Biophysical Journal Volume 102 May 2012 2031-2038 2031

Lipid Sorting by Ceramide and the Consequences for Membrane Proteins
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ABSTRACT We mimicked the effect of sphingomyelinase activity on lipid mixtures of palmitoyl-oleoyl-phosphatidylcholine,
sphingomyelin, ceramide, and 10 mol % cholesterol. Using x-ray diffraction experiments in combination with osmotic stress
we found, in agreement with previous studies, that ceramide induces a coexistence of L, and L; domains. A detailed structural
analysis of the coexisting domains demonstrated an increase of lipid packing density and membrane thickness in the L, domains
upon increasing overall ceramide levels. This provides evidence for a ceramide-driven accumulation of cholesterol in the L,
domains, in support of previous reports. We further determined the bending rigidities of the coexisting domains and found
that the accumulation of cholesterol in the L, domains stabilizes their bending rigidity, which experiences a dramatic drop in
the absence of cholesterol. Deriving experimental estimates for the spontaneous curvature and Gaussian modulus of curvature,
we show, using a simple geometric model for ion channels, that in this way changes in the conformational equilibrium of

membrane proteins can be kept small.

INTRODUCTION

The organization of membranes into functional platforms
(rafts), enabling the assembly of signaling proteins or
transbilayer transport (1,2), is of particular interest in mem-
brane research. Regarding lipid architecture, membrane rafts
are generally considered to be rich in cholesterol and sphin-
golipids such as sphingomyelin (SM) (3). Under certain
circumstances in the life of a cell (e.g., apoptosis), SM is
hydrolyzed to ceramide (Cer) by sphingomyelinease (4,5).
This significantly impacts lateral membrane structure (6-8),
and it has been speculated that Cer stabilizes membrane rafts
(9). In a previous report, performed on mixtures of palmitoyl-
oleoyl phosphatidylcholine (POPC), SM, and Cer, we
showed that Cer may induce macroscopic phase separation
into stable lamellar fluid (L,) and gel (Lg) domains over
a certain range of temperatures and Cer concentrations
(10). In that study, we further showed that the phase separa-
tion is due to preferential interactions of Cer with SM, such
as hydrogen bonding, leading to an enrichment of SM and
Cer in the L; domains and an enrichment of POPC in the
coexisting L, domains. The depletion of SM from the L,
domains causes a fourfold drop in the bending rigidity of
the fluid phase (11). This change of membrane elasticity
can be coupled to transmembrane protein activity (12,13),
and we estimated significant changes in the conformational
equilibrium of simple geometric protein models (11).

In this report, we focus on the competition of Cer with
cholesterol (Chol) in the context of sphingomyelinase
activity, which is mimicked by gradually replacing SM
with Cer in mixtures of POPC, SM, and Chol. In particular,
we are interested in effects regarding membrane lateral
structure and elasticity and their putative consequences for
transmembrane protein activity. Cholesterol is abundant in
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plasma membranes (14) and interacts preferentially with
saturated acyl chains as compared to unsaturated hydro-
carbon chains (15,16). Therefore, it contends with Cer for
SM (17-24). It is also well known that Chol condenses
fluid membranes (see, e.g., (25-28)). Several ternary lipid
mixtures of Chol mimicking the outer plasma membrane
exhibit phase coexistence of liquid ordered (L), liquid
disordered (Lg), or gel phases (29). Such phase coexistence
has been reported also for POPC/SM/Chol, although the
form of the phase coexistence regimes and direction of tie
lines remain controversial (30,31). Although Chol levels
are on the order of 30-50 mol % in plasma membranes
(14), we chose an intermediate Chol concentration of
10 mol %. According to Veatch and Keller (31), this system
offers the advantage of being just outside a L,/L4 phase-
coexistence regime, and we will thus be able to learn about
the competition between Cer and Chol under simplified
conditions, i.e., starting from a homogenous mixture. In
this concentration range, Cer has been reported to displace
Chol from L, domains (17,19-21,23). In turn, an increase
of Chol concentration was found to gradually dissolve
Cer-rich gel domains (18,22-24).

In this report, we seek to understand 1), how Chol at inter-
mediate concentrations affects the properties of the Cer-
enriched Ls phase and the coexisting L, phase; and 2),
how these properties are coupled to membrane protein
activity. For this purpose, we compared our x-ray diffraction
results to those of previous studies in the absence of Chol
(10,11,32). Osmotic stress experiments showed that the
bending rigidity of the L, phase remains unaffected by
Ls-domain formation, which is attributed to the accumula-
tion of Chol in L, domains. We further estimated the spon-
taneous curvatures and Gaussian moduli of curvature of
the coexisting phases, allowing us to address possible con-
sequences of membrane restructuring for protein function
in the case of a simple ion channel. Our calculations showed
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that Chol minimizes membrane-mediated activity changes
of proteins located in the L, domains that would take place
in its absence (11).

MATERIALS AND METHODS
Liposome preparation

POPC, egg-SM, and C16:0-Cer were purchased from Avanti Polar Lipids
(Birmingham, AL) and used without further purification. Chol, polyethylene
glycol (PEG, molecular mass 8000 g/mol), and all other chemicals (solvents
in pro analysi grade) were from Sigma-Aldrich (Castle Hill, Australia).

Lipid stock solutions were prepared by dissolving weighted amounts of
dry lipid powder from freshly opened sample containers from the suppliers
in chloroform/methanol (2:1, v/v). The appropriate volumes of the stock
solutions were mixed and the organic solvent was evaporated at room
temperature under a gentle stream of nitrogen. The samples were then
placed under vacuum for at least 12 h to form a thin lipid film on the
bottoms of glass vials. Multilamellar vesicles (MLVs) were prepared by
first suspending the dry lipid films in 18 MQ/cm water (UHQ PS, USF
Elga, Wycombe, UK) at a lipid concentration of 50 mg/ml and then incu-
bating the dispersions for 4 h in the fluid phase of the system with intermit-
tent vigorous vortex mixing. At least eight freeze-thaw circles were
performed. For the osmotically stressed samples, the fully hydrated
MLVs were prepared at a concentration of 200 mg/ml, as detailed above,
and then diluted to 50 mg/ml by a PEG solution of a given concentration
whose osmotic pressure was determined using a Knaur (Berlin, Germany)
vapor-pressure osmometer. The sample was equilibrated at a given osmotic
pressure for at least 2 days.

Small and wide-angle x-ray diffraction

Synchrotron small- and wide-angle x-ray diffraction experiments were per-
formed at the Austrian SAXS beamline at Elettra (Trieste, Italy) (33,34)
using a photon energy of 8 keV. SAXD patterns were recorded in a g-range
of 2.67 x 107 - 0.95 A~! (¢ = 4n/2 sinf) using a mar300-image-plate
detector (Marresearch, Norderstedt, Germany). Integration of scattered
intensity and primary data reduction were performed using the program
Fit2D. WAXD patterns (g-range = 0.77 — 2.79 A1), were recorded simul-
taneously using a Gabriel-type PSD. Samples were contained in 1-mm
quartz-glass capillaries at a distance of 1.121 m to the image-plate detector.
Before measurements, samples were equilibrated at 37°C for at least 10 min,
using a circulating water bath (Unistat CC, Huber, Offenburg, Germany).
Typical exposure times were 300 s. The instrumental resolution was deter-
mined to have a full width at half-maximum of 6q = 2.23 x 1073 A°"

Lamellar repeat distances, d, were derived from a Lorentzian fit to the
first-order Bragg peaks. From the peaks, we derived the bilayer electron
density profiles using standard techniques as reported previously (11).
Further, we used the same definition for the membrane thickness dzp =
dyy + 10 A (dyy is the distance between the two maxima of the elec-
tron-density profile).

Hydrocarbon chain positional correlation peaks occur in the WAXD
regime. Peaks of the coexisting phases were fitted with two Lorentzians
(Fig. S1in the Supporting Material). For Cer = 30 mol % and 35 mol %, addi-
tional sharp peaks appeared that required additional Lorentz peak functions
in the analysis. The Lg phase is characterized by a single sharp peak occur-
ring at gy ~ 1.51 A~". From the peak position, we calculated, as previously,
the lateral area/lipid A = 16m/(1/3¢3,). The chain correlations of the L,
phase exhibit a broad peak at gy ~1.40 A~'. Unlike the long-range order
present in the Lg phase, hydrocarbons in the L, phase are fluid and exhibit
short-range order. It has been shown (35), that the average chain separation
can then be calculated using a = 97/4q,. The decay constant of the short-
range positional correlations was derived from & = 2/Aqg,,» (35), using
the corrected full width at half-maximum of the chain correlation peak.
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Osmotic stress experiments and analysis

Osmotic pressure experiments combined with SAXD were performed as
described previously using PEG 8000 (11). In the analysis of the isotherms,
we considered van der Waals attraction, hydration repulsion, and repulsion
due to bilayer bending fluctuations. The osmotic pressure, IT, is equated
with the sum of disjoining pressures that results from these interactions,
ie., IT = Pygw + Puya + Ppyg using the same forms for the van der Waals
pressure, P,,w, hydration pressure, Py, and fluctuation pressure, P, as
reported previously (11). Parameters of P,y are the Hamaker constant,
H, and the membrane thickness, dp. The latter parameter is determined
from SAXD (see above). For the Hamaker constant, we choose the theoret-
ical value H = 4.3 x 102" J (36), as applied in previous studies from our
laboratory (11,37). Parameters of hydration interactions are the empirical
scaling constant, P;, and the decay constant, 4,. Fluctuation interactions
were only considered for fluid phases. The presently used form of Py
contains P, A, and, in particular, the bending rigidity, K¢, as adjustable
parameters. As described previously (11,37), the isotherms were fitted iter-
atively, starting with the analysis of data with II > 1 atm and a constrained
estimate for K. K- was subsequently adjusted in a fit of the full isotherm,
returning with this new value of K to Step 1 of the analysis, until the fit to
the osmotic pressure data could not be improved any further.

Calculation of effects on transmembrane proteins

Bulk elastic properties of membrane lipids may affect the conformational
equilibrium of membrane proteins (12,13,38). The basic idea is that confor-
mational changes of proteins that go hand in hand with changes in the cross-
sectional area, AA, need to take place against a distribution of repulsive and
attractive intramembrane pressures, p, known as the lateral-pressure profile.
Take, for example, the opening of an ion channel, which involves the
opening of a passage for ions, i.e., the transition from a closed (r) to an
open state (¢). The thermodynamic equilibrium can be described by a distri-
bution of closed to open channels Ky = [r(]/[#o]. Changes in the distribution
of lateral pressures, e.g., upon changes in lipid composition due to sphingo-
myelinase activity, will also change the conformational equilibrium (39),
which is then given by K = [r]/[t]. It can be shown that the two equilibria
are related by K = Ko exp(e), with o = [ Ap(z)AA(z)dz/kgT being the
change of work associated with the opening of the channel in the changed
lateral-pressure field (40).

For simple geometric shapes of proteins, «, and hence K/K,, can be
calculated analytically (40). In the case of hourglass-shaped proteins,
consisting of an n-mer of bent helices, we recently showed that a =
270[(2r axAtang — dpAtan®) AP + Atan?@AP;]/kgT (11,41), where rmay
is the outer radius of the protein at the position of the lipid headgroups,
¢ the opening angle of the pore, and AP, and AP, the changes in the first
and second integral moments of the lateral-pressure profile imposed in this
case upon the addition of Cer. The two integral moments are related to
membrane elasticity by (42) P = ,,,co and P, = kg, where «,, is the mono-
layer bending rigidity, ¢y the spontaneous curvature, and ks the Gaussian
modulus of curvature. These parameters can be determined from experi-
ment. In particular, k,, = Kc/2 is derived from osmotic pressure experi-
ments described above. We further derived ¢y by measuring lipids in the
inverted hexagonal phase (43) (see Supporting Material). kg was estimated
using kg ~ —0.8 «,, (13).

RESULTS

Structural properties of coexisting fluid and gel
domains

Fig. 1 shows the SAXD and WAXD patterns of fully
hydrated MLVs at 37°C. Bilayers were initially composed
of POPC/SM/Chol (45:45:10); subsequently, SM was
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gradually substituted by Cer in the concentration range from
0 to 35 mol %. SAXD patterns up to 23 mol % Cer were
characteristic for a single lamellar phase. However, the
sharp peak on top of a diffuse peak observed in the
WAXD regime in the presence of Cer clearly demonstrates
the coexistence of L, and Lz domains. The observation of
a single d-value for coexisting phases may have several
reasons, some of which are detailed in Mills et al. (44).
For example, like domains may not be in registry, or they
may happen to have similar d-values, i.e., the smaller dg
of L, and larger dg of Lg phases, is compensated by a larger
bilayer separation, dy = d — dg for L, and smaller dy, for
Lg. Phase coexistence in the SAXD regime will be revealed
upon the application of osmotic pressure (see below).
However, to differentiate between different domain align-
ments in MLVs is not within the scope of this work. For
Cer concentrations >25 mol %, SAXD patterns showed
an additional peak with d = 41.9 10%, which became increas-
ingly prominent with Cer concentration. The d-value is
comparable to that reported previously for pure Cer phases
(10,32,45) and signifies the formation of Cer crystallites,
which are insoluble in the lipid membrane. Precipitation
of Cer crystallites was also observed as a decrease of the Lg
chain correlation peak intensity and the formation of higher
q satellite peaks (Fig. 1 B). Concentrations of 25 mol % Cer
correspond to a Cer/SM molar ratio of 1.25. Thus, as soon as
the Cer level increases over that of SM, any additional Cer
cannot be integrated into the lipid bilayer but forms a crystal-
line-like precipitate. In the absence of Chol, Cer precipitates
at significantly higher concentrations (35 mol %) (10,32).
As a next step, we performed a detailed analysis of the
WAXD data, in comparison to previously published data
that did not contain Chol (10). This is facilitated by plotting
all structural parameters as a function of the Cer/SM molar
ratio. We first focus on the Lg domains using the data anal-
ysis described in the Materials and Methods section. The

area/lipid, A, of the gel domains exhibited a value of
40.3 A? at the lowest Cer concentration, decreased slightly
at Cer/SM = 0.3, and then increased linearly by ~0.3 A?
toward higher Cer/SM ratios (Fig. 2). The increase of A
for Cer/SM > 0.29 is most likely due to the splay induced
by the spontaneous curvature of Cer (see Supporting Mate-
rial). In the absence of Chol, A increased over the entire
range of Cer concentrations studied. Differences in absolute
A-values in the absence and presence of Chol show that lipid
compositions of the domains differ. Most likely, this is due
to Chol partitioning into the Ls domains. In general, the
overall extent of area variation is much more pronounced
in the absence of Chol. Thus, the difference between the
area/lipid of Chol-containing and that of Chol-free bilayers
decreases with Cer content, which could indicate a displace-
ment of Chol from the gel domains, as described in reports
of previous studies that used different experimental tech-
niques (17,19-21,23).

A consequence of this scenario would be that Chol accu-
mulates in the L, domains. Since Chol is well known for its
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FIGURE 2 Comparison of lateral area/lipid of Lg domains in the pres-
ence (black circles) and absence (gray circles) of Chol (10) as a function
of the Cer/SM molar ratio.
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membrane-condensing effect (see e.g., Hodzic et al. (27)),
we expect to observe changes of the corresponding broad
WAXD peak. Indeed, the average distance between the
acyl chains in the L, domains provides clear evidence for
such a scenario (Fig. 3). In the Cer/SM range 0-1.25, the
distance a decreased quasilinearly and then remained
constant toward higher Cer concentrations. The change in
the slope of a coincided with the solubility limit of Cer in
this system. Thus, Chol accumulates in the L, phase, as
long as Cer is able to form an Lz phase with SM (Cer/SM
< 1). This leads to an increase of packing density in L,
because of the significantly smaller lateral area/molecule
of Chol (46) as compared to SM (47) and due to the
umbrella effect of POPC (26). At the same time, the decay
of the positional correlations did not show significant
changes, with an average value of £ =5.4 A.Thisisa typical
value for fluid hydrocarbons (35) and demonstrates that
Chol accumulation in the L, domains does not affect the
short-range order of the acyl chains.

Membrane thickness and domain elasticity from
osmotic stress experiments

We performed SAXD experiments under osmotic stress, as
described previously in detail (11). Fig. 4 A shows the
SAXD patterns for Cer/SM = 0 and Cer/SM = 0.5 at
mild osmotic pressure (II = 1.31 atm). In the presence of
Cer, this pressure was sufficient to reveal the two lamellar
lattices of the L, and L phase. Only a single set of lamellar
peaks, and hence no coexistence of L, and Ly domains, was
observed in the initial POPC/SM/Chol mixture. Also, appli-
cation of higher osmotic pressures and lowering sample
temperature to 10°C did not reveal the coexistence of
macroscopically stable L, and Ly domains (Fig. S3). Note
that for the Chol concentration studied here, this is in agree-
ment with a previous fluorescence microscopy study (31).
There is a small, but distinct, difference from the composi-
tional phase diagram based on fluorescence spectroscopy
(30), where 10 mol % Chol would be just within a L,/Lq4
coexistence regime. However, as discussed previously

5.16 |
514 |
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(10,29,48), this difference could be due to using egg-SM
(here) instead of palmitoyl-SM (30), or different experi-
mental windows of the applied techniques. Further, there
are subtle differences between stable and unstable lipid
domains, as well as macroscopic and nanoscopic domains,
which can be discerned only upon the application of
different experimental techniques (10,48). Note that we
recently observed phase coexistence in the same system at
higher Chol concentrations (to be published in a separate
report). Thus, x-rays are sensitive to phase coexistence in
POPC/SM/Chol.

From the SAXD patterns shown in Fig. 4 A, we were able
to derive the electron-density profiles and the corresponding
membrane thicknesses, dp, as described previously (11).
Results are shown in Fig. 4 B and Table 1, which, to facili-
tate a comparison with other reports, also includes the head-
group-to-headgroup distances, dgg. In the absence of Cer,
we found a membrane thickness of dg = 49.5 = 0.2 1&,
which is 1.1 A larger than our previously reported value
in the absence of Chol (11). The increase of dp goes hand
in hand with the bilayer condensation by Chol, as reported
previously for several lipid/ Chol mixtures (see, e.g., Hodzic
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TABLE 1 Structural and interaction parameters

Cer (mol %) Phase dg (A) dyw (A) P,(atm) A, (A) K. (kgT)
0 L, 49.5 39.5 4555 1.51 78.9
10 L. 50.2 40.2 4627 1.51 71.3
10 Lg 54.1 44.1 1.38 x 10* 151 >100

Data were derived from osmotic isotherms of POPC/SM/Chol (45:45:10)
and the coexisting L,/Lg domains of POPC/SM/Cer/Chol (45:30:15:10).
K¢ was not measured for Lg domains. We give a lower limit instead.

et al. (27).). In the presence of Cer (Cer/SM = 0.5), we
found dy = 50.2 + 0.2 A for the L, domains and dp =
54.1 + 0.2 A for the coexisting Lz domains. Naturally,
the gel phase shows the largest membrane thickness due
to the all-trans conformations of the hydrocarbon chains.
Interestingly, also the dp of the coexisting L, phase is larger
than the membrane thickness of the non-phase-separated
system (Cer/SM = 0). This supports the above-discussed
scenario in which Cer leads to accumulation of Chol in
the L, phase, as additional Chol will also increase dg (see
e.g., Hodzic et al. (27).). In the absence of Chol, the dzs
of the L, phases were found to be comparable (11).
Accumulation of Chol in the L, domains certainly has
significant consequences for the elasticity of coexisting
phases. This can be probed by variation of the osmotic pres-
sure in combination with SAXD. Fig. 5 shows the osmotic
pressure data in the presence of Chol. At the highest I1
measured, hydration repulsion dominated the disjoining
pressures. As IT was decreased, fluctuation repulsion, which
has a larger decay constant, became more and more promi-
nent. Finally, we observed a typical deviation from linearity
in the semilogarithmic plot, which is when van der Waals
attraction between the bilayers comes into play and the bila-
yers obtain their equilibrium separation. Visual inspection
of the data presented in Fig. 5 shows that the equilibrium
separation of the Lg domains obtained at II = O is sig-
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FIGURE 5 Equation of state for POPC/SM/Chol (45:45:10) (circles) and
for the L,, domains (triangles) and Lg domains (squares) of POPC/SM/Cer/
Chol (45:30:15:10). Solid lines correspond to fits.
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nificantly smaller than that of the L, phases. This is charac-
teristic for gel phases, where repulsion from bending
fluctuations plays no role. Further, the two isotherms for
the fluid phases are practically identical. Thus, we expect
that all adjustable interaction parameters of the L, phase
of POPC/SM/Chol, including the bending rigidity, will not
change significantly upon the addition of Cer. Indeed, all
values for the interaction parameters Py, 4;, and K obtained
from fits to the osmotic pressure data agree within experi-
mental error (Table 1). Compared to our previous study in
the absence of Chol, the K of the fluid domains is ~34%
larger (11). This effect is typical for the condensing abilities
of Chol in fluid lipid bilayers (28,49).

DISCUSSION

Compared to our previous study (10), Cer precipitated at
significantly lower concentrations (Fig. 1). Thus, the com-
petition between Chol and Cer lowers the solubility of Cer
in the bilayer. Our analysis of the WAXD data of the Lg
domains showed that the difference in lateral area/lipid
between samples containing and those not containing
Chol decreased with increasing Cer concentration (Fig. 2).
Previously, we demonstrated by infrared spectroscopy pref-
erential interactions between Cer and SM, leading to the
formation of the gel phase (10). We assume that this is
also the case in the presence of Chol, which is further sup-
ported by mass spectroscopy data (50). However, because of
preferential interactions of Chol with saturated hydrocar-
bons (15,16), Chol will also partition into the Lg domains,
explaining the observed differences in A (Fig. 2). The
decrease of this difference with increasing Cer content
then suggests that Chol would be depleted from the Lg
domains and consequently accumulate in the L, domains,
in agreement with observations by others (17,19-21,23).
This scenario is strongly supported by our WAXD analysis
of the L, domains, showing increased packing density as
Cer levels are increased. Furthermore, the increase in dp
of the L, domains (Table 1) also agrees with increased
Chol levels. In the absence of Chol, we observed previously
an almost fourfold decrease of the bending rigidity of the L,
domains, which was explained by the depletion of SM from
the fluid phase due to SM/Cer interactions (11). In this
study, no significant changes in K. could be detected upon
the addition of Cer (Table 1). Thus, Chol accumulation in
the L, domains recovers the drop in K- by depletion of
SM from the fluid phase.

As a secondary effect, Chol accumulation in the L,
domains seems also to constrain POPC to the L, domains.
At Cer/SM = 1, all pairwise interactions between Cer and
SM are saturated. Nonetheless, we were able to solubilize
an additional amount of ~5 mol % Cer in the bilayers in
the absence of Chol (10). This was explained by the incor-
poration of some limited amounts of POPC in Lz domains
(32), which has a lower affinity for Cer than SM but still
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displays Lg domains in binary mixtures with Cer (20). In the
presence of Chol, we observed Cer crystallites as soon as
Cer/SM > 1 (Fig. 1). This significantly lower solubility of
Cer therefore suggests that POPC is not able to partition
into the Lz domains for Cer/SM > 1 but remains within
the L, domains, most likely due to preferred interactions
with Chol as compared to Cer.

Potential effects on ion channels

It is instructive to ask how these changes in bulk membrane
properties may affect the activity of membrane proteins. It
is well known that changes in the distribution of lateral
pressure are linked to protein function (12,13). In a previous
study, based on the drop in K¢ in the L, phase in the absence
of Chol, we calculated possible consequences for the
activity of channel proteins with hourglass-shaped geometry
as a function of pore size (11). Since K does not change
significantly in this scenario, one could argue that protein
activity will not be affected at all. However, in addition to
K¢, protein activity is also linked to the spontaneous curva-
ture, ¢, and the Gaussian modulus of curvature, kg (13).

It is not possible to measure the c( for coexisting phases.
However, ¢ can be estimated from the molecular-mass sum
of the cos of the individual lipid components of a given
phase (51). Of all the lipids used in this study, ¢y has been
reported only for Chol, where it was found to be between
—0.036 A" and —0.043 A™' (52). We thus decided to
measure the spontaneous curvatures of all presently used
lipids using a recently refined procedure (43). Details can
be found in the Supporting Material. We arrive at ¢y =
—0.003 A~! for both SM and POPC, which is close to 0, as
expected from their preference for forming lamellar phases.
Further, co = —0.031 A~ for Cer, and ¢, = —0.038 A~ for
Chol. The latter value agrees well with previously published
data (see above). To determine the cys of the coexisting
lipid phases, exact knowledge of the lipid composition of
the individual domains is required. This is presently not
available. However, for this discussion it is sufficient to
consider the extreme cases in lipid sorting by Cer. Hence-
forth, we assume that in the absence of Chol, the L, domains
are composed of POPC only, whereas the coexisting Lg
domains contain an equimolar mixture of SM and Cer. In
the presence of 10 mol % Chol, the L, domains, in turn
contain all POPC and all Chol, i.e., POPC/Chol = 0.815/
0.185, whereas the Lg phase is again given by SM/Cer = 1.
Further, our calculation of ¢y implicitly assumes random
mixing of the lipids within a given domain, which should
be fulfilled, neglecting boundary effects.

Table 2 shows the resulting spontaneous curvatures for
these domain compositions. It is clear that the L domains
exhibit the largest negative value for spontaneous curvature
due to the high concentration of Cer. Also, the presence of
Chol in the L, domains leads to a significant increase of
co- The monolayer bending rigidities were calculated from
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TABLE 2 Spontaneous curvature, monolayer bending
rigidity, and Gaussian modulus of curvature for POPC/SM/Cer
mixtures in the presence and absence of Chol

Co Km K

Lipid system  Domain Phase Molar ratio (1072 A™") (kgT) (kgT)

POPC/SM — L, 0.5:0.5 —0314 289 —23.1

POPC/SM/Cer  POPC Le 1 —0326 79 —63

SM/Cer Ly 0.5:0.5 —341 ~50 —40

POPC/SM/ L, 045:045:0.1 —0.662 395 —31.6
Chol

POPC/SM/  POPC/Chol L, 0.815:0.185 —0.967 38.7 —30.9

Cer/Chol SM/Cer Ly 0.5:0.5 —341 ~50 —40

the measured K. values assuming that differences in lipid
composition between experiment and those reported in
Table 2 do not affect the «,,s significantly. Gaussian moduli
of curvature were estimated as detailed in the previous
section.

With these data, we calculated the changes in first and
second integral moments of the lateral pressure profile,
AP, and AP,, due to lipid sorting by Cer. The results re-
ported in Table 3 show that both L, domains exhibit positive
changes in AP; and AP,, regardless of the presence or
absence of Chol. This signifies a shift of lateral pressure
toward the lipid/water interface (11,12). The effect is
more pronounced in the absence of Chol, in agreement
with previous theoretical work on lipid mixtures showing
that Chol shifts lateral pressure toward the membrane inte-
rior (39). In turn, AP, and AP, are negative for the Lg
domains, implying a redistribution of lateral pressure
toward the bilayer center.

Next, it is interesting to consider the effect of these
changes on transmembrane proteins, e.g., the opening prob-
ability of ion channels. For these calculations, we chose an
hourglass-shaped channel protein with the same geometry
parameters listed previously (41). Table 3 reports the
changes of work, «, to open the ion channel in the changed
lateral-pressure field. Negative values of « indicate a shift of
the conformational equilibrium toward open channels, and
conversely, positive « values signify channel closing.
Thus, ion channels in the L, domains will have increased
probability of being in an open state, whereas those located
on Lg domains will be inhibited. Inhibition of protein

TABLE 3 Effects on hourglass-shaped ion channels

AP, AP,
Phase (kgT/A) (ksT) « K/K,

POPC/SM/Cer L, 0062 168 —77 45x107* 1

Lg —031 —169 183 93 x 10" |

POPC/SM/Cer/Chol L,  0.005 064 —04 65x 107" 1

Ly, —116 -84 551 87x10% |

Changes of first and second integral moments, Py and P, of the lateral-pres-
sure profiles and the consequences for conformational equilibria K/K,. Up
and down arrows indicate shifts toward channel opening and channel
closing, respectively.



Effect of Ceramide on Protein Function

function in gel phases is a well-known fact. We therefore
focus on the effects within the L, domains and in particular
on K/K, (Table 3), which expresses the magnitude of the
shifts of conformational equilibrium. Both L, phases show
a decrease of closed states. However, the effect is much
less expressed in the presence of Chol, where the number
of open states increases by a factor of ~1.5, as compared
to ~2000 when no Chol is present.

SUMMARY AND CONCLUSIONS

We have performed a comprehensive structural analysis of
POPC/SM/Chol/Cer mixtures with 10 mol % Chol and
compared our results to structural data reported in the
absence of Chol (10,11,32). Upon gradually substituting
SM with Cer, we found, in particular, 1), a decrease in
the difference in lateral area/lipid in the Lg domains of
Chol-free membranes; 2), tighter lipid packing in the L,
domains; and 3), an increase in the membrane thickness
of the L, domains. In support of previous studies (17,19—
21,23), this provides evidence that competition between
Cer and Chol leads to an accumulation of Chol in L,
domains. Theoretical calculations of the effects of ion
channel activity showed that channel opening in the L,
domains occurs with a significantly higher probability in
the absence of Chol. This highlights the important role of
Chol in maintaining membrane stability and function. In
the absence of Chol, lipid sorting by Cer induces strong
shifts of the conformational equilibrium of ion channels in
L, domains toward open states, which could be detrimental
to cell function and may interfere with the controlled
disposal of cells during apoptosis. In the presence of Chol,
these changes are much more moderate and can possibly
be more easily handled.

SUPPORTING MATERIAL

Determination of spontaneous curvatures, phase separation in POPC/
SM/Chol, three figures, a table, and references (53-60) are available at
http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)00400-6.
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