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Legionella pneumophila, the causative agent of Legionnaires’
pneumonia, resides in a distinct vacuole structure called Legion-
ella-containing vacuole (LCV). The LCV resists fusion with the lyso-
some and permits efficient bacterial replication in host macro-
phages, which requires a Dot/Icm type IVB secretion system.
Dot/Icm-translocated effector SdhA is critical for L. pneumophila
intracellular growth and functions to prevent host cell death. Here,
we show that the absence of SdhA resulted in elevated caspase-1
activation and IL-1β secretion as well as macrophage pyroptosis
during Legionella infection. These inflammasome activation phe-
notypes were independent of the established flagellin-NAIP5-
NLRC4 axis, but relied on the DNA-sensing AIM2 inflammasome.
We further demonstrate that Legionella DNA was released into
macrophage cytosol, and this effect was significantly exaggerated
by the absence of SdhA. SdhA bears a functional Golgi-targeting
GRIP domain that is required for preventing AIM2 inflammasome
activation. Ectopically expressed SdhA formed a unique ring-shape
membrane structure, further indicating a role in membrane traf-
ficking and maintaining LCV membrane integrity. Our data to-
gether suggest a possible link, mediated by the function of
SdhA, between LCV trafficking/maturation and suppression of
host innate immune detection.

Gram-negative Legionella pneumophila, the causative agent of
Legionnaires’ disease, infects and replicates within alveolar

macrophages. L. pneumophila resides in a distinct vacuole
structure called Legionella-containing vacuole (LCV). Dynamic
and extensive engagement with host membrane transport system
diverts LCV trafficking from normal eukaryotic endocytic path-
way and, thereby, results in resistance to fusion with the lysosome
(1), a process that requires a Dot/Icm type IVB secretion system
(2, 3). The primitive function of the Dot/Icm system is to transfer
DNA by bacterial conjugation (4), but its predominant role in
infection is to translocate protein substrates across the LCV
membrane into host cells. A prevalent function for known Dot/
Icm effectors is to subvert eukaryotic vesicular trafficking (1, 5,
6). A large number of >250 Dot/Icm effectors are experimentally
confirmed (7). Few Dot/Icm effectors are genetically required
for LCV avoidance of lysosomal fusion, suggesting a functional
redundancy. However, the Dot/Icm system is critical for estab-
lishment of the LCV. The LCV serves as an intracellular niche,
where L. pneumophila can efficiently replicate, as has been ob-
served in human U937 monocytes (8).
The inflammasome pathway, generally mediated by cytosolic

NOD-like receptors (NLRs), is a critical component in macro-
phage innate immunity (9). Similar to the Toll-like receptor
pathway that senses pathogen-associated molecular patterns
(PAMPs), inflammasome also responds to microbial products for
counteracting infection. Inflammasomes are large cytoplasmic
complexes that induce activation of downstream inflammatory
caspases, mainly caspase-1. Caspase-1 activation leads to matu-
ration and secretion of IL-1β and IL-18 as well as macrophage
pyroptosis. NAIP5, a mouse NLR protein, functions as a re-
ceptor for bacterial flagellin and forms an inflammasome com-
plex with NLRC4 and the ASC adaptor (10, 11). Upon infection,
L. pneumophila flagellin triggers potent NAIP5-dependent

caspase-1 activation and pyroptosis in C57/BL6-derived macro-
phages that are nonpermissive for L. pneumophila growth. Both
interference with host vesicular trafficking and modulation of the
innate immune response are crucial for Dot/Icm-dependent
L. pneumophila intracellular survival/replication, but it is not
known whether the two pathogenic aspects of L. pneumophila
are functionally connected.
Different from the NAIP family of inflammasome receptors

(11), the non-NLR protein AIM2 recognizes cytosolic double-
strand DNA (dsDNA), such as that from intracellular bacteria,
and forms an active inflammasome complex with ASC (12–15).
Here, we discover that SdhA, the sole Dot/Icm effector whose
mutation leads to severe L. pneumophila growth defects in
macrophages (16), negatively regulates AIM2 inflammasome
activation during infection. L. pneumophila ΔsdhA-stimulated
AIM2 activation correlates with much-elevated bacterial DNA
release from the ΔsdhA mutant into macrophage cytosol. Fur-
ther characterization of SdhA function suggests that SdhA is
intimately linked to the membrane trafficking system, including
the presence of a functionally important Golgi-targeting GRIP
domain. Thus, the function of SdhA represents a possible link
between LCV trafficking/maturation and suppression of inflam-
masome-mediated innate immune detection.

Results
L. pneumophila ΔsdhA Infection Triggers Pyroptosis and Caspase-1
Activation in Human Macrophage Cells. Dot/Icm-translocated
SdhA has been shown to function to prevent macrophage death
(16). To investigate the mechanism underlying SdhA function,
PMA-differentiated U937 human macrophage cells were infec-
ted with L. pneumophila strain proficient (Lp02) or deficient in
Dot/Icm-mediated secretion (ΔdotA, Lp03) or the isogenic
ΔsdhA strain. By 5 h of infection, U937 cells infected with ΔsdhA
exhibited evident osmotic pressure-induced cell swelling and
nuclear condensation (Fig. 1A), two typical morphological fea-
tures of macrophage pyroptosis. In contrast, cells infected with
Lp02 and Lp03 strains underwent little such morphological
changes. Trypan blue staining further showed extensive nuclear
staining signals in cells infected with L. pneumophila ΔsdhA but
not in Lp02 and Lp03 infected cells (Fig. 1B). ΔsdhA-triggered
loss of cell membrane integrity was confirmed by massive
releases of lactose dehydrogenase (LDH) and high-mobility
group protein B1 (HMGB1) (Fig. 1 C and D). Quantification of
LDH release further indicated that nearly 50% of ΔsdhA-infected
cells underwent pyroptosis within 5 h of infection, whereas the
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percentages of cell death observed with Lp02 and Lp03 infections
were comparable to that in uninfected cells (Fig. 1B).
Consistent with the morphological feature of inflammasome

activation, robust caspase-1 activation was detected in the culture
supernatant of ΔsdhA-infected U937 macrophages, but not in
that of uninfected or Lp02/Lp03-infected macrophages (Fig. 1E).
ΔsdhA-induced caspase-1 activation and macrophage pyroptosis
were completely diminished by YVAD, a caspase-1 specific in-
hibitor (Fig. 1 C and E). Furthermore, compared with Lp02 and
Lp03 infection, infection of U937 cells with L. pneumophila
ΔsdhA resulted in secretion of a much larger amount of mature
IL-1β, which was also sensitive to YVAD pretreatment (Fig. 1F).
We then tested whether loss of SdhA is responsible for the

above observed increased inflammasome activation. An SdhA-
expressing plasmid was found to be able to completely reverse
ΔsdhA-induced morphological changes (Fig. 1 A and B), LDH
and HMGB1 release (Fig. 1 C and D), caspase-1 activation (Fig.
1E), and IL-1β production (Fig. 1F), whereas a control empty
vector showed so such rescue effects. These analyses clearly es-
tablish that SdhA prevents human macrophage cell death by
blocking inflammasome activation.

Flagellin Is Dispensable for ΔsdhA-Induced Inflammasome Activation.
Cytosolic flagellin triggers strong caspase-1 activation during L.
pneumophila infection (17–19). To test whether SdhA prevents

or negatively regulates flagellin-induced inflammasome activa-
tion, flagellin-deficient (ΔflaA) and SdhA/flagellin (ΔflaAΔsdhA)
double deletion strains were constructed and assayed for inflam-
masome activation. In human U937 macrophages, ΔflaAΔsdhA
induced significantly higher levels of LDH release (Fig. 2A),
caspase-1 activation (Fig. 2B), and IL-1β maturation (Fig. 2C)
than the background ΔflaA strain, which could be fully rescued
by plasmid-encoded SdhA. Flagellin-independent inflammasome
activation observed with ΔsdhA infection agrees with our recent
discovery that human macrophages lack the flagellin-sensing NAIP5
inflammasome receptor (11). Consistently, deletion of flagellin
from wild-type L. pneumophila also did not alter caspase-1 ac-
tivation in U937 cells (compare ΔflaA with Lp02 in Fig. 2 A–C).
Different from human cells, mouse macrophages express the

NAIP5 receptor and are responsive to Legionella flagellin stimu-
lation of caspase-1 activation. Several types of mousemacrophages,
including primary peritoneal macrophage (PM) and primary/
immortalized bone marrow-derived macrophage (BMM), were
then assayed for the inhibitory effects of SdhA on caspase-1 acti-
vation. Consistent with that observed in U937 macrophages, ab-
lation of sdhA from flagellin-deficient L. pneumophila could
still lead to elevated caspase-1 activation and, to a lesser extent,
IL-1β production (Fig. 2 D and E). These results suggest that
the function of SdhA in inhibiting caspase-1 activation is flagellin-
independent and SdhA likely blocks inflammasome activation
triggered by other Legionella-derived PAMPs.

ΔsdhA-Induced Caspase-1 Activation and Pyroptosis Require AIM2
and ASC. To determine ΔsdhA-induced inflammasome activa-
tion, primary peritoneal macrophages deficient in various known
inflammasome components including NLRP3, NLRC4, and ASC
were subjected to infection with ΔsdhA strain. As shown in Fig.
3A,Nlrp3−/− andNlrc4−/−macrophages behaved similarly as wild-
type macrophages and showed increased caspase-1 activation in
response to sdhA deletion. In contrast, no caspase-1 activation
was detected in Asc−/− macrophages infected with either ΔflaA or
ΔsdhAΔflaA strains (Fig. 3A). ASC often aggregates to form
a single speck-like large structure called pyroptosome that func-
tions to mediate caspase-1 autoprocessing (20). We also observed
ASC pyroptosome formation in ≈25% of U937 cells infected with
ΔsdhA, but not in cells infected with Lp02, Lp03, or the ΔflaA
strain (Fig. 3B).
Among known inflammasome complexes, ASC is strictly re-

quired for NLRP3 and AIM2 mediated caspase-1 activation due
to pyrin–pyrin interaction between NLRP3/AIM2 and ASC. The
insensitivity of ΔsdhA-induced caspase-1 activation to Nlrp3 de-
ficiency directed our focus to AIM2. In fact, small interference
RNA (siRNA) knockdown of AIM2 expression in 129S mice-
derived BMMs (Fig. 3C) could largely diminish ΔsdhA-induced
caspase-1 activation and IL-1β production (Fig. 3 D and E).
Knockdown of AIM2 abolished poly(dA-dT)-induced caspase-1
activation, but not that by lipopolysaccharide (LPS) plus ATP
(Fig. 3E), verifying the functional specificity of the siRNA oli-
goes used. The requirement of AIM2 for ΔsdhA-induced cas-
pase-1 activation was further confirmed in primary BMMs
derived from Aim2 knockout C57/BL6 mice (Fig. 3F). Caspase-1
activation in C57/BL6-derived primary BMMs, compared with
that in 129S-derived BMMs, appeared to be less responsive to
ΔsdhA infection likely due to the strain difference. Taken to-
gether, our data suggest that elevated caspase-1 activation in-
duced by L. pneumophila ΔsdhA infection is a result of AIM2
inflammasome activation.

Bacterial DNA Is Released into Macrophage Cytosol, which Is
Enhanced by the Absence of sdhA. We then examined whether
SdhA could directly target the AIM2–ASC–caspase-1 signaling
axis. Coimmunoprecipitation of AIM2 and ASC in the ectopic
expression system was not affected by SdhA (Fig. 4A). The
AIM2/ASC complex produced in 293T cells could induce IL-1β
maturation in the presence of caspase-1, but this effect was also
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Fig. 1. Deletion of sdhA triggers pyroptosis and caspase-1 activation in U937
cells. (A and B) Morphological examination of effects of sdhA deletion during L.
pneumophila infection of PMA-differentiatedU937 cells (MOI = 10). Lp02 is used
as the wild-type strain; Lp03 is a dotA mutant. pSdhA is a complementation
plasmid expressing SdhA. Differential interference contrast images (5 h after
infection) are shown with cells stained with Trypan blue in B. Arrows indicate
pyroptotic cells inA. (C andD) Lactate dehydrogenase (LDH) (C) and HMGB1 (D)
release assays of effects of sdhA deletion. Shown in C are percentages of cell
death as mean values ± SD (error bars) from four independent experiments.
Anti-HMGB1 immunoblot of culture media is shown in D. YVAD, a caspase-1
inhibitor. (Eand F) Caspase-1 activationand IL-1β release assaysof sdhAdeletion.
Shown in E is anti–caspase-1 immunoblot of culture supernatants. p45, procas-
pase-1; p10, theprocessedmature formof caspase-1. IL-1β ELISA data shown in F
are as mean values ± SD (error bars) from three independent experiments.
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not subjected to inhibition by SdhA (Fig. 4B). Because SdhA is
unlikely to be a direct inhibitor of the AIM2 inflammasome
complex, we then hypothesized that loss of SdhA might lead to
an increased bacterial DNA release into macrophage cytosol.
To this end, an ampicillin-resistant Escherichia coli/Legionella
shuttle plasmid (pJB908) was transformed into SdhA-positive or
-negative strains. After 4 h of infection of U937 cells or mouse
BMMs, macrophages were lysed in a hypotonic buffer and cy-
tosolic DNA containing the released plasmid was extracted.
Before DNA extraction, macrophage cytosol was supplemented
with a kanamycin-resistant plasmid (pEGFP-N1) that served as
an internal control for subsequent experimental procedures. The

extracted DNA was subjected to both quantitative real-time PCR
(qRT-PCR) analysis and a colony-counting assay after E. coli
transformation. The ratio of pJB908 quantification to pEGFP-
N1 quantification calculated from both assays clearly showed
that Legionella DNA was released into macrophage cytosol and
deletion of sdhA resulted in a significant enhancement of such
effects (Fig. 4 C and D). The DNA release pattern for the dif-
ferent L. pneumophila strains assayed correlated with their
profiles of inducing caspase-1 activation and IL-1β release (Fig. 2
C and D). Thus, SdhA blocks AIM2 inflammasome-mediated
innate immune response by preventing bacterial DNA release
into the cytosol of infected macrophages. The pJB908 reporter
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BL6 (WT) or indicated knockout mice were infected
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plasmid used here lacks the oriT origin and was defective for
Dot/Icm-mediated conjugal transfer (4), regardless of the pres-
ence and absence of sdhA (Table S1). This result suggests that
increased DNA release induced by ΔsdhA is independent of Dot/
Icm-mediated plasmid conjugation.
L. pneumophila infection also potently activates IRF3-de-

pendent type I IFN response, which plays a role in restricting
Legionella intracellular growth (21, 22). A genetic screen also
identifies SdhA as a suppressor of L. pneumophila-stimulated
type I IFN response (23). Our model of SdhA function is con-
sistent with these observations because cytosolic bacterial DNA
is known to be a potent stimulator of type I IFN response. It has
been debated whether Legionella DNA or RNA is responsible
for activation of the type I IFN response (23, 24). Our data in-
dicate that at least bacterial DNA is released into host cytosol
and exposed to host innate immune receptors.

ΔsdhA-Induced AIM2 Inflammasome Activation Is Independent of IFN
and TNFα Signaling. Francisella tularensis also releases its DNA
into host cytosol and triggers both type I IFN response and
AIM2-dependent caspase-1 activation (25). Full inflammasome
activation requires Francisella DNA-stimulated type I IFN sig-
naling (26, 27). We then examined whether such requirement
also applies to L. pneumophila ΔsdhA-induced inflammasome
activation. To this end, Ifnar−/−, Ifngr−/−, Irf3−/−, Irf7−/−, or Irf3−/−

Irf7−/− peritoneal macrophages that are deficient in either type I
or type II IFN response were infected with sdhA+ or sdhA−

strains. Similarly to that observed in wild-type macrophages,
deletion of sdhA still resulted in elevated caspase-1 activation in
all these IFN signaling-deficient macrophages (Fig. S1A).
Moreover, pretreatment of mouse BMMs or U937 cells with
IFN-β did not vary the extent of ΔsdhA-induced caspase-1 activa-
tion (Fig. S1B). Thus, L. pneumophila differs from F. tularensis and
induces AIM2 activation independently of the type I IFN response.

Bacterial infection often triggers production of the proinflam-
matory cytokine TNFα that widely regulates macrophage innate
immunity. We also observed that ΔsdhA-induced caspase-1 acti-
vation remained unchanged in Tnfrsf1a−/−Tnfrsf1b−/− macrophages
(Fig. S1C). Moreover, TNFα pretreatment of U937 cells had little
effects on caspase-1 activation in response to ΔsdhA infection (Fig.
S1C). These data suggest that TNFα signaling is not involved in
L. pneumophila ΔsdhA-induced AIM2 inflammasome activation.

SdhA Is Targeted to the Endomembrane Structure and Membrane
Targeting Is Required for SdhA Function in Preventing Inflammasome
Activation. SdhA contains 1,429 amino acids and sequence ho-
mology analysis revealed a C-terminal GRIP domain (residues
1341–1390) (Fig. 5 A and B). The GRIP domain of ≈50 residues
is present in a group of large coiled-coil membrane proteins,
usually at their carboxyl termini (28, 29). The GRIP domain,
such as that from many golgins, is necessary and sufficient for
Golgi targeting (30). Consistently, the GRIP domain of SdhA
was found to be exclusively localized to the Golgi apparatus in
mammalian cells as indicated by immunostaining of a Golgi
marker GM130 (Fig. 5C). Notably, a GRIP domain deletion
mutant of SdhA (SdhAΔGRIP) failed to reverse ΔsdhA-induced
caspase-1 hyperactivation (Fig. 5D) despite the mutant was
expressed at a higher level than endogenous SdhA (Fig. S2). (A
SidC translocation signal was added to SdhAΔGRIP for Dot/
Icm-dependent translocation.)
Interestingly, we also observed that GFP-SdhA formed distinct

ring-shape membrane structures with a diameter ≈0.5–2 μm in
HeLa cells (Fig. 6A). These membrane structures did not adopt
cis- (GM130) and trans-Golgi (TGN38) markers (Fig. 6B) and
were not sensitive to Golgi-disassembling drugs such as brefeldin
A, colchicine, and nocodazole (Fig. S3). The SdhA ring-shape
structures were also negative for a panel of subcellular organelle
markers including GFP-PTS1 for peroxisome (Fig. S4A), VDAC1,
cytochrome c, and Mitotracker for mitochondria (Fig. S4 B–D),
Lysotracker and LAMP1 for lysosome (Fig. S5), calreticulin for
endoplasmic reticulum (Fig. S6A), Rab5 and EEA1 for early
endosome (Fig. S6 B and C), and Rab7 for late endosome (Fig.
S6D). Disruption of lysosome biogenesis by bafilomycin A1,
a vacuolar-type H+-ATPase inhibitor, had no effects on SdhA
formation of the ring-shape structure (Fig. S5A). This membrane
structure formed by N-terminal Flag-tagged SdhA-GFP could be
visualized by anti-Flag immunofluorescence staining even when
digitonin was used for cell permeabilization (Fig. S7A). This
result suggests that the amino terminus of SdhA is likely exposed
to the cytosol because digitonin was known to be incapable of
permeabilizing the endomembrane (Fig. S7B). These extensive
analyses, although not revealing for the identity of SdhA-marked
membrane structures, provide another support to the potential
function of SdhA in membrane trafficking.
Truncation analyses were further performed to map the

regions in SdhA that are required for formation of the ring-shape
structure. Three SdhA truncation mutants with deletions of vari-
ous amino-terminal regions (SdhA_A, SdhA_B, and SdhA_C)
lost the ability to form the unique ring-shape structure and be-
came dispersed in the cytoplasm (Fig. 6 C and D). All three
mutants were expressed at a much higher level than endogenous
SdhA (Fig. S2) but failed to reverse ΔsdhA-induced pyroptosis
and caspas-1 activation in infected U937 cells (Fig. 6 E and F).
Similar results were obtained in mouse BMM cells (Fig. S8).
Consistent with our proposed role of SdhA in preventing bac-
terial release into macrophage cytosol, the relative amount of
bacterial DNA released from the three mutants-complemented
strains was at a similarly higher level as that from the ΔsdhA
deletion strain (Fig. S9). These data, together with the functional
requirement of the Golgi-targeting GRIP domain, indicate that
Dot/Icm-translocated SdhA likely targets the membrane system
to prevent bacterial DNA release and activation of AIM2
inflammasome, which is possibly through maintaining LCV
membrane integrity.
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Discussion
In this study, we show that L. pneumophila triggers inflammasome
activation in human monocyte-derived macrophages. Consistent
with the absence of NAIP5 inflammasome receptor for bacterial
flagellin in human system (11), we identify theDNA-sensingAIM2
inflammasome that is responsible for L. pneumophila-induced
caspase-1 activation in human macrophages. Legionella activation
of AIM2 also occurs in mouse macrophages, but is relatively
hysteretic compared with the more predominant activation of the
NAIP5 inflammasome by flagellin. The difference between the
human and mouse inflammasome system might explain the long
known permissiveness to L. pneumophila intracellular replication

observed with U937 cells, but not mouse macrophages that harbor
wild-type Naip5. We further provide direct evidences that L.
pneumophila DNA leaks out of the bacteria into macrophage cy-
tosol, which can also explain the previously observed induction of
the type I IFN response (21–23). Release of bacterial DNA to
trigger AIM2 inflammasome activation and type I IFN response
has been observed with other bacteria such as F. tularensis and L.
monocytogenes (27, 31). Thus, DNA derived from intracellular
bacteria is likely a general PAMP for host innate immune system.
Meanwhile, host-derived DNA, particularly mitochondrial DNA,
may also possibly contribute to L. pneumophila stimulation of the
innate immune response. In fact, mitochondria are extensively
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recruited to the LCV and mitochondria disruption has been noted
in ΔsdhA-infected macrophages (16).
SdhA is critically required for L. pneumophila growth in

macrophages (16). Our genetic studies demonstrate that SdhA
functions to prevent bacterial DNA release into macrophage
cytosol. Loss of SdhA, therefore, results in much increased ac-
tivation of AIM2 inflammasome and the type I IFN response
observed (23). Caspase-1–mediated secretion of IL-1β /IL-18
trigger strong inflammatory responses that alert the immune
system for pathogen clearance. Caspase-1–induced pyroptosis
can also clear intracellular bacteria independently of cytokine
secretion (32). Nuclear acid-activated type I IFN response has
been established as a crucial immune defense mechanism to
restrict intracellular bacteria including L. pneumophila (21, 33,
34). Thus, our discovery of SdhA function in preventing DNA
release provides a possible mechanistic explanation for the se-
vere growth defect observed with ΔsdhA mutant in macrophage
hosts. Our observation may also explain that ΔsdhA mutant has
no intracellular growth defects in amoebae hosts that do not
have the nuclear acid-sensing innate immune system.
SdhA contains a functionally important GRIP domain that

alone is targeted to the Golgi apparatus. Our extensive analyses
establish that SdhA is most likely involved in membrane traf-
ficking. This observation is not unexpected given that a large
majority of Dot/Icm-secreted substrates appear to modulate the
membrane system for appropriate LCV trafficking (6). A plau-
sible model for SdhA function is that it is involved in a certain
aspect of vesicular trafficking and thereby maintains LCV
membrane integrity to prevent bacterial DNA from leaking out
of the LCV. Supporting our model, a recent study that came out
during the revision process of our manuscript provides direct
evidences that LCV containing ΔsdhA mutant is unstable and,

therefore, accessible to host cytosol (35). Despite that it is not
known whether preventing DNA release by SdhA is a bacterial
“intentional” virulence mechanism, the mode of SdhA action
through maintaining the LCV membrane integrity represents
another paradigm in bacterial effector-mediated counteraction
of host innate immune defense (36).

Materials and Methods
L. pneumophila strains were cultured on buffered charcoal yeast extract
agar plates supplemented with 0.1 mg/mL thymidine. L. pneumophila ΔflaA,
ΔsdhA, and ΔflaAΔsdhA strains were generated by standard homologous
recombination using the suicide plasmid pSR47s. pJB908-based comple-
mentation plasmids were introduced into L. pneumophila by electro-
poration (2.5 Kv, 200 Ω, 25 μF, and 5 ms). The complementation stains were
cultured on buffered charcoal yeast extract agar without thymidine. For
macrophage infection, fresh single bacterial colonies were streaked onto
culture plates 2 d before infection. Bacteria were scraped off, diluted in
sterile water, and added to cells at a multiplicity of infection (MOI) of 10.
Infection was facilitated by a centrifugation of 300 × g for 10 min. All in-
fection assays were performed in the media without serum and antibiotics.
Caspase-1 activation and cell death assays were performed as described (11,
37). The rest of information about plasmid, antibodies, mice, cell culture and
siRNA transfection, DNA release, and immunofluorescence assays is pre-
sented in SI Materials and Methods.
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