 vs. CA3. #P < 0.05; ##P < 0.01; ###P < 0.001 in ischemia vs.
sham. so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum.
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Neuron-Specific Genes with Enriched REST Exhibit Gene Silencing.
Validation experiments involving single-locus ChIP revealed
REST enrichment at the promoters of the REST target genes
gria2, grin1, chrnb2, nefh, nfκb2, trpv1, chrm4, syt6, and aatf in
CA1 at 24 h and/or 48 h after ischemia relative to that in control
CA1 (Fig. 2A). Of the genes examined, gria2 exhibited the most
striking REST enrichment at 24 h and 48 h after ischemia. In
contrast, REST was not enriched at sites 10 kb downstream from
RE1 sites within the gria2, grin1, chrnb2, nefh, and nfκb proximal
promoters or at the promoter of the β-actin gene, which lacks an
RE1 site (Fig. 2A). These findings provide technical validation of
the ChIP-on-chip analysis and indicate target specificity. To ex-
amine whether altered REST occupancy at target genes results
in altered target gene expression, we performed a RT-quantita-
tive PCR (qPCR) assay. Seven REST target genes with enhanced
REST association (gria2, grin1, chrnb2, nefh, trpv1, chrm4, and
syt6) exhibited decreased mRNA (Fig. 2B). The eighth gene,
Nfκb2, exhibited a trend toward down-regulation that did not
achieve significance. Two genes with enhanced REST association
(Nfκb2 and Aatf) did not exhibit altered gene transcription. In
addition, expression of gapdh (Fig. 2B), which does not contain
an RE1 site, and Mill2, which contains an RE1 site but not en-
hanced REST association, was not altered. Because changes in
mRNA do not necessarily predict changes in protein, we exam-
ined protein levels of three REST targets (GluA2, GluN1, and
GluN2B) known to play roles in neuronal death in postischemic
CA1 (33, 34). All three proteins exhibited down-regulation in
CA1 at 48 h after ischemia (Fig. S1). Of the proteins examined,

GluA2 exhibited the most pronounced down-regulation. Col-
lectively, these findings provide technical and biological valida-
tion of the ChIP-on-chip analysis data and identify gria2, which
encodes the AMPAR subunit GluA2, a neuron-specific gene
involved in synaptic plasticity, structural remodeling, and neu-
ronal death, as a leading target of REST in postischemic CA1.

REST and Corepressors Associate with the gria2 Promoter in CA1. To
address the mechanism by which REST orchestrates silencing of
target genes, we performed a more in-depth analysis of GluA2
because it was the leading candidate in our Chip-on-chip anal-
ysis. Moreover, the role of GluA2 silencing and expression of
GluA2-lacking, Ca2+-permeable AMPARs in global ischemia-
induced neuronal death are well-established (33, 35–38). We first
examined the physical association of members of the REST re-
pressor complex with the gria2 promoter in postischemic CA1.
Toward this end, we performed single-locus ChIP on cross-
linked chromatin from CA1 and CA3 with antibodies to REST,
CoREST, and mSin3A, followed by a qPCR assay to detect
a region of the gria2 promoter within 150 bp of the RE1 site. In
control CA1, REST occupancy was low but detectable. Ischemia
induced enrichment of REST (shown as ratio of experimental to
control) at the gria2 promoter in CA1 (but not in CA3; Fig. 3A).
Ischemia did not detectably alter REST at sites either 10 kb
upstream or downstream from the RE1 site or at the β-actin
promoter, which lacks an RE1 site. These findings document
target and subfield specificity of the interaction between REST
and the GluA2 proximal promoter in CA1.
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Fig. 2. REST regulates a subset of
“transcriptionally responsive” tar-
get genes in CA1. (A) (Upper) REST
profiles across a subset of vali-
dated target genes were assessed
by ChIP-on-chip analysis in post-
ischemic CA1. Altogether, 13 target
genes exhibited REST enrich-
ment at promoter sites at 24 h
and 48 h after ischemia (Table 1).
Numbers in parentheses denote
log-fold changes in REST enrich-
ment in ischemic vs. control CA1.
Black squares denote “hot spots”
of REST enrichment. Arrowheads
denote transcriptional start sites
(TSSs) and transcriptional direc-
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ChIP, followed by qPCR, at sites
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Mill2, which contains an RE1 site,
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association. (D) Mill2 mRNA ex-
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control). Statistical significance was
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We next examined CoREST and mSin3A enrichment.
Whereas CoREST mediates primarily long-term silencing of
target genes, mSin3A mediates dynamic and reversible gene re-
pression (8, 26). Ischemia induced a marked increase in associa-
tion of CoREST with RE1 sites within the gria2 promoter in CA1
(but not CA3) to approximately fivefold that of control levels at
12 h after ischemia (Fig. 3 B and H). The finding that CoREST is
markedly enriched at the target gene promoter at 12 h, a time
when CoREST protein is not yet significantly increased, is con-
sistent with the concept that CoREST is constitutively expressed
in CA1 under physiological conditions and that its relative bind-
ing is increased after ischemia. Ischemia also increased associa-
tion of mSin3A with RE1 sites within the gria2 promoter in CA1
(but not CA3), but with a delay relative to that of REST or
CoREST (Fig. 3 C and H). In contrast, ischemia did not alter
association of CoREST or mSin3A in CA3 (Fig. 3 B and C).
The REST corepressor complex also recruits MeCP2, which,

in turn, recruits DNA methyl-transferases (39). DNA methyla-
tion is an epigenetic mark of relatively stable gene silencing.
Global ischemia induced an increase in MeCP2 at the gria2
promoter in CA1, evident at 24 h (Fig. 3D). The time course of
MeCP2 association paralleled that of mSin3A but not that of
REST or CoREST. Thus, ischemia not only increases expression
of REST and assembly of the corepressor complex but regulates
dynamic interaction of corepressors within this complex. Because
MeCP2 is associated with high methylation of CpG islands, we
examined methylation in a region of the gria2 proximal promoter
within 300 bp of the RE1. Ischemia did not significantly alter the
methylation status of CpG islands at the gria2 promoter, assessed
in CA1 at 24 h after ischemia by bisulfite pyrosequencing of a
−270- to +25-bp region (Fig. S2). Thus, REST represses gria2
promoter activity via epigenetic modifications of histone but not
DNA methylation within the proximal promoter region. These
findings do not, however, rule out the possibility of altered
methylation status in other regions of the GluA2 gene.

REST–Corepressor Complex Orchestrates Epigenetic Remodeling at
the gria2 Promoter in CA1. CoREST and mSin3A serve as co-
repressor platforms that recruit HDAC1 and HDAC2, which
remove acetyl groups from lysines on core histone proteins, and
thereby promote gene repression (16, 40). Whereas acetylation of
lysines 9 and 14 on histone 3 (H3K9/14ac) is an epigenetic mark
of open chromatin and active gene transcription, deacetylation of
lysines 9 and 14 is a mark of gene repression (16, 40). To evaluate
HDAC activity, we examined the acetylation status of H3K9 and
H3K14 associated with the gria2 promoter in ischemic vs. control
CA1. Ischemia induced a marked decrease in H3K9/14ac, evident
at 12, 24, and 48 h (Fig. 3E). These findings are consistent with

a model whereby REST acts, at least in part, via HDAC activity to
repress GluA2 expression in insulted neurons.
The REST–corepressor complex also recruits the histone

methyltransferase G9a (23), which promotes site-specific mono-
methylation and dimethylation of lysine 9 on histone 3
(H3K9me1 and H3K9me2, respectively), and LSD1 (24), which
removes methyl residues from lysine 4 on histone 3 (H3K4me1
and H3K4me2). Whereas dimethylation of H3K4 is an epige-
netic mark of open chromatin and active gene transcription,
dimethylation of H3K9 is a mark of gene repression (40, 41). To
evaluate G9a and LSD1 activity, we examined the methylation
status of H3K4 and H3K9 in ischemic vs. control CA1. In control
CA1, the level of H3K4me2 was high, whereas H3K9me2 was
low, an epigenetic signature of active gene transcription. Ische-
mia induced a marked enrichment in H3K9me2 (Fig. 3F), with
no significant change in H3K4me2 (Fig. 3G), an epigenetic sig-
nature of gene repression, in CA1 at 12 h and 24 h after insult; by
48 h, H3K4me2 abundance was modestly enhanced.
Dimethylation can occur only on lysine residues that are

deacetylated (42). To address whether acetylation and methyla-
tion occur in the same population of histone 3 proteins, we
performed double-ChIP experiments on microdissected CA1 at
times after ischemia. Loci with increased H3K9/14ac exhibited
high H3K4me2 but little or no H3K9me2 (Fig. S3), consistent
with the notion that ischemia promotes deacetylation and
dimethylation of H3K4 in the same population of histone 3
proteins. Together, these findings indicate that the REST com-
plex is active in insulted CA1 and document epigenetic remod-
eling of the REST target GluA2 in neurons destined to die.

HDAC Inhibitor TSA Affords Neuroprotection. The findings thus far
demonstrate that assembly of the REST complex triggers epi-
genetic modifications in neurons destined to die but do not es-
tablish that remodeling leads to neuronal death. To address this
issue, we performed two experiments. First, we examined the
impact of the broad-spectrum HDAC inhibitor TSA on survival
of insulted CA1 neurons in vitro. OGD in organotypically cul-
tured hippocampal slices is a well-established in vitro model of
global ischemia. OGD (30 min) elicited delayed, selective death
of CA1 and, to a lesser extent, dentate gyrus neurons, as assessed
by uptake of the DNA-indicator dye propidium iodide (Fig. 4A).
TSA (0.5 μM applied immediately after ischemia) markedly re-
duced ischemia-induced neuronal death (Fig. 4 A and B). Sec-
ond, we examined the impact of TSA on neuronal survival in an
in vivo model of ischemic stroke. Global ischemia induced ex-
tensive neurodegeneration in the CA1 pyramidal cell layer, as
assessed by Fluoro-Jade staining, an indicator of cells un-
dergoing neurodegeneration, at 6 d after surgery (Fig. 4 C and
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Fig. 3. Ischemia promotes assembly of the REST–co-
repressor complex and epigenetic remodeling of the gria2
promoter. Single-locus ChIP performed on microdissected
CA1 and CA3 tissue from control and experimental animals
at times after ischemia shows assembly of the REST–co-
repressor complex (A–D) and epigenetic remodeling (E–G)
of the gria2 promoter. Ischemia promotes association of
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IgG (n = 3–6 animals per treatment group and time point).
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D). TSA (1 mg/kg administered i.p. at 0 h after ischemia) did not
detectably affect neurons in sham-operated animals but afforded
marked protection of CA1 neurons in postischemic animals (Fig.
4 C and D). These findings indicate a requirement for HDAC
activity in neuronal death but do not preclude a role for off-
target activity at nonhistone proteins.

RNAi-Mediated Depletion of REST Rescues CA1 Neurons from
Postischemic Death. To establish a causal relation between REST-
dependent epigenetic remodeling and neuronal death in a clin-
ically relevant model, we delivered lentivirus carrying short
interfering REST (siREST) to REST unilaterally into the hippo-
campus; 14 d later, we subjected rats to global ischemia (Fig. 5A).
The lentivirus expression system allows for stable, long-lasting
expression of engineered siRNA sequences, which are processed
in vivo, and is a useful method for delivery of DNA and RNA to
postmitotic mammalian cells, such as neurons, with an exceedingly
low incidence of toxicity (43, 44). We designed three siRNA se-
quences directed to REST (Fig. 5A). To validate their specificity
and effectiveness, we performed several control experiments.
First, we documented the ability of these siRNA constructs tar-
geting distinct sequences in rat REST (rREST) to silence REST
in HEK293 cells. We identified two siRNA constructs that were
effective and one that was not (Fig. 5B). Second, neither non-
targeting (NT) siRNA nor scrambled siRNA detectably altered
REST expression in control conditions (Fig. 5B). Third, we ex-
amined the impact of rREST siRNA on expression of human
REST (hREST), which differs from rREST in the region targeted
by REST siRNA-2. Whereas REST siRNA-2 knocked down
rREST, hREST rescued REST expression (Fig. S4 A and B).
Fourth, we examined the impact of REST siRNA-2 on the
REST corepressors mSinA and CoREST. REST siRNA did not
detectably alter CoREST or mSin3A expression in HEK293 cells
or CA1 neurons in vivo (Fig. S4C). These findings document

target specificity of the siRNA. Fifth, we monitored the impact of
REST siRNA on the interferon (IFN) response, which would
promote off-target effects. REST siRNA did not detectably alter
expression of the IFN-responsive gene 2′,5′-oligoadenylate syn-
thetase-1 (AS1) in CA1 (Fig. S4D).
Lentiviral expression was robust in the ipsilateral hippocam-

pus at 14 d after transduction, as assessed by EGFP fluorescence
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(Fig. S5). In NT-siRNA–injected rats, ischemia induced bilateral
neuronal loss in the CA1 pyramidal layer, as assessed by Nissl
staining at 6 d after ischemia (Fig. 5C). REST siRNA fluores-
cence was prominent within the CA1 pyramidal layer and the
dentate gyrus, as assessed by EGFP fluorescence (Fig. 5C and
Fig. S6). REST siRNA promoted striking protection in the ip-
silateral CA1, as assessed by Nissl staining (Fig. 5C and Fig. S6).
The area showing protection (Fig. 5C, row 3) appeared greater
than that expressing siRNA (Fig. 5C, row 2), consistent with
a possible “bystander effect,” in which cells not expressing
siRNA are protected indirectly by contact with neighboring cells
expressing siRNA (Fig. S6) (45). DAPI staining revealed an in-
tact CA1 in both hemispheres (Fig. 5C and Fig. S6). Comple-
mentary results were observed with Fluoro-Jade staining (Fig. 5
D–F). In NT-siRNA–injected rats, Fluoro-Jade staining was
prominent in CA1 in both hemispheres (Fig. 5D, rows 1 and 2).
REST siRNA afforded protection in the ipsilateral CA1, as
demonstrated by reduced Fluoro-Jade staining (Fig. 5D, rows 3–
5). The dentate gyrus, which is resistant to ischemic cell death,
exhibited striking expression of REST siRNA on the ipsilateral
side but no neuronal loss in either hemisphere of sham or
postischemic animals (not illustrated), indicating that siREST
does not itself cause neuronal death. Thus, REST silencing or
inhibition rescues CA1 neurons, indicating a causal role for
REST in ischemia-induced neuronal death.

RNAi-Mediated Depletion of REST Prevents Epigenetic Remodeling of
the GluA2 Promoter. If REST induces neuronal death via silencing
of GluA2, REST siRNA should prevent epigenetic remodeling of
theGluA2 gene andGluA2 down-regulation in CA1.We assessed
the impact of REST siRNA injected unilaterally into the hippo-
campus of living rats on REST occupancy and epigenetic marks at
the gria2 promoter by ChIP at 24 h after ischemia (Fig. 6A). In
NT-siRNA–injected rats, ischemia increased REST and CoREST
at the gria2 promoter in CA1 (Fig. 6 B and C). REST siRNA had
little or no effect on REST occupancy at the gria2 promoter in
CA1 of sham-operated control animals, presumably because of
the low rate of REST synthesis or degradation under physiolog-
ical conditions (Fig. S7), but markedly reduced or reversed en-
richment of REST and CoREST at the gria2 promoter in the
ipsilateral CA1 of animals subjected to ischemia (Fig. 6 B and C).
In NT-siRNA–injected and nontransduced rats, ischemia induced
a modest decrease in H3K9/14ac (Fig. 6D) and increase in
H3K9me2 (Fig. 6E), marks of gene silencing, at the gria2 pro-
moter in CA1. REST siRNA blunted these changes on the ipsi-
lateral side (Fig. 6 D and E) and completely blocked the decrease
in acetylation on the contralateral side. This result might be at-
tributable to some spread of the siRNA to the contralateral side
or to biological variability. These findings indicate that epigenetic
changes are REST-dependent.
Finally, we assessed the impact of REST siRNA on GluA2

expression in CA1. In NT-siRNA rats, ischemia induced amarked
increase in REST and decrease in GluA2 mRNAs in CA1, as
assessed by qPCR assay (Fig. 6 F and G). REST siRNA attenu-
ated the increase in REST and decrease in GluA2 mRNA in the
ipsilateral CA1 (Fig. 6 F and G). In NT-siRNA–injected rats, is-
chemia markedly increased REST and decreased GluA2 protein
in CA1 (Fig. 6 H and I). REST siRNA had little or no effect on
basal GluA2 protein expression in CA1 of sham-operated control
animals, presumably because of the low occupancy by REST and
CoREST at the gria2 promoter under physiological conditions
(Fig. S7), but markedly attenuated the increase in REST and
decrease in GluA2 in CA1 of animals subjected to ischemia (Fig.
6 H and I). These findings indicate a causal link between REST
activation and GluA2 silencing in postischemic CA1.

dnREST Promotes Survival of Insulted CA1 Neurons. To examine
a possible causal relation between REST and ischemia-induced
neuronal death further, we assessed the impact of dnREST on
ischemia-induced epigenetic remodeling, gene silencing, and
neuronal death. dnREST has the main DNA binding domain of

full-length REST but lacks the N-terminal and C-terminal re-
pressor domains (Fig. 7A) (46). Lentiviral vector expressing myc-
tagged dnREST and EGFP afforded efficient transduction in
HEK-293 cells and in neurons in vitro (Fig. 7B). We injected
lentivirus expressing dnREST and EGFP or EGFP alone unilat-
erally into the right hippocampus of rats; 14 d later, we subjected
the rats to bilateral global ischemia or sham operation (Fig. 7C).
dnREST was prominently expressed on the injected side only, as
evidenced by immunolabeling with an anti-myc antibody at 6 d
after surgery (Fig. 7C). Within the CA1 pyramidal cell layer, not
all cells were immunopositive, indicating that they did not all
express dnREST (Fig. 7C). In uninjected rats (not illustrated) or
rats expressing EGFP alone, ischemia induced bilateral neuro-
degeneration in CA1 pyramidal cells, as assessed by Fluoro-Jade
label at 6 d after ischemia (Fig. 7 D and E). dnREST dramatically
reduced ischemia-induced neuronal death in CA1 pyramidal
neurons on the ipsilateral, but not the contralateral, side (Fig. 7D
and E). These findings demonstrate that inhibition of REST
promotes survival of neurons destined to die and implicate REST
as causally related to the neuronal death associated with ischemic
stroke, in confirmation of the REST siRNA data.

dnREST Silencing Prevents Epigenetic Remodeling at the GluA2
Promoter. We reasoned that if REST induces neuronal death
via silencing of GluA2 expression, inhibition of REST should
prevent ischemia-induced epigenetic remodeling at the GluA2
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t test. *P < 0.05; **P < 0.01; n.s., nonsignificant. I, ipsilateral; C, contralateral.
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promoter and GluA2 down-regulation in CA1. We injected len-
tiviral vector carrying dnREST or EGFP into the hippocampus
and subjected rats to ischemia or sham operation 14 d later. We
assessed REST occupancy and epigenetic marks over the gria2
promoter at 24 h after surgery (Fig. 8A). In EGFP-injected rats,
ischemia induced a marked enrichment in REST (Fig. 8B) and
CoREST (Fig. 8C) in the ipsilateral and contralateral CA1.
dnREST attenuated the ischemia-induced enrichment of REST
(Fig. 8B) and CoREST (Fig. 8C) in the ipsilateral (but not the
contralateral) CA1. This finding demonstrates that the presence

of CoREST at the RE1 sites is attributable to its recruitment by
endogenous REST. In EGFP-injected rats, ischemia induced
a marked reduction in H3K9/14ac (Fig. 8D), an epigenetic mark
of gene repression, in CA1 of both hemispheres. dnREST blunted
the ischemia-induced decrease in H3K9/14ac in the ipsilateral
CA1 and somewhat attenuated the decrease in acetylation in the
contralateral CA1 (Fig. 8D). These findings establish a causal link
between REST activation and epigenetic remodeling of GluA2
transcription in insulted CA1 neurons.
Finally, we assessed the impact of dnREST on GluA2 mRNA

and protein expression in CA1 at 48 h after insult (Fig. 8E). In
EGFP-injected rats, ischemia induced a marked decrease in
GluA2 mRNA on both the ipsilateral and contralateral sides.
dnREST attenuated the decrease in GluA2 mRNA on the ipsi-
lateral side, with less effect on the contralateral side. GluA2
protein levels were higher after ischemia on the side injected with
dnREST compared with the contralateral side and compared with
both sides expressing EGFP. Similar results were obtained in
animals injected with REST-VP16, which also acts in a dn man-
ner. REST-VP16 depressed ischemia-induced neuronal death
and attenuated epigenetic remodeling of the gria2 promoter in
CA1 in vivo (Figs. S8 and S9). Collectively, these findings provide
compelling evidence for a causal link between REST activation
and gria2 silencing in CA1 of postischemic animals.

Discussion
Dysregulation of the transcriptional repressor REST is impor-
tant in a broad range of diseases, including cancer, diabetes, and
heart disease (3). Using a targeted ChIP-on-chip analysis con-
taining nearly all known, functionally validated targets of REST
and tissue samples from animals subjected to global ischemia in
vivo, we show that ischemia triggers activation of not only REST
but corepressors. The REST–corepressor complex binds and
orchestrates epigenetic remodeling of a subset of transcription-
ally responsive target genes (gria2, grin1, chrnb2, nefh, nfκb2,
trpv1, chrm4, and syt6), of which the AMPAR gene GluA2 is
a top hit. Targets in CA1 with enriched REST exhibited de-
creased mRNA and protein expression. We further show that
REST and corepressors (CoREST, mSin3A, HDAC1 and
HDAC2, G9a, and MeCP2) are recruited to the gria2 promoter,
where they orchestrate epigenetic remodeling and gene silencing
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in insulted hippocampal neurons. A single, acute injection of
TSA, an inhibitor of key components of the REST–corepressor
complex, HDAC1 and HDAC2, administered to animals after an
ischemic episode ameliorates neuronal injury. This finding has
important clinical implications and suggests that HDAC inhib-
itors may be a promising avenue for intervention in the neuro-
degeneration associated with ischemic stroke. RNAi-mediated
depletion of REST (“silencing the silencer”) or lentiviral-medi-
ated delivery of dnREST into the hippocampus before ischemia
prevented epigenetic modifications, rescued GluA2 expression,
and ameliorated hippocampal injury. These findings advance
previous studies in that they show that other genes, in addition to
gria2, essential for synaptic function (e.g., grin1, trpv1, nfκb2) are
targets of REST in postischemic neurons and document a causal
role for REST-dependent epigenetic remodeling in neuronal
death in a clinically relevant model of global ischemia in vivo.
This broad-spectrum REST binding study is unique in that it

examines REST binding in the hippocampal CA1 from animals
subjected to ischemia in vivo. Although an unbiased, genome-wide
study of genes enriched for REST has yet to be performed, in the
present study, targeting ChIP-on-chip profiling and bioinformatics
analysis, reveals a set of REST targets that exhibit profound
alterations in response to ischemic insults. Several of these hits are
genes implicated in excitotoxic cell death but not yet identified as
therapeutic targets in stroke.Of 13 target genes enriched for REST
at 24 h and 48 h after ischemia (Table 1), 6 are implicated in is-
chemia-induced neuronal death (gria2, chrnb2, grin1, nppa, scg2,
and syp); 2 are implicated in neuronal death but not in ischemia
(nfkb2 and nefh); 1 is implicated in cell death but not in neuronal
death (fdxr); and 4 are not yet linked to any form of cell death
(peg12/frat3, csrnp3, slc22a12, and slc22a13). Of note, REST was
enriched at the promoters of genes encoding the AMPAR subunit
GluA2 (gria2), the NMDAR subunit GluN1 (grin1), and the
TRPV1 channel (trpv1). Whereas NMDARs and GluA2-lacking
AMPARs mediate toxic Ca2+ entry into neurons, TRPV1 pro-
motes excitability of pyramidal neurons. Excessive activation of the
TRPV1 channel is thought to contribute to dysregulation of neural
circuits during epileptic activity (47). We predict that REST-de-
pendent silencing of TRPV1, by analogy to silencing of the
μ-opioid receptor (12), leads to enhanced inhibitory synaptic input
to selectively vulnerable CA1 pyramidal neurons, and thus repre-
sents a failed attempt to promote survival of pyramidal neurons.
It is noteworthy that the transcriptionally responsive REST

targets identified in our study differ from target genes identified
by unbiased, genome-wide approaches, such as, for example,
ChIP serial analysis of chromatin occupancy in a mouse kidney
cell line (32), large-scale ChIP-seq in Jurkat cells (30), and ChIP-
on-chip in mouse neural stem cells (48) and parietal cortex tissue
from postmortem Huntington disease brain (15). In the present
study, of 13 target genes enriched for REST at 24 h and 48 h
after ischemia, 10 overlap with targets identified in at least one
other study (Table 1). Six genes (gria2, chrnb2, nppa, scg2, nefh,
and syp) are targets identified in Jurkat cells (30), 3 genes
(slc22a12, slc22a13, and nefh) are targets identified in a mouse
kidney cell line (32), but only 1 gene (nefh) overlaps with genes
identified in both Jurkat (30) and mouse kidney (32) cells. In-
terestingly, even though it is the only other study to use brain
tissue, only 1 gene identified by us as a positive hit at both 24 h
and 48 h (chrnb2) and 1 identified at 24 h but not 48 h (chrm4)
overlap with positive hits in postmortem Huntington disease
brain (15). These findings indicate that under different con-
ditions, in different cell types, and during different stages of
development, REST regulates different networks of target genes.
Moreover, whereas those studies address REST occupancy un-
der basal conditions, our study focused on genes that undergo
dynamic changes in REST occupancy following ischemic insult.
In the present study, we show that REST assembles with

CoREST, mSinA, HDACs, G9a, and MeCP2 at the promoter
of a representative target gene, gria2, and orchestrates epige-
netic remodeling of target genes. The REST–corepressor com-
plex confers site-specific epigenetic marks of gene repression

(deacetylation and methylation) to core histone proteins, which
drive gene silencing. It is of note that REST assembles with
different corepressors to orchestrate epigenetic remodeling and
silencing of target genes in different cell types and at different
developmental stages. Whereas REST is abundant in ES cells, in
neural progenitors, REST is maintained at low levels by ubiq-
uitin-based proteasomal degradation, consistent with a chroma-
tin status poised for gene activation (8). As neural progenitors
differentiate into neurons, REST and its corepressors depart the
RE1 site of selected neuronal genes, triggering transcriptional
activation. In newborn neurons, the level of expression of REST
targets is adjusted further by CoREST–MeCP2 repressor com-
plexes, which remain bound after REST (8, 49). A recent study
suggests that MeCP2 localizes to nearly every nucleosome and,
as such, may not bind preferentially to individual genes (50).
Although not addressed by the present study, MeCP2 may be
widespread throughout chromatin in the brain.
Bioinformatics analysis predicts nearly 2,000 REST target

genes within the mammalian genomes (51) and in immortalized
Jurkat cells (31). What then determines the specificity of in-
teraction between REST and target genes? An attractive scenario
is that on transition from neural progenitors to newborn neurons,
genes critical to elaboration of the neuronal phenotype acquire
epigenetic marks that maintain them in a state of stable activation
(52). An example is trimethylation of core histone 3 at lysine 36
(H3K36me3). Such marks might serve to oppose REST-de-
pendent gene silencing. Another possibility is that other DNA
binding proteins may influence recruitment and/or stabilization of
REST at promoters of target genes. Polycomb group proteins
serve as global enforcers of epigenetically repressed states in an
array of cell types, including neurons (53). Recent studies indicate
that polycomb repressive complex 2 (PRC2) is recruited to RE1-
containing genes by REST via the noncoding RNAHOTAIR (54)
and that PRC1 interacts with REST at RE1 sites (55). Moreover,
polycomb proteins are activated and afford neuroprotection in
the setting of ischemic preconditioning (56).
In summary, findings in the present study demonstrate activa-

tion of the REST corepressor complex and REST-dependent
epigenetic remodeling of a subset of transcriptionally responsive
target genes, of which the AMPAR gene gria2 is a top hit. We
further show a causal relation between REST activation and
neuronal death in a clinically relevant model of global ischemia in
vivo. Whereas epigenetic modifications are known to play a role
in brain development and cognition, a role for epigenetics in
neurodegenerative disorders has remained unclear (57). Dysre-
gulation of REST and repression of REST target genes are im-
plicated in the pathogenesis of epilepsy (13); Huntington disease
(14, 15); Down syndrome (58); medulloblastoma (59); and, more
recently, SMCX-associated X-linked mental retardation (60).
Findings in the present study add ischemic stroke to the growing
list of diseases involving dysregulation of REST and have broad
implications for our understanding of the molecular mechanisms
underlying neurodegenerative disorders and diseases.

Materials and Methods
Detailed methods can be found in SI Materials and Methods.

Animals and Global Ischemia. Male Sprague–Dawley rats (150–200 g; Charles
River Laboratories) were subjected to transient global ischemia or sham
operation by four-vessel occlusion as described (11, 61).

ChIP-on-Chip Analysis and Single-Locus ChIP Assays. For ChIP-on-chip experi-
ments, the CA1 subfield was microdissected and cross-linked adducts were
sonicated to shear chromosomal DNA to a size of ∼300 bp. Samples were
subjected to immunoprecipitation with an antibody directed against REST
(anti-REST; Upstate Biotechnology), and immunocomplexes were collected
on magnetic beads. ChIP output of anti-REST–precipitated chromatin and
total chromatin were subjected to whole-genome amplification and labeled
with different fluorophores. For single-locus ChIP-qPCR assays, ChIP analysis
was performed with the same antibodies as above, followed by qPCR assay.
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In Vivo Delivery of Viral Constructs. REST siRNA-2, siRNA-3, NT siRNA, dnREST,
or EGFP was delivered into the hippocampus of live rats by stereotaxic in-
jection 14 d before global ischemia or sham surgery as described (62). Viral
solution (4.0 μL) was injected into the right hippocampus by means of a 10-
μL Hamilton syringe with a 34-gauge needle driven by a Quintessential
Stereotaxic Injector (Stoelting Company). To monitor the time course of
siRNA or dnREST expression, control (sham-operated) rats were killed at
indicated times and EGFP fluorescence was assessed in brain sections at the
level of the hippocampus.

Histology. Histological analysis of Nissl- or Fluoro-Jade–stained brain sections
was performed at 6 d after ischemia was induced. In brief, coronal sections
(30 μm) were cut at the level of the dorsal hippocampus with a cryotome and

processed for staining with Nissl, DAPI, or Fluoro-Jade stain. Number of cells
per 600 μm length of medial CA1 were counted.
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