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Abstract
The genome-wide DNA-protein binding data, DNA sequence data and gene expression data
represent complementary means to deciphering global and local transcriptional regulatory circuits.
Combining these different types of data can not only improve the statistical power, but also
provide a more comprehensive picture of gene regulation. In this paper, we propose a novel
statistical model to augment proteinDNA binding data with gene expression and DNA sequence
data when available. We specify a hierarchical Bayes model and use Markov chain Monte Carlo
simulations to draw inferences. Both simulation studies and an analysis of an experimental dataset
show that the proposed joint modeling method can significantly improve the specificity and
sensitivity of identifying target genes as compared to conventional approaches relying on a single
data source.
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1 Introduction
Accurate identification of target genes regulated by specific transcription factors (TF) is a
crucial step toward understanding organization and function of genetic regulatory networks.
Recently, the studies of genome-wide transcription regulation have benefited from the
availability of different types of genomic data. Chromatin immunoprecipitation on arrays
(ChIP-chip data or genome-wide DNA-protein binding data) [1, 2] provide evidence of
direct interaction in vivo between a TF and its targets. At the same time, microarray gene
expression data identifies genes that are differentially transcribed in a transcription factor-
dependent manner, without discriminating between direct and indirect effects of a regulator
[3]. Lastly, DNA sequence data [4] contains information about potential binding affinities
for transcription regulators and corresponding regulatory sequences. These data provide
valuable information about different aspects of gene regulation, but each type of data
individually does not suffice to explain observed patterns of gene regulation. More
importantly, because of the noisy nature of high-throughput data, there is limited statistical
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power to identify true TF binding targets using only one source of data. Thus, integrating
these heterogenous and independently obtained data is motivated to improve the detection
power as a key step to understanding the mechanism of transcriptional regulation on a
genome-wide level [5, 1, 2, 6].

However, how to integrate genomic data efficiently still remains a very challenging problem
in current bioinformatics research [7]. Most existing approaches take the sequential steps to
combine different data sources [8, 9, 10, 11, 12, 13, 14, 15, 16]. Bie et al [17] proposed a
method to use ChIP-chip data, gene expression data and motif data simultaneously to infer
the transcriptional modules, but this method did not account for the measurement errors.
Beyer et al [18] proposed a probabilistic model which assigns transcription factors to target
genes using integration of different sources of evidence. They showed that the new model
has a greater accuracy rate than some previous methods. The method requires a training set,
including positive and negative controls, which may be unreliable or even unavailable for
some TFs. Several other studies used statistical models to combine ChIP-chip data with gene
expression data in a coherent framework: Sun et al [19] proposed a Bayesian error analysis
model; Xie et al [20] used a shrinkage method; and Pan et al [21, 22] proposed a
nonparametric and parametric empirical Bayes approaches respectively to joint modeling.
These approaches have demonstrated the feasibility and the advantages of using rigorous
statistical methods to integrate two types of data. In this paper, we propose a fully Bayesian
parametric approach to joint modeling of DNA-protein binding data (ChIP-chip data), gene
expression data and DNA sequence data to identify gene targets of a transcription factor.
The proposed method could be extended to incorporate more types of data and provide a
general statistical framework for integrated analysis in genomic studies.

Although each source of binding data, gene expression data and DNA sequence data
contains information on transcriptional modules, only binding data provide direct evidence
of interaction between a TF and its binding targets. So we will use binding data as the
primary data while gene expression data and DNA sequence data as secondary in our model.
The proposed hierarchical model will automatically account for heterogeneity of different
data sources. The information from the secondary data will be incorporated into the
inference automatically when the secondary data is correlated with the primary data;
otherwise, the inference will mainly rely on the primary data. This is a unique feature of our
model.

In the study, we apply the new model to describe the regulon of leucine responsive protein
(Lrp) in Escherichia coli(E. coli). Lrp is one of the main regulators of metabolism in E.coli;
it regulates transcription of genes involved in transport, biosynthesis and degradation of
amino acids, energy and one carbon metabolism [23]. Because of its role in carbon and
amino acid metabolism, Lrp has been suggested to be important when bacterial cells make
transitions between rich and poor nutritional conditions. Such transitions are essential for
microbial adaptation and survival in different environments. Lrp was shown to control
expression of over 400 genes in E. coli, consistent with its role as a global regulator [3]. In
addition, Lrp is widely distributed and highly conserved in archaea and bacteria [24],
underscoring the importance of its regulatory function.

2 Data
2.1 Genome-wide DNA-protein binding data

We mapped Lrp binding sites in the E.coli genome using a standard protocol for two-
channel ChiP-chip experiments [1, 2]. Briefly, DNA fragments bound by Lrp were obtained
by immuno-precipitating DNA with Lrp-specific antibodies from formaldehyde cross-linked
wild type cells, followed by crosslinking reversal and amplification using specific adaptor
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sequences. The control samples were obtained either from DNA precipitated with Lrp-
specific antibodies from lrp knock-out cells or from DNA precipitated in the absence of Lrp
antibodies, using the same procedure as with experimental samples. Following DNA
amplification, experimental and control samples were labeled with different fluorescence
dyes (Cy3 and Cy5) and hybridized against each other using whole-genome E. coli DNA
microarrays. The ratio of fluorescence intensities obtained for each spot on the microarray
provided a measure of the extent of Lrp binding to the corresponding genomic locus.
Although the transcription factor was expected to interact primarily with promoters, most of
which reside in intergenic intervals, our microarrays contained only predicted coding
sequences in E. coli. We argue that because intergenic regions in the genome of E. coli are
short, with only about 20 sequences longer than 1 kbp, DNA sequences enriched in the
immunoprecipitation reactions are long enough, 1 kbp on average, to span both regulatory
and coding regions. This experiment design does not fit for Eukaryotic organisms due to the
size of their regulatory regions, and promoter arrays are more commonly used for those
organisms. However, the statistical model proposed in this paper can be adopted to the other
experimental platforms. In this experiment, we used five independent replicates.

2.2 Gene expression data
Another microarray experiment was carried out to comprehensively define a family of genes
whose transcription depends on the activity of Lrp. Specifically, we identified genes
differentially expressed between lrp+ (wild type)and lrp− (lrp mutant type)E. coli strains.
RNA samples from two strains were compared directly using two-color hybridization on
whole-genome DNA microarrays [3]. In this experiment, we obtained data from six
independent replicates.

2.3 DNA sequence data
RegulonDB [25] is a database that contains information and tools to study the transcriptional
regulation for E. Coli K12. In RegulonDB, 54 input sites (the sites that have evidence to be
the binding targets) of Lrp were used to generate the sequence alignment matrix
(consensus). Table 1 is the alignment matrix for Lrp downloaded from the RegulonDB
database. Using this alignment matrix, we can predict the binding affinity of any given
sequence. We use Hertz and Stormo’s method [26] to obtain the score for a given sequence:

(1)

where M is the length of the binding site motif, B is the base at position l within the motif,
nlB is the number of occurrences of base B at position l according to alignment matrix, plB is
the a priori probability of base B at position l (we use 0.25 for any base at any position), and
N is the total number of input sites for the alignment matrix. For this particular Lrp
alignment matrix, the length of binding site motif M = 13 and the number of input sites N =
54. The idea of this method is to compare the given sequence with the consensus sequence:
the more similar to the consensus sequence, the higher score it will have. Therefore, we used
mean sequence scores for Lrp DNA sequence data.

Based on this method, we scanned 500 bp regions upstream of each gene in the E. coli
genome and obtained a score for each moving window of size 13 (the width of Lrp position-
weight matrix). The averages of 488 scores obtained for each gene were used to represent
binding affinity of Lrp to its cognate target sequence. In our choice of a summary statistic,
we compared the maximal and mean scores in their ability to identify known Lrp targets (as
they are annotated in RegulonDB). Figure 1 presents the scatter plot of the ranks of the
known Lrp target genes using the mean and the maximum scores. The lower the rank, the
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more informative the score is. Figure 1 shows that the mean scores have lower ranks
compared to the maximal scores. Supplementary Figure 1 shows that using mean sequence
scores can identify more known target genes.

2.4 Data preprocessing and data structure
In order to identify genes whose transcription is controlled directly by Lrp, we combined the
DNA-protein binding data, gene expression data and sequence data described above through
a joint modeling procedure. There are 3924 genes in each array used for the analysis. Based
on our empirical experience for the in-house two-channel microarray experiments, we
preprocessed microarray data without background correction, and applied the global and
Lowess normalization [27] to binding and expression data sets, respectively. The data
structure of the binding data is a 3924 × 5 matrix, with 3924 rows representing genes and 5
columns representing arrays, each element is the log ratio of intensities, which measures
relative abundance of sequences bound by Lrp. Similarly, a 3924 × 6 matrix is the data
structure for expression data and the sequence data is an array of 3924 × 1.

3 Statistical Models
3.1 Analyzing binding data alone

We used a Bayesian mixture model to analyze binding data. Specifically, suppose Xij is the
log ratio of the intensities of test and control samples in ChIP-chip experiment for gene i (i =
1, …, G) and replicate j (j = 1, …, n). We specify the model as following:

where μix is the mean of log ratio for gene i; Iix is an indicator variable taking the value 0
for non-binding target genes and 1 for binding target genes. We assume that the mean log-

ratios of non-target genes concentrate around 0 with small variance ( ), while the expected
mean log-ratios of target genes follow a normal distribution with a positive mean. The prior
distribution for indicator Iix is a Bernoulli distribution with probability px. The advantage of
this hierarchical mixture model is that we can borrow information across genes to estimate
the expected mean intensity, and we can use the posterior probability of being a binding
target gene to do inference.

3.2 Joint modeling
Similar to binding data, we used mixture models to fit expression data Yij and sequence data
zi. For expression data:
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where Yij is the observed expression intensity for gene i, array j; Iiy is a three-level
categorical variable: Iiy = 0 indicates an equally expressed gene, Iiy = 1 represents an up-
regulated gene, and Iiy = 2 means a down-regulated gene; py00, py10 and py20 represent
conditional probabilities of being equally expressed genes, up-regulated genes and down-
regulated genes for non-binding target genes respectively; py01, py11 and py21 represent
conditional probabilities of being equally expressed genes, up-regulated genes and down-
regulated genes for binding target genes respectively. Here we used conditional probabilities
to connect the binding data and the expression data. Intuitively, the probability of being
equally expressed for a non-binding target gene, py00, should be higher than the probability
of being equally expressed for a binding-target gene, py01. The difference between the
conditional probabilities measures the correlation between the binding data and the
expression data. If the two data sets are independent, the two sets of conditional probabilities
will be the same. Therefore, this model is flexible to accommodate the correlations between
data.

Similarly, we model the sequence data as:

where zi is the sequence score derived from alignment matrix for gene i; Iiz = 1 indicates
that gene i is a potential target gene based on sequence data and Iiz = 0 means gene i is a
non-potential gene.

In summary, the model combines expression data and sequence data with binding data
through the indicator variables. This model can automatically account for heterogeneity and
different specificities of multiple sources of data. The posterior distribution of being a
binding target can be used to explain how this model integrates different data together. For
example, if we combine binding data with expression and sequence data, the posterior
distribution of being a binding target gene Iix is:

where Iix|· represents the posterior distribution of Iix condition on all other parameters in the

model and the data. We define  and . If the

expression data does not contain information about binding, then  and all the terms
containing Y in the formula cancel. In this case, information contained in expression data is
not used to do inference. On the other hand, when expression data contains information

about binding, the difference between  and  will be big and the information in
expression data IiY will be used for the inference. For example, if binding data and
expression data are positively correlated, py11 is expected to be bigger than py10; for an up-
regulated gene i, IiY = 1, py11 will be the only parameter for expression data in term A and
py10 will be the only parameter for expression data in term B. In this case, pix derived from

Xie et al. Page 5

Stat Med. Author manuscript; available in PMC 2012 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



this joint model is bigger than that using binding data alone. On the other hand, if binding
data and expression data are negatively correlated, py11 is expected to be smaller than py10 .
In this case, for an up-regulated gene i, the probability of being binding target genes, derived
from this joint model is smaller than that using binding data alone.

3.3 Prior distributions
The prior distributions of all hyperparameters can be seen in the Supplementary Materials.

We specified non-informative priors for , , λx, , , λy, , , λz, pz0 and pz1;
and because of the identifiability issue [28], we used an informative prior for px as px ~
Beta(100, 900). We investigated the robustness of using the informative priors in both

simulated and real data example. For the individual variance , we plugged in the
regularized variance from the data, which greatly reduced the number of parameter estimates
in the MCMC computation.

3.4 Statistical inference
Assuming that the binding, expression and sequence data are conditionally independent
(condition on the indicator Iix), we can get the joint likelihood for the model. Based on the
joint likelihood, we can obtain the closed form of full conditional posterior distribution for
most of the parameters (except λx, λy and dz, see Supplementary Materials). Gibbs sampler
was used to do Markov chain Monte Carlo (MCMC) simulations for the parameters having
closed forms. For λx, λy and dz, Metropolis-Hastings algorithm [29] was applied to draw
the simulation samples. We ran 2000 iterations, the first 1000 iterations were used as burn-in
samples, and the iterations 1000-2000 were used as posterior simulation samples. The
posterior samples were used for statistical inferences. The choice of the number of iterations
as 2000 is based on the extensive computation load due to thousands of parameters included
in the model. We also used 20, 000 iterations for simulation studies and the results are
similar to using 2, 000 iterations; we also investigated the parameter convergence issue in
Lrp data example.

The goal of the analysis is to identify the true binding target genes, which equals to
identifying the genes with Iix = 1. We used the rank of the posterior probability of being a
binding target gene pix = P r(Iix = 1|·) to prioritize candidate target genes. In Lrp data
example, we selected the genes with pix > 0.5 as the predicted binding target genes, but the
number of identified target genes is sensitive to the choice of prior distribution; more
comments on this issue is provided in the Discussion section.

4 Simulations
4.1 Simulation set-up

We used simulation studies to evaluate the feasibility and the performance of the proposed
method. In each simulation study, we simulated data 10 times and used means and standard
errors of sensitivities to evaluate the performance of joint modeling. We simulated 1000
genes, 200 of which were true binding target genes and the other 800 genes were non-target
genes. We simulated 5 arrays for binding data and 6 arrays for expression data. For binding
data, the observed log-ratios of non-target genes follow a Normal distribution: Xij~N(0, 1)
for j = 1, …, 5; while for target genes, we simulated μix~N(1, 0.52) and Xij~N(μix, 1) for j =
1, …, 5.

We used 4 different simulation set-ups. Simulation 1 was a relatively ideal scenario: we
assumed that expression and sequence data are highly informative. We assumed that 160 out
of 200 true binding target genes are also true differentially expressed genes in the expression
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data set, and the remaining 40 binding target genes were not differentially expressed. All the
true binding targets are also true potential binding genes in the sequence data. Specifically,
we simulated 6 arrays of expression data, the expression level of equally expressed genes
followed a Normal distribution: Yij~N(0, 0.252) for j = 1, …, 6; while differentially
expressed genes followed a Normal distribution Yij~N(μiy, 0.252) ,and μiy followed a
Normal distribution μiy~N(1, 0.32) for 100 up-regulated genes and μiy~N(−1, 0.32) for 100
down-regulated genes. In sequence data, we simulated the calculated mean sequence score
Zi for each gene to follow normal distributions with variance 1, where the mean of target
genes was −5, and the mean of non-target genes was −8. The simulation setting for sequence
data was based on the distribution of the calculated mean sequence scores from Lrp data.

In simulation 2, we assumed that expression data was informative and used the same
simulation set-up as in simulation 1. But we assumed that the sequence data contained no
information about true binding target. We randomly selected 200 genes as potential target
genes. Simulation 3 assumed that sequence data was informative and we used the same set-
up as in simulation 1. But we assume expression data does not contain information, we
randomly selected 200 genes as differentially expressed genes and other 800 genes as
equally expressed genes. Simulation 4 represented a more practical scenario, we assumed
that expression and sequence data contained partial information. We simulated 200
differentially expressed genes, and 140 of them were true binding target genes and the others
were non-target genes. For sequence data, we assumed 180 genes were true target genes
among 200 total potential genes. Our expectations were: the joint modeling can detect more
target genes when the expression or sequence data were informative; and even when the
expression and sequence data were non-informative, the joint modeling would not give
poorer results. Table 2 summarizes the simulation parameters.

We used simulations 5 and 6 to check the robustness of the model to the assumptions.
Simulations 5 and 6 were similar to simulation 1, but in simulation 5, Xij came from a t
distribution with degree of freedom 5; in simulation 6, Xij were not independent, we
assumed the correlation between Xij and Xik is 0.5 for j ≠ k.

We used another simulation study (Simulation set-up 7) to further explore the performance
of joint model in a practical scenario, where expression and sequence data contained partial
information about binding. Among 200 differentially expressed genes,100 were true binding
target genes and the others were non-target genes. For sequence data, 140 genes were true
target genes among 200 total potential genes.

4.2 Results
Table 3 shows the conditional probability estimates from MCMC for simulation set-up 1-4.
We specified the prior distribution for px as Beta(200, 800). In simulation 1, both expression
and sequence data were very informative, i.e most of the true binding target genes were also
differentially expressed (DE) genes and potential genes. Under this scenario, the estimated
probability of being DE genes for binding target genes was 0.865 with standard error 0.021,
while the estimated probability of being DE for non-binding target genes was 0.004 with
standard error 0.001. The big difference between the two conditional probabilities implies
high correlation between the binding data and the expression data. So the parameter
estimation and the conclusion were consistent with the truth. Receiver operating
characteristic (ROC) curves were used to compare the joint modeling with using binding
data alone. Figure 2 shows that in simulation 1, combining expression data with binding data
can detect more true binding target genes, and the performance can be further improved after
adding sequence data.

Xie et al. Page 7

Stat Med. Author manuscript; available in PMC 2012 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



When the sequence data was random and expression data was informative as in Simulation
set-up 2, the probabilities of being DE genes were also different for binding and non-binding
target genes (0.03 v.s 0.88). But the probabilities of being potential genes were similar for
binding and non-binding target genes (0.639 v.s 0.640). ROC curves show that adding
expression data can detect more target genes, but adding the sequence data does not improve
the performance, which is consistent with our expectation. An advantageous feature of this
model is that the performance will not get worse even if the sequence data is random, which
is a desirable property for joint modeling because we do not know the quality of different
data sources. Similarly, when the expression data was random in simulation 3 , the estimated
conditional probabilities of being DE genes were similar (0.20 v.s 0.17) for binding and non-
binding genes. A joint model that includes expression data did not detect more true direct
target genes. In Simulation set-up 4, the probabilities of being DE genes for binding and
non-binding target genes were 0.83 and 0.005, and the probabilities of being potential genes
for binding and non-binding genes were 0.955 and 0.169. Figure 2 shows that the joint
modeling can improve the detection of true binding target genes. Similar results can be seen
for Simulation set-up 7 (Supplementary Figure 2). For Simulation set-up 7, we also
calculated the area under curve (AUC) for each method (the simulation was repeated 50
times), and the results were summarized by boxplots (Supplementary Figure 3). It shows the
significant improvement (p-value < 0.0001) of the proposed joint modeling approach. Figure
3 illustrates that even when the normal distribution and independence assumptions are
violated, the joint modeling still has better performance than using binding data alone.

In order to demonstrate the advantage of considering the correlations among different data in
the model, we compared the proposed joint modeling approach with combining p-value
approach [30, 31], which is commonly used in Genomics data meta-analysis. Supplementary
Figure 4 compares ROC curves by using joint modeling and combining p-value approaches
in Simulation set-up 2, where the expression data is informative but the sequence data is
random. It shows that joint modeling outperforms combining p-value approach when one
data set does not contain any information about binding. Similar results can be seen for
Simulation set-up 3. When both expression and sequence data contain binding information
( Simulation set-ups 1, 4 and 7), the performance of joint modeling and combing p-values
are similar.

We also investigated the effects of using different priors on the parameter estimations and
identifying binding target genes. In Simulation set-up 1, we specified different priors for px
as px ~ Beta(200, 800) (prior 1) and px ~ Beta(100, 900) (prior 2). Supplementary Table 1
compares the parameter estimations using the two priors and the true parameters in
Simulation set-up 1. It shows that the parameter estimations are sensitive to the prior
specifications. However, Supplementary Figure 5 shows that ROCs are almost identical
when using different priors and the performance of identifying target genes is very good.
Therefore, the ability to identifying binding target genes is robust to the prior specification.

5 Application to the Lrp regulator in E. coli
5.1 Results

Table 4 gives the posterior means and quantiles of some important parameters based on
2000 simulation draws from the Bayesian hierarchical joint model applied to Lrp data. The
estimated mean of probability of being target genes (Px) was 0.1. The probability of being
DE genes for binding target genes was 0.61 with 95% credible interval (0.40 - 0.77), which
was significantly higher than that for non-binding genes (0.1 with 95% credible interval
0.07-0.13). The probabilities of being potential genes for binding and non-binding genes
were also different (0.55 v.s 0.43), but this difference was not statistically significant. So the
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correlation between binding data and expression data was higher than the correlation
between binding data and sequence data.

We used the scatter plots to illustrate the posterior probabilities of being target genes. Figure
4 shows that when using the binding data alone, the estimated posterior probabilities were
positively associated with the mean binding intensities from binding data. The relationship
between the posterior probability and the mean intensities (fold changes) was not strictly
monotone because the posterior probability also accounts for the measurement error for each
gene [28]. In this model, the posterior probabilities of being binding target genes do not
depend on the expression data or sequence data. On the other hand, following joint
modeling, the posterior probabilities of being binding target genes for the genes with high
expression values are increased compared to using binding data alone, but the sequence
scores have less effects on the estimation of posterior probabilities for this data.

We evaluated the performance of joint modeling by 24 previously known Lrp binding target
genes. Figure 5 demonstrates that the joint modeling can identify more previously known
target genes as compared to using binding data alone. For example, there were 16 known
target genes among top 300 gene list identified by joint modeling, and the corresponding
number was 7 with the binding data alone. Table 5 lists the names of 24 known Lrp target
genes and their ranks generated by joint modeling and the binding data alone.

The genes without previous knowledge about the Lrp binding were also investigated. hdeA
was identified as the binding target genes by joint modeling, but was not identified by using
binding data alone. HdeA (hns-dependent expression protein A) is a single domain alpha-
helical protein localized in the periplasmic space and is involved in acid resistance that is
essential for infectivity of enteric bacterial pathogens. The intensity level for hdeA was very
high in expression data, which increased the posterior probability of being target gene by
using the joint modeling. Another interesting gene identified by joint modeling was BrnQ
(ranked 19th). All binding data, expression data and sequence data provided moderate
evidence of BrnQ as the target gene, but only analyzing three data sets together could
provide significant evidence that BrnQ as the target gene. BrnQ is a branched chain amino
acid transporter and is related to Lrp binding.

We also used the functional enrichment analysis to illustrate the biological significance of
top 100 genes identified by joint modeling or the binding data alone. The results can be seen
in Table 6 and Table 7.We used MultiFun cell function assignment schema [32] from the
databases GenProtEC (http://genprotec.mbl.edu) to assign the gene function. The function
codes indicate which function group the genes belong to. For example, function code 1.1.3
represents function “amino acids metabolism”; its parent node is function 1.1, “Carbon
compound utilization ”; the function codes 1.1.3.2 and 1.1.3.7 are its child nodes, which are
“L-serine degradation” and “Threonine catabolism” respectively. Therefore, the function
codes represents the relationship among function groups in the tree structure. Table 6 shows
that joint modeling can identify 21 functional groups with gene enrichment (p < 0.01) .
Among these enriched functional groups, 4 groups were related to amino acids biosynthesis
(Function code 1.5.1) including Leucine biosynthesis; and 5 groups were related to carbon
compound utilization (Function code 1.1) . These findings were consistent with the
knowledge that Lrp plays an important role in carbon and amino acid metabolism. On the
other hand, among 100 genes identified by using binding data alone (Table 7), 13 functional
groups were enriched ; 4 of these groups were related to amino acid biosynthesis and 1 was
related to carbon compound utilization. Compared to using binding data alone, joint
modeling allowed identification of a more complete set of functional groups.
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5.2 Model diagnostics and sensitivity analysis
In Lrp data analysis, we specified an informative prior to the proportion of binding target
genes px as Beta(100, 900) distribution to address the identifiability problem [28]. We
investigated whether the prior distribution of px influenced the main analysis results by
using a different prior px ~ Beta(200, 800). Table 8 shows that the overlap between the lists
of top genes for two priors was high, indicating that the candidate lists are robust to the
choice of priors. Table 9 gives the posterior means and quantiles of the same parameters as
in Table 4 but using prior px ~ Beta(200, 800). It leads to the similar conclusion as using
prior px ~ Beta(100, 900): the correlation between binding data and expression data is higher
than the correlation between binding data and sequence data. Thus the gene ranks are
relatively robust to the informative prior. On the other hand, the posterior probability of
being binding target gene depends on the prior distribution of px, so the cut-off for claiming
the binding target genes is sensitive to the priors. Section 6 gives more discussion on this
issue.

In MCMC simulations, we ran 2000 iterations and used 1000 – 2000 iterations as our
simulation samples. We also used different initial values to look at the convergence of the
MCMC simulations. Figure 6 shows the trace plots of some parameters, the MCMC
converged well for the parameters. Gelman and Rubin statistics [33] for px, λx, p0z, p1z, p0y,
p1y have been calculated, and all of them were around 1 (less than 1.1), indicating the good
convergence of chains.

6 Discussion
With the rapid accumulation of data from high-throughput experiments such as gene
expression, protein-protein interactions, genome sequences and genome-wide DNA-protein
binding maps, there is an urgent need to develop reliable and robust methods for integrating
these heterogeneous data to generate systematic biological insights into states of cells,
mechanisms of diseases and treatments. The proposed joint modeling approach specifically
addresses such a need. Through both simulations and a real data example, we illustrated that
our method can improve specificity and sensitivity of the analysis as compared to the
conventional approaches relying on a single data source. In this study we jointly modeled
DNA-protein binding data, expression data and DNA sequence data, and the approach could
be extended to combine more sources of data within the presented general statistical
framework. Similar to other high throughput data analysis methods, exploratory data
analysis will facilitate selecting appropriate integrated analysis methods for a specific data
set.

We want to emphasize that the purpose of the proposed model is to combine the primary
data, which contains direct information to answer the specific biology question, with some
secondary data, which might contain relevant information to answer the specific biology
question indirectly. In the Lrp example, the specific biology question is: which genes are the
direct binding targets of Lrp? Binding data can be used alone to directly answer this question
and is regarded as the primary data. Expression data comparing lrp+ and lrp− strains could
identify genes which express differentially between the wild type and the Lrp knockout
stains. If binding data and expression data are correlated, information from expression data
will be used to identify binding targets as illustrated in the real data application. However, if
binding data and expression data are not correlated, it may indicate that most of
differentially expressed genes are in the downstream of the Lrp regulation pathway; i.e.
these genes are not the direct binding targets of Lrp. In this context, expression data should
not be used to infer the binding targets and our model could automatically detect it and
largely ignore the secondary data. Therefore, in this aspect, the application of our model is
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different from the traditional integrative analysis or meta-analysis, where different data
sources are all forced to contribute to final results.

For both simulated and real data, we have shown that the posterior probability of being a
binding target and the parameter estimates are not robust to the prior specification for px.
This is mainly due to the identifiability problem of the parameter px [28]. These results
illustrate the challenges and difficulties in estimating the proportion of true target genes in
high dimensional and complex datasets. In particular, we do not recommend any direct use
of the estimated px from this model, such as in choosing a cut-off for identifying binding
target genes in practice. However, the ranks of genes for being binding targets are robust to
the specified priors in both simulated and real data. In practice, the ranking of the genes is
important because it provides a critical guidance to selecting a subset of the genes for the
following more expensive and time-consuming functional verification experiment. For this
purpose, the proposed joint modeling method clearly outperforms using binding data alone,
and the results are robust to the prior specification. If we need to choose a cut-off for
identifying binding target genes, some use of the false discovery rate (FDR) may be helpful,
though further studies are needed.

Recently, genome-wide gene networks, represented by directed/undirected graphs with
genes as nodes and gene-gene interactions as edges, have been constructed using high-
throughput data [34, 35]. It is reasonable to assume that the neighboring genes in a network
are more likely to share biological functions and thus to participate in the same biological
processes, therefore, their expression levels are more likely to be similar to each other. Some
work has attempted to incorporate genome-wide gene network information into statistical
analysis of microarray data to increase the analysis power [36, 37, 38]. It will be interesting
to incorporate the existing gene regulatory networks in the proposed joint modeling in the
future.

In the Lrp example, the available sequence data contain little information about binding
(because the conditional probabilities are not much different). There are several possible
reasons: First, the sequence specificity of Lrp regulation may not be strong. Lrp is a global
gene regulator, the mechanism of its regulation remains unknown. Robison [4] and our
preliminary results show that the sequence specificity of Lrp regulation is much lower than
other TFs, such as lexA. To verify this assumption, we can do similar experiments and
analysis for lexA in the future. Second, the input sequences in regulonDB for the sequence
data of Lrp may be incomplete, and there may be other unknown informative motifs for Lrp.
To partially address this problem, we can use the results of our joint modeling as an input to
obtain new sequence data and run joint modeling iteratively, which may improve our ability
to detect the binding targets of Lrp.

We implemented our method in R, and our R code is available upon request.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The scatter plot of ranks of the known Lrp target genes when using maximum sequence
scores vs mean sequence scores to summarize the sequence data for Lrp data.
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Figure 2.
ROC curves for simulation studies 1-4. Each simulation study was performed 10 times, the
mean and standard errors of sensitivities (the vertical tick marks on the line) were used to
evaluate the performance of each model.Bind: using binding data alone; Bind+Exp: using
binding data and expression data; Bind+Exp+Seq: using binding data, expression data and
sequence data.
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Figure 3.
ROC curves for simulation studies 5 and 6.
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Figure 4.
The scatter plots of posterior probability of being binding target genes(P r(Ix = 1))vs mean

binding intensities ( ) for using binding data alone model and joint modeling for Lrp data.
Each black dot represents one gene in E. Coli chromosome, X-axis represents the observed
binding intensities from binding data, Y-axis represents the estimated posterior probability
of being binding target genes from either binding data alone model (left panel) or from joint
modeling (right panel). The dots with red circles represent the genes with high expression

values ( ). The dots with blue circles represent the genes with high sequence scores (z
> −4). In binding data alone model, the estimated posterior probabilities are positively
associated with the mean binding intensities, and the posterior probabilities do not depend
on the expression data or sequence data. In joint modeling, the posterior probabilities of the
genes with high expression values (with red circles) increase compared to using binding data
alone; the sequence scores have less effects.
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Figure 5.
Number of the genes previously known to be bound by Lrp based on the literatures among
the top ranked genes for Lrp data.
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Figure 6.
Convergence check.
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Table 5

The ranks of known Lrp target genes generated by joint modeling method and binding data alone. The lower is
the rank, the better is the performance of a model.

Gene Rank (Binding) Rank (joint)

livJ 2 1

serA 168 6

gltB 2218 11

fimA 226 12

sdaA 285 24

lrp 1150 25

ilvL 470 28

osmY 1382 43

stpA 1382 46

kbl 1435 53

ilvI 290 58

ompF 2323 103

gcvT 1750 137

lysU 680 158

serC 548 227

ompC 3460 273

osmC 2770 312

leuL 88 330

aidB 2400 376

fimE 320 488

malT 230 792

livK 500 802

dadA 1944 1036

yeiL 2596 2513
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Table 6

The functional groups whose genes were over-represented among top 100 genes, as identified by the joint
model applied to the Lrp data set. The function code indicates which function group the genes belong to and
the relationship among function groups in the tree structure. For example, function code 1.1.3 represents
function “amino acids metabolism”; its parent node is function 1.1, “Carbon compound utilization ”; the
function codes 1.1.3.2 and 1.1.3.7 are its child nodes, which are “L-serine degradation” and “Threonine
catabolism” respectively.

Function names Function code P-values

Trehalose degradation 1.1.1.18 0.001897

Ribose degradation 1.1.1.22 0.006116

Amino acids metabolism 1.1.3 0.002218

L-serine degradation 1.1.3.2 0.000643

Threonine catabolism 1.1.3.7 0.000114

ATP proton motive force interconversion 1.3.8 0.002989

Serine biosynthesis 1.5.1.11 0.009022

Alanine biosynthesis 1.5.1.17 0.001897

Isoleucine biosynthesis 1.5.1.18 2.22E-07

Leucine biosynthesis 1.5.1.19 3.40E-05

Glycoprotein biosynthesis 1.6.11 0.001692

rRNA Information transfer 2.2.6 −2.09E-17

Nucleoproteins transfer 2.3.7 0.005848

periplasmic binding component transport 4.3.A.1.p 0.008304

F-ATPase Superfamily transport 4.3.A.2 0.001207

The PTS Galactitol (Gat) Family transport 4.4.A.5 0.006116

L-leucine transport 4.S.108 0.009022

H+ transport 4.S.82 0.000437

Adaptation to stress ( Osmotic Pressure) 5.5.1 0.000976

Adaptation to stress ( pH response) 5.5.4 1.06E-05

Transposon related 8.3 2.57E-09
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Table 7

Among top 100 genes identified by using the binding data alone, the enriched function groups and the
corresponding P-values for Lrp example.

Function names Function code P-vlues

Ribose degradation 1.1.1.22 0.00015

Serine biosynthesis 1.5.1.11 0.008847

Alanine biosynthesis 1.5.1.17 0.00186

Leucine biosynthesis 1.5.1.19 0.00055

Ribonucleoside biosynthesis 1.5.2.4 0.00186

Pentose phosphate shunt 1.7.3 0.001172

rRNA Information transfer 2.2.6 7.04E-17

Methylation 3.1.1.2 0.008847

Sigma factors 3.1.2.1 0.009653

Stimulon regulation 3.3.3 0.000796

L-leucine transport 4.S.108 0.000295

tyrosine transport 4.S.154 0.000507

Transposon related 8.3 2.58E-08

Stat Med. Author manuscript; available in PMC 2012 May 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xie et al. Page 27

Table 8

The overlap between two different priors in Lrp data analysis.

Number of Genes Overlaps

100 68

200 152

300 258

400 356

500 444

600 529

700 599
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