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When a rat moves, grid cells in its entorhinal cortex become active
in multiple regions of the external world that form a hexagonal
lattice. As the animal traverses one such “firing field,” spikes tend
to occur at successively earlier theta phases of the local field po-
tential. This phenomenon is called phase precession. Here, we
show that spike phases provide 80% more spatial information
than spike counts and that they improve position estimates from
single neurons down to a few centimeters. To understand what
limits the resolution and how variable spike phases are across
different field traversals, we analyze spike trains run by run. We
find that the multiple firing fields of a grid cell operate as inde-
pendent elements for encoding physical space. In addition, phase
precession is significantly stronger than the pooled-run data sug-
gest. Despite the inherent stochasticity of grid-cell firing, phase
precession is therefore a robust phenomenon at the single-trial
level, making a theta-phase code for spatial navigation feasible.

neural coding | spatial representation | spike-timing code |
oscillator-interference model

Finding and remembering paths to follow through an envi-
ronment relies on specialized neural circuits in which sub-

groups of neurons encode different spatial locations. A spatial
region that causes a cell to fire spikes defines a “firing field”; for
instance, place cells in CA1 of hippocampus often have a single
firing field, whereas grid cells in the medial entorhinal cortex
(mEC) have multiple, regularly spaced firing fields that are
arranged in hexagonal grids (1–5).
Spatial location is represented not only in the firing rates of such

cells (Fig. 1A), but also in the timing of spikes relative to global
rhythms in the network (Fig. 1B). A prominent 6- to 11-Hz net-
work oscillation—the “theta rhythm”—modulates the firing pat-
terns of nerve cells throughout the entire entorhinal–hippocampal
formation during exploratory behavior and accompanies the spa-
tial periodicity of rodent grid cells (6, 7). By adding up the spikes
recorded on many runs of the rodent through the same firing field,
Hafting et al. (8) observed a pattern of progressively earlier phases
relative to the theta rhythm for the spikes of layer II mEC grid
cells. This phenomenon is termed phase precession and was first
described in place cells from the hippocampus (9–12).
The observation that spatial position correlates negatively with

the average phase of spikes does not answer the question of whether
the animal can use this phenomenon for estimating its location at
the single-run level. In fact, not only could the average, pooled be-
havior mask the variability of phase precession in single runs, but
even more drastically, single-run phase precession could be un-
related to pooled phase precession. For instance, single runs could
exhibit no or only little phase precession, whereas pooled runs would
exhibit phase precession (Fig. 1C). The spikes on single runs could
even recess in phase, yet still lead to phase precession in the pooled
data. Single-run phase precession could also be stronger than the
pooled runs suggest (Fig. 1D). Moreover, runs with strong phase
precession could be interspersed with runs in which the spikes lock

to a particular theta phase of the local field potential (LFP). There is
also another aspect of grid-cell activity that needs to be taken into
account: From one firing field to the next one visited, the discharge
of a single grid cell may ormay not be correlated.Hence it is an open
question whether the nervous system can actually make use of phase
coding inmEC, notwithstanding the trends seen in pooled data or at
the single-run level in hippocampal place cells (13).

Results
Extracellularly isolated cells from layer II medial entorhinal cortex
and the LFP were recorded by Hafting et al. (8) from rats running
along a linear track, and made available by E. I. Moser (Norwegian
University of Science and Technology, Trondheim, Norway). Many
cells had multiple firing fields, corresponding to different locations
at which the cell spiked (Fig. 1A). To analyze the relationship be-
tween the timing of spikes and the background theta rhythm in the
LFP, we computed an instantaneous theta phase of the LFP by
taking the Hilbert transform of the LFP signal, band-passed be-
tween 6 and 11 Hz. During the traversal of a single grid field, the
firing rate first rises and then falls (Fig. 1A). At the same time, the
average spike phase relative to the ongoing theta rhythm decreases
(Fig. 1B). Hence, both the phase and the number of spikes within
a theta cycle are a function of the rat’s positionwithin the firingfield.
To quantify phase precession, regression analyses were per-

formed. Because phase is a circular variable, traditional linear
correlation analysis, as in Hafting et al. (8), may yield slope and
correlation estimates that do not reflect the true structure in the
data (Fig. S1). Therefore, we turned to circular–linear methods
(14, 15). Indeed, the median linear correlation for a set of 291 grid
fields from 67 cells, pooled across runs for each field, is found to
be −0.28 ± 0.02, whereas the median circular–linear correlation
coefficient is only −0.05 ± 0.04.
Such weak correlations could imply that the theta phase of spikes

in single entorhinal grid cells is not a reliable indicator of spatial
location, so we asked how well the phase of spikes relative to the
theta LFP predicts the rat’s position comparedwith the spike count.
For any single run through a given location, the number and phase
of a grid cell’s spikes varies. By pooling over different runs through
a grid field, we map the joint probability distribution of the rat’s
position and either the spike count or the spike phase (Fig. 2 A and
B). Kernel density methods yield smoothed estimates for these
distributions (Materials and Methods). In the example of Fig. 2A,
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the most likely number of spikes within a theta cycle, given that the
grid cell spiked at all, was always one, regardless of the rat’s position
within the grid field. Higher numbers of spikes only occurred to-
ward the center of the grid field. Likewise, any particular location
on the linear track leads to a specific range of possible phases for
the first spikes within a theta cycle (Fig. 2B).
To quantify the effect of these uncertainties, we estimated the

information the two different spike measures convey about the
position. If position and phase were statistically independent, for
instance, their joint probability pX ;Θðx; θÞ would be equal to the
product of the marginal probability distributions, pX ðxÞpΘðθÞ;
Fig. 2C shows that this is not the case. Here, the joint probability
clearly exceeds the product of the marginals along a negatively
slanted diagonal throughout the grid field.
Different positions within a grid field map onto different

expected spike phases; however, firing rates rise toward the
center and then fall again, so that generally two positions are
associated with the same average spike count. This ambiguity
implies additional uncertainty, reducing the information avail-
able in the spike count to about half of that contained in the
spike phase (0.102 ± 0.005 vs. 0.18 ± 0.01 bits/cycle). On a grid
field-by-grid field basis, too, phase conveys more information
about position than spike count (P < 0.001; Fig. 2D).
How precisely can one estimate the rat’s position from the

theta phase or spike count? A lower bound on the accuracy can
be given by estimating the Fisher information (see Materials and
Methods) using the kernel density estimates of the probability
distributions. On average, the spike count allows one to dis-
criminate nearby positions down to 9.3 ± 0.6 cm, whereas the
theta phase differentiates positions to an accuracy of 5.8 ± 0.6
cm, i.e., about 1/10th of the grid field’s size (56.0 ± 1.2 cm).
Information measures based on pooled data, however, reveal

nothing about spatial encoding in single runs. For instance, the
phase precession shown schematically in Fig. 1 C and D would
yield the same average information between position and phase.
A run-by-run analysis is warranted.
Just how few spikes participate in phase precession can be

appreciated by a closer examination of single runs. In over half
the runs, fewer than five spikes were elicited. Often, spikes on

a single run reflect a nearly linear progression of phase with
position (Fig. 3A); in some cases, connecting the spikes by lines
in the phase vs. position diagram reveals a zigzag pattern in
which one or more spikes follow the leading spike in a given
theta cycle (Fig. 3B). Such “follower” spikes within the same
theta cycle amount to about one-half of all spikes and occur with
highly variable phase delays that can be >908. After removing
these unreliable spikes and considering only the leading spikes,
a clearer signature of phase precession emerges (Fig. 3 C and D),
even though the median number of spikes drops from five to
three (Fig. 3E).
The median correlation in single runs is −0.33 ± 0.03 for

leading spikes, compared with −0.24 ± 0.02 for all spikes (Fig.
3F, n = 5,948 runs with more than two leading spikes), although
the distribution of correlation values is extremely broad; in fact,
all possible correlation values from −1 to +1 are observed (Fig.
3G). The average slope, which measures the theta phase shift per
distance traveled, changes from a mean value of −9.6 ± 0.1
degrees (deg)/cm for all spikes to −11.1 ± 0.1 deg/cm for the
leading spikes (Fig. 3H; n = 5,948). The SD of either underlying
distribution is large: 11.7 deg/cm for all spikes and 9.3 deg/cm for
the leading spikes (Fig. 3I). Nonetheless, the difference in the
mean slope of 1.5 deg/cm is highly significant (P < 10−5).
Pooling can conceal the properties of phase precession during

single runs. Comparing the pooled leading spikes to the leading
spikes on single runs, the median correlation coefficient in many
grid fields is more negative on single runs (Fig. 4A; P < 0.001).
Apart from the inherent variability manifest in Fig. 3, the sche-
matic of Fig. 1D, therefore, resembles phase precession on single
runs: the average phase slope is about 30% more negative and
significantly less variable than the pooled slope (Fig. 4B; paired
t test: P < 0.001).

A B

C D

Fig. 1. The animal’s position within the firing field modulates both the firing
rate and theta phase. (A) Average firing rate of a grid cell for a rat running 42
times from left to right along a linear track. (B) The phase relative to the
ongoing theta rhythm of all spikes from the leftmost grid field in A. Each dot
depicts a single spike. (C and D) Hypothetical cases for which the relationship
between the spike phase and the animal’s position differs radically between
single runs and pooled-run data. (C) Example in which spikes tend to be phase
locked to the LFP oscillation, so that all subsequent spikes in later theta cycles
follow at about the same phase as the initial spike. If the phase of the initial
spike depends on the spatial coordinate, then the pooled-run data can mimic
phase precession. (D) Phase precession in single runs can also be stronger than
suggested by pooled data. Pooled phase precession in C and D is identical and
could thus belie the phase–position relationship in single runs.

Fig. 2. The phase of spikes relative to the theta rhythm and the spike count
per theta period convey spatial information. (A) Smoothed probability density
of the position and the spike count in a theta cycle, pX;Nðx;nÞ, obtained by
kernel density estimation (Materials and Methods) for the grid field depicted
in Fig. 1B. The probability density (color bar) is normalized relative to the
maximum value. Observed counts are indicated by red dots. (B) Normalized
joint probability density of the position and phase of spikes relative to its theta
cycle, pX;Θðx; θÞ, for the same grid field. Red dots depict the phase of the first
spike in each theta cycle, measured across different theta cycles and different
runs. The average phase decreases as a function of position, whereas the spike
count’s relationship to position is inherently ambiguous: for instance, the av-
erage spike count at x ≈ 20 cmð�n ≈ 1:75Þ is nearly the same as that at
x ≈ 40 cmð�n ≈ 1:65Þ, whereas the (circular) average phases are 2858 and 1048,
respectively. (C) The difference pX;Θðx; θÞ−pX ðxÞpΘðθÞ reflects the strong cor-
relation between phase and position induced by precession. (D) Theta phase
conveys more information about position than does spike count ðp< 0:001Þ, as
demonstrated by compound data from all grid fields (n = 166).

6302 | www.pnas.org/cgi/doi/10.1073/pnas.1109599109 Reifenstein et al.

www.pnas.org/cgi/doi/10.1073/pnas.1109599109


To test whether the changes in the correlation coefficients and
slopes of phase precession could be explained by the low number
of leading spikes in single runs, we drew surrogate runs at ran-
dom from the pooled data of leading spikes, using the same
spike-count distribution as in the actual single runs. For each
grid field (n = 291), we computed the median circular phase–
position correlation in surrogate and actual single runs, as be-
fore. The median of the median correlations in surrogate and
actual single runs was r = −0.29 ± 0.02 and r = −0.34 ± 0.05,
respectively. Per grid field, the phase precessed at −10.9 ± 0.1
deg/cm in surrogate single runs, and at −11.2 ± 0.3 deg/cm in the
actual single runs (Fig. 4C); though the mean values were not
significantly different, the underlying distributions for the slopes
differed between surrogate and actual runs (Fig. 4D).
Remarkably, the mean single-run slopes are less variable

across grid fields than the pooled-data slopes across grid fields
(Fig. 4D): 4.7 deg/cm (SD) for single runs vs. 6.0 deg/cm. In
particular, the pooled data for some grid fields show no phase
precession or even phase recession (zero or positive slope in the
phase vs. position diagram). However, with the exception of four
grid fields, the majority of single runs always precessed (Fig. 4B).

Unlike the firing fields of place cells, grid fields regularly re-
peat. If phase precession codes the animal’s position, instead of
being just a side effect of the theta rhythm, we need to in-
vestigate whether neural activity in one field depends on activity
in the field visited previously (Fig. 5). Across runs, we compared
the phase of the first spike in the present field with the phase of
specific spikes in the prior field: the first spike (Fig. 5B), the last
leading spike (Fig. 5C), or the last spike (Fig. 5D). For all three
combinations, the joint probabilities were indistinguishable from
the product of the respective marginal distributions, as shown by
a generalized Kolmogorov–Smirnov test (P = 0.83, P = 0.74,
P = 0.74, respectively; Materials and Methods). Similarly, neither
the number of spikes (P = 0.81), nor the leading spike count
(P = 0.99), nor the phase-precession slopes (all spikes: P = 0.94,
leading spikes: P = 0.94) exhibited any significant field-to-field
dependencies on single runs. We also asked whether phase
precession in the next field is simply an extension of the pre-
cession in the previous field, as forecast by elementary oscillator-
interference models for the generation of grid fields (16). Ex-
trapolating the regression line fitted to one field failed to predict
the phase of the first spike in the next field, however (Fig. 5 E
and F; circular correlation r= 0.01, P= 0.64). The same was true
when we also took the number of elapsed theta cycles into ac-
count (circular correlation r = −0.01, P = 0.64). To reveal subtle
effects that might not have been captured by the above analyses,
we finally tested whether single-run deviations from the mean
response in each field (measured as the phase of the first spike,
phase-precession slope, spike count, leading spike count, or
leading spike slope) were correlated along the rat’s track, but did
not find any significant trends (circular correlation r= 0.015, P=

A B

C D E
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Fig. 3. Phase precession in single runs through gridfields. In each run,multiple
theta cycles occur within a grid field. (A and B) Two typical single runs (red and
blue squares connected by thin solid line; red squares, leading spikes; blue
squares, later spikes within the same theta cycle, as sketched in the Insets)
through the gridfield shown in Figs. 1 and 2. Solid lines depict the circular fit to
the single runs; dashed lines depict circularfit to all runs. Spikes fromother runs
through the grid field are shown in light gray. The slope s and the correlation
coefficient r are given above the graphs. (C) Regression fit to all spikes across all
runs through the grid field. (D) Regression fit to all of the leading spikes within
each theta cycle of this grid field, after discarding any later spikes within the
same cycle. (E) Histograms of spike counts per single run and grid field for all
firing fields and grid cells (black line, median: 5) and for only the leading spikes
(red line, median: 3). (F) Median circular correlation coefficient of all spikes and
of leading spikes on single runs (−0.24± 0.02 vs.−0.33± 0.03). (G) Histograms of
single-run correlation coefficients for all spikes (black line) and for leading
spikes (red line). The two distributions are significantly different (Kolmogorov–
Smirnov test: P< 0.001). (H) Slopes of circularfits for all spikes in a single run and
for leading spikes (−9.6± 0.1 vs. −11.1± 0.1 deg/cm). (I) Histogram of the slopes
fitted to all spikes and to only leading spikes. Some 9.7% of the slopes fall
outside of the range shown. The two distributions differ significantly from one
another (Kolmogorov–Smirnov test: P < 0.001).

A B

C D

Fig. 4. Pooling spikes across runs distorts salient features of phase pre-
cession. Shown are results for the leading spikes in each theta cycle; aver-
aged data from a single grid field are denoted by a dot. (A) The median
single-run phase–position correlation is more negative than the pooled-data
correlation (Wilcoxon rank-sum test: p< 10− 5, n = 291). (B) The mean single-
run slope is less variable than the pooled slope (paired t test: p<10− 5). (C)
The phase changes ∼30% more rapidly with position in single runs than
predicted by the pooled runs, yielding a steeper slope (−11.2 ± 0.3 vs. −8.6 ±
0.3 deg/cm, averaged per grid field, not per run). The slopes of artificial,
surrogate single runs (−10.9 ± 0.1 deg/cm) and actual runs are not signifi-
cantly different. Surrogate single runs for a grid field were created by
drawing leading spikes from the pooled data of that field, and the number
of spikes in surrogate runs matched the number of spikes in the actual runs.
(D) Circular regression of phase vs. position is more variable across grid
fields if multiple runs are pooled first. The SD in the slope of pooled phase
precession is 6.0 deg/cm, compared with 4.7 deg/cm in the mean slope of
single runs.
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0.31; Pearson’s r= 0.01, P= 0.53; Pearson’s r= −0.02, P= 0.09;
Pearson’s r = 0.002, P = 0.89; Pearson’s r = −0.002, P = 0.99;
respectively). Together, these findings indicate that the different
firing fields of a grid cell provide independent information to
downstream processing stages in the hippocampus.

Discussion
The negative correlation between a rat’s location and the theta
phase of grid-cell spikes (8, 17) invites the conjecture that the ani-
mal’s brain works with these phases to navigate through the envi-
ronment. This conjecture is at the core of various computational
models (10, 16, 18) but had not been tested on experimental data. In
the present analysis, we used the spike trains from single entorhinal
grid cells recorded by Hafting et al. (8) to estimate the spatial in-
formation conveyed by theta phase and spike count, and studied the
differences between single runs and pooled runs through grid fields
as well as relations between individual grid fields.
Given the trial-to-trial variability of the theta phase of spikes

throughout the entorhinal–hippocampal complex, one needs to
prove that the phase contains useful information about the animal’s
position. This task is not always trivial: for an ensemble of simul-
taneously recorded, phase-precessing neurons in hippocampal
CA1, Jensen and Lisman (19) used a Bayesian reconstruction al-
gorithm to show that adding phase information improves the spatial
resolution more than simply using the firing rate, narrowing the
uncertainty from 4 cm to 3 cm under ideal conditions. However, an
earlier study found that including the phases in the reconstruction
algorithm led to no improvement (20).

For grid cells, firing fields repeat in a regular pattern. The spike
phase of a single cell yields an instantaneous position estimate that
is local and unique up to the intrinsic length scale of the grid. The
coherence of the ongoing theta rhythm and cell-intrinsic mecha-
nisms might induce dependencies between the discharge patterns
evoked in different grid fields of the same cell. Our analysis shows
that this is not the case (Fig. 5), and that each firing field of a grid
cell can be regarded as an independent encoder of physical space.
Because the animals were moving rapidly, passing through suc-
cessive grid fields within as few as 10 theta cycles, this is a surprising
result. Our finding suggests that the neural noise level is small
enough to enable single-run phase-precession patterns within a grid
field, yet large enough to decorrelate the activity from field to field.
This interpretation is in accordance with in-vitro data (21) that
show that EC stellate cells generate stochastic sub-threshold
membrane potential oscillations whose low coherence may be
responsible for the fast decorrelations observed in vivo.
As grid fields independently encode position in the phase, each

one can be considered in isolation, so that we can estimate prob-
ability distributions for position and phase from pooling multiple
runs through individual grid fields. Here, we found that the spike
count within a theta cycle resolved the rat’s position within a grid
field to an average accuracy of 9.3 cm, whereas the spike phases
improves that value to 5.8 cm, only little more than 1/10th of the
mean grid-field size of 56 cm.
Phase precession on single grid-field traversals differed qual-

itatively from the average phase precession obtained by pooling
many runs. In single runs, the change in phase with distance
traveled was more pronounced, and the measured correlation
between position and phase was more negative. Using surrogate
data to take sample-size effects into account revealed that both
observations are compatible with the reduced number of spikes
in single runs. We conclude that phase precession is clearly
present in the behaviorally relevant situation and that traditional
pooling underestimates its strength by ∼30%.
In the hippocampal CA1 region, the correlations between phase

and position also tend to be more negative on single runs (13). A
cardinal difference between entorhinal grid cells and hippocampal
place cells exists, however: inside a CA1 cell’s place field, bursts
frequently occur within theta cycles; a grid cell, in contrast, fires
comparatively few bursts. The median number of spikes elicited
during the traversal of a place field is ten (13), much higher than
the five spikes in a grid field. Nonetheless, the leading spike in each
theta cycle yielded a clear signature of phase precession in mEC.
These leading spikes might be effective triggers of spiking activity in
other areas—a much longer time delay (median: 92 ms) precedes
them, compared with the delay that precedes follower spikes
(median: 12 ms), so that the effect of leading spikes will be less
prone to synaptic depression and adaptation downstream. Phase
precession in place cells could thus be inherited from the phase
precession of the leading spikes in mEC. Assuming that precisely
timed activity of multiple grid cells is required to fire a single place
cell, one might expect a reduction of the single-run phase range
from EC to hippocampus. Indeed, the median single-run phase
precession in entorhinal grid cells is 2508, whereas Schmidt et al.
(13) observe that phase precession in CA1 during single runs typ-
ically extends over 1808, or half the full range of phases from 08 to
3608 encompassed by pooled-run data.
Phase-precessionmeasures inmEC grid cells were highly variable

across single runs (Fig. 3 F–I), and the same phenomenon is ob-
served in CA1 place cells. Information quantifies the uncertainty
induced by variability, without pinpointing the source of uncertainty.
Intrinsic noise, spike time jitter, and the LFP itself all contribute.
Population rhythms sculpt the timing of spikes (22–24), yet

the LFP’s theta phase is not synchronized to the location of the
rat: at the moment when the rat enters a grid field, the theta
phase is different on every run. In contrast, the oscillation phase
in visual and auditory cortex is consistent in response to repeated

A

B C D

E F

Fig. 5. Relation between successivefiringfields of a grid cell. (A) Thefirst-spike
phase in field n + 1 (Right) could depend on various parameters of the cell’s
activity in field n (Left), such as the phase of the first spike, phase of the last
leading spike, or phase of the last spike. As in Fig. 3, leading spikes are drawn in
red, followers in blue. (B–D) The corresponding joint-probability distributions
togetherwith the respectivemarginal probabilities. The product structure of the
joint-probability distributions indicates that the individual firing fields of one
grid cell operate as independent encoders of physical space. In line with this
observation, phase precession in one field does not predict the phase of the first
spike in the next field, as illustrated in E and evidenced by population data (F).
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presentations of the same stimulus (25, 26). Cells throughout the
mEC show a preference for spiking at particular phases of the
theta and gamma rhythm in the LFP (17, 27); precession implies
that the preferred phase shifts as the rat traverses the cell’s firing
field. The difference between the initial phase upon grid field
entry and the preferred phase for spiking will affect when, and
hence where, a grid cell will spike first. As a consequence, the
pooled portrait of phase precession can be interpreted as the
sum of the steeper phase precession sequences on individual
runs; on each run, the line of phase precession is subject to
a variable lateral shift along the position axis. Four factors,
however, complicate this simple picture. First, single-run phase
precession is not only steeper, on average, but also highly vari-
able. Second, many entorhinal grid cells skip different theta
cycles on different runs (27, 28). Third, the theta band LFP itself
is noisy and not perfectly coherent in time. Fourth, any coupling
to the gamma-band LFP will also shift the timing of grid cell
spikes and thereby perturb the map between theta phase and the
rat’s position.
As the wide-range synchrony in the theta LFP organizes the

spiking across different neurons (28), the single-run characteristics
of phase precession, including the field-to-field independence, be-
come decisive, and not the averaged precession properties derived
from pooling over multiple runs. Indeed, firing sequences in simul-
taneously recorded place cells in CA1 have been shown to be more
highly structured than predicted from the pooled, average phase–
position relationship (29); the same may hold true for simulta-
neously recorded grid cells in mEC, but this remains to be seen.

Materials and Methods
Both published and previously unpublished data recorded by Hafting et al. (8)
were reanalyzed (http://www.ntnu.no/cbm/moser/gridcell). In these experi-
ments, grid cells were recorded extracellularly from layer II in the mEC of
eight rats that ran on a linear track (length: 320 cm). Data include single-unit
activity, the LFP sampled at a frequency of 250 Hz, and the position of the
rat, as tracked by a diode fixed to the animal’s head (8).

For our analysis, the spikes on each run were partitioned into firing fields,
using the same criteria as Hafting et al. (8). Grid fields on runs from left to
right were not generally the same as grid fields on runs in the reverse di-
rection, and so were treated separately. Runs from right to left were mir-
rored for the data analysis, so that fields are always entered from the left
and exited on the right. A total of 291 grid fields from 67 units were ana-
lyzed. Unlike Hafting et al. (8), we did not exclude fields with low spatial
coherence between neighboring bins. In total, there were 9,561 single runs.
The number of single runs per grid field ranged from 6 to 97. The raw LFP
signal was filtered in the theta range (6–11 Hz). Using the Hilbert transform
of the filtered signal, every spike was assigned an instantaneous theta
phase. Two sets of spikes were considered: (i) the set of all spikes in a grid
field and (ii) only the first spikes in each theta cycle (these spikes were
termed leading spikes). In these two sets, there were 66,365 and 31,734
spikes, respectively. The phase precession properties associated with the
leading spikes also held for other methods of choosing a single spike within
a theta cycle (e.g., the average or the last spike in each theta cycle).

Phase precession was quantified by two measures (13–15): the slope s from
circular–linear regression, which results from fitting the model θ ¼ s · ðx − x0Þ
to the data by maximizing

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
1
n

Xn
i¼1

cosðθi − sxiÞ
!2

þ
 
1
n

Xn
i¼1

sinðθi − sxiÞ
!2vuut ;

and the circular–linear correlation coefficient

r ¼
P

isinðθi − �θ Þsinðφi − �φÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
isin

2�θi − �θ
�P

jsin
2�φj − �φ

�q ;

where θi denotes the theta phase of the i-th spike, φi ¼ s · xi mod 2π is a
circular variable that is derived from the animal’s position xi , and �φ ¼
arg
�
1
n

Pn
j¼1expðiφjÞ

�
and �θ ¼ arg

�
1
n

Pn
j¼1expðiθjÞ

�
are the circular sample

mean values (14).
Linear–linear correlation (30) is inherently ambiguous, because phase is

a circular variable. Typically, one adds a phase offset to all spike phases in a

given grid field and searches for the offset that leads to the largest (abso-
lute) correlation. As a consequence of the optimization step, the estimated
linear–linear correlation coefficient is nonzero, even if phase and position
are completely uncorrelated (14, 15). When sample sizes are small, this effect
is exacerbated. In contrast, the median circular–linear correlation coefficient
is independent of any phase offset and is much more conservative, yielding
lower values for the correlation coefficients, as also observed by Huxter et al.
(31) in CA1. Fig. S1 compares the values of the linear–linear and circular–
linear fits across all grid fields in the data set. The circular–linear slopes
provided a better visual match to the data and were much steeper, on av-
erage, than the original mean value of −2.77 ± 0.31 deg/cm (8), which was
derived by averaging across linear regressions.

The statistical likelihood of observing specific properties of phase precession
in single runs was estimated by drawing surrogate runs from the pooled data.
Each spike is associated with a position and a phase, so that the set of all
(position, phase) pairs from actual runs is fðxi ; θiÞg. For each true run, a sur-
rogate run with the same number of spikes was created, drawing the position
and phase for each spike randomly from fðxi ; θiÞg without replacement.

Mutual information is used to estimate how well the rat’s position is
encoded in the theta phase of action potentials or in the spike count within
individual theta cycles. For two random variables, X and Φ, the mutual in-
formation is defined as

IðΦ;XÞ ¼
ZZ
Φ;X

pΦ;X
�
φ; x

�
log
�

pΦ;X
�
φ; x

�
pΦðφÞpX ðxÞ

�
dφdx;

where pΦ;X ðφ; xÞ denotes the joint probability density of the two random
variables, and pΦðφÞ and pxðxÞ are the marginal probability densities.

Whereas themutual information reflects the global uncertainty about one
random variable, given the other random variable, the Fisher information,
defined as

IFðxÞ ¼
Z
Φ

pΦjX ðφjxÞ
�
∂
∂x

log pΦjX ðφjxÞ
�2
dφ;

measures the local uncertainty. Here, pΦjX ðφjxÞ is the conditional probability
of observing a theta-based variable φ given a position x. It can be shown that
the variance of any unbiased estimator is bounded from below by the
Cramér–Rao inequality

σ2x̂ ≥
1

IF ðxÞ:

Though an ideal observer can, in many instances, construct an estimator that
reaches the lower bound, it should be stressed that not all estimators are ideal
(20), and that we measure the theoretical resolution limit. Both information
measures require knowledge of the underlying probability distributions.
Because the data are finitely sampled, the distributions can only be ap-
proximated. For this purpose, we use the kernel density estimation method
described by Botev et al. (32). The number of measured spikes was sufficient
to estimate the probability density in 166 grid fields.

Unless stated otherwise, the SEM is used as the measure of uncertainty. To
test for significance, we generally used two-sample two-tailed t tests, testing
for equal means of the two data samples. Because correlation coefficients
turned out to stem from strongly skewed distributions, median values are
given together with their 95% confidence intervals. The Wilcoxon rank-sum
test was used to test whether the medians of two sets of sampled correlation
data were the same. To test whether two data samples stem from the same
underlying distribution, the Kolmogorov–Smirnov test was applied. Its 2D
extension due to Fasano and Franceschini (33) tested for potential field-to-
field dependencies by comparing the measured joint probability distribution
with the product distribution obtained from the respective marginals. Here,
mean P values were obtained from 100 data shuffles. In general, the P value
indicates the likelihood of observing a result that is as least as extreme as the
one that was actually observed, assuming that the null hypothesis (equal
means, equal medians, or same distribution, respectively) is true. P < 0.05
was considered significant.
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