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Accelerating Membrane Insertion of Peripheral Proteins with a Novel
Membrane Mimetic Model
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Department of Biochemistry, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Computational Biology,
University of Illinois at Urbana-Champaign, Urbana, Illinois
ABSTRACT Characterizing atomic details of membrane binding of peripheral membrane proteins bymolecular dynamics (MD)
has been significantly hindered by the slow dynamics of membrane reorganization associated with the phenomena. To expedite
lateral diffusion of lipid molecules without sacrificing the atomic details of such interactions, we have developed a novel
membrane representation, to our knowledge, termed the highly mobile membrane-mimetic (HMMM) model to study binding
and insertion of various molecular species into the membrane. The HMMM model takes advantage of an organic solvent layer
to represent the hydrophobic core of the membrane and short-tailed phospholipids for the headgroup region. We demonstrate
that using these components, bilayer structures are formed spontaneously and rapidly, regardless of the initial position and
orientation of the lipids. In the HMMMmembrane, lipid molecules exhibit one to two orders of magnitude enhancement in lateral
diffusion. At the same time, the membrane atomic density profile of the headgroup region produced by the HMMM model is
essentially identical to those obtained for full-membrane models, indicating the faithful representation of the membrane surface
by the model. We demonstrate the efficiency of the model in capturing spontaneous binding and insertion of peripheral proteins
by using the membrane anchor (g-carboxyglutamic-acid-rich domain; GLA domain) of human coagulation factor VII as a test
model. Achieving full insertion of the GLA domain consistently in 10 independent unbiased simulations within short simulation
times clearly indicates the robustness of the HMMM model in capturing membrane association of peripheral proteins very effi-
ciently and reproducibly. The HMMMmodel will provide significant improvements to the current all-atom models by accelerating
lipid dynamics to examine protein-membrane interactions more efficiently.
INTRODUCTION
The cellular membrane plays an important role in signaling,
transport, and metabolic processes in all living cells. In hu-
mans, nearly one third of the 34,000 identified proteins are
estimated to function in membrane-associated forms (1).
Though initially perceived as a passive environment, the
central role of the membrane not only in proper function,
but also in tight regulation of membrane-associated proteins
and phenomena has been well established (2–4).
Membrane-mediated effects on protein function can be
generally attributed to two major mechanisms: the overall
mechanical impact of the embedding lipid bilayer on protein
structure and dynamics (5–7) and specific interactions
between the membrane lipids (particularly the headgroups
that form the membrane surface) and their respective
binding sites in the protein (8–12). Furthermore, the overall
membrane affinity of a given protein can also be modulated
through variation of the lipid composition of the membrane
(13–16). Indeed, this mechanism is widely used in biolog-
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ical systems to target and localize peripheral proteins to
distinct areas of the membrane or toward specific cell types,
and to regulate their activity in a lipid-dependent manner.

Despite the central role of the membrane in protein func-
tion and activity, due to the semifluid and highly dynamical
nature of lipid bilayers, obtaining sufficiently detailed struc-
tural information on peripheral proteins in their membrane-
bound form has proven extremely challenging. Limited
information on the proximity of certain regions in
membrane-binding proteins can be inferred from experi-
mental methods such as small-angle x-ray scattering (17),
electron paramagnetic resonance (18,19), Förster resonance
energy transfer (18,20,21), and mutagenesis studies
(22,23). Nevertheless, more details are needed to fully char-
acterize the nature of protein-lipid interactions that are crit-
ical for binding and function of peripheral proteins.
Another challenging aspect of studying peripheral proteins
is that they often employ relatively small membrane-
engaging parts (membrane anchors). Making predictions
about such domains is far more difficult than for integral
membrane proteins, whose orientation and depth of
membrane insertion can be fairly reliably predicted by
well-established protocols (24–26).

Molecular dynamics (MD) offers a promising method of
gaining structural and dynamical information on such
protein-lipid complexes and of characterizing the interactions
therein that govern the membrane-controlled effects on
protein function. The method combines high spatial
doi: 10.1016/j.bpj.2012.03.015
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(sub-Ångstrom) and temporal (femtosecond) resolutions with
a dynamical description, thereby offering an ideal approach
toward studying membrane-associated phenomena. Unfortu-
nately, membrane lipids are known to exhibit slow dynamics
on the timescales achievable by atomistic MD simulations of
membrane proteins, which are currently performed routinely
only for tens to hundreds of nanoseconds (27–29). The slow
lateral diffusion of membrane lipids at ambient temperatures
is typically on the order of 10�8 cm2 s�1, requiring simulations
at least an order of magnitude longer to describe.

To fill this timescale gap, coarse-grained (CG) MD has
been employed as an efficient method (30–37), in which
the number of particles in the simulated system is reduced
by representing groups of atoms (such as a moiety, a whole
side chain, or even several residues) by a CG bead. CG
models have successfully described various properties of
lipid structures and associated phenomena, e.g., sponta-
neous formation of lipid bilayers (30), formation of the
gramicidin A (gA) ion channel (38), formation of micelle
(31) and disclike (39) structures, helix dimerization of gly-
cophorin A (GpA) in a bilayer (32), and membrane sculpt-
ing (34) and liposome remodeling (35) induced by BAR
domains. The efficiency of the CG method, however, is
achieved by sacrificing the atomic resolution, which is indis-
pensable for accurate description of specific protein-lipid
interactions. In addition to CG methods, the generalized
Born theory (40), based on Poisson-Boltzmann continuum
electrostatics, has been utilized in the construction of
implicit membranes (41) to probe the binding of peripheral
proteins to the membrane. The method has been success-
fully used to describe the partitioning (42,43) and even olig-
omerization of peptides within the membrane (44). Similar
to CG models, implicit representations do not take into
account specific protein-lipid interactions that are key to
binding and activation of peripheral proteins. Moreover,
these models ignore the crucial headgroup region of the
bilayer, treating the interface as an abrupt switch from
a polar region to a nonpolar region.

As an alternative approach, we present what to our knowl-
edge is a novel membrane representation for atomistic MD
simulations, termed the highly mobile membrane-mimetic
(HMMM) model, which is composed of a combination of
a biphasic solvent system (45) and short-tailed lipids
(st-lipids) at the aqueous-organic interface (Fig. 1). We
demonstrate that the designed st-lipids spontaneously form
bilayerlike structures and that the lipid diffusion has been
accelerated by 1–2 orders of magnitude in the resulting
bilayer. The results indicate that the HMMM model is ideal
for studying membrane-associated phenomena via MD
without compromising the atomic details necessary for accu-
rate description of the interactions between the headgroups
and the protein. Furthermore, we use the membrane-
anchoring domain of a coagulation factor to demonstrate
the efficiency of theHMMMmodel in capturing spontaneous
membrane association and insertion of peripheral proteins
without imposing any bias or external force. Coagulation
proteins constitute a prominent class of peripheralmembrane
proteins whose function is highly dependent on, and indeed
regulated by, their ability to bind to specific regions of biolog-
ical membranes (46). Modulation of the lipid composition of
the membrane, and thus the membrane affinity of the coagu-
lation proteins, is one of the main physiological regulatory
mechanisms in the clotting cascade (7,13). The lipid depen-
dence of these processes makes coagulation factors an ideal
case for testing the robustness of the HMMM model in
capturing key lipid-protein interactions at an atomic level.
FIGURE 1 Contrasting the HMMM and

conventional representations of a membrane. In

an HMMM model, a large fraction of the acyl tails

(left, yellow sticks) of the membrane-forming

lipids is replaced by a liquid organic phase (right,

yellow area). In this study, a full DOPS lipid mole-

cule (inset) is represented by a short-tailed DVPS

molecule (the circled fraction of the molecule),

and the space vacated by the removal of the C6–

C18 portion of the acyl tails is filled with an organic

solvent (yellow). Oxygen atoms are red, nitrogen

blue, phosphorus gold, and carbon ice blue, except

the C6–C18, which are in yellow. Bulk water mole-

cules are shown in light blue.
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MATERIALS AND METHODS

Here, we provide a brief description of the simulation systems and condi-

tions used for this study. A detailed description of the methods is provided

in the Supporting Material. Table 1 summarizes all the simulation systems

described in this study.
HMMM simulations

In the HMMM membrane used in this study, 1,1-dichloroethane (DCLE) is

used to model the hydrophobic core, and divalerylphosphatidylserine

(DVPS) molecules to represent the phosphatidylserine (PS) lipids. To inves-

tigate the efficiency and robustness of the HMMMmodel, its ability to form

and maintain bilayers was tested in a simulation in which the st-lipids were

initially distributed on a grid spanning the whole volume of the biphasic

solvent box, with approximately half of the molecules in the organic phase

and the other half in water (Fig. 2, upper left). Another set of five simula-

tions were performed to calculate the lateral diffusion constant of the lipids

in the HMMM model and its dependence on different configurations.
Full-membrane simulations

As a reference, a full membrane composed of 288 1,2-dioleoyl-sn-glycero-

3-phospho-L-serine (DOPS) molecules was also simulated with either Naþ

or Ca2þ as the counterion (we refer to these conventional membrane models

as full membranes to contrast them with the HMMM model). The system

was simulated for 20 ns as an NPnAT (where Pn is the constant

membrane-normal pressure and A is the membrane area) ensemble and

using the conditions described elsewhere (47).
Insertion of the GLA domain into the HMMM
model

Ten independent simulations were performed to test the ability and effi-

ciency of the HMMMmodel in capturingmembrane binding of a membrane

anchor in unbiased simulations. The g-carboxyglutamic-acid-rich (GLA)

domain of hFVII with seven bound Ca2þ ions (48), preequilibrated in solu-
TABLE 1 System configurations

System Lipid n Counterion AL (Å2)

D

(10�8cm2 s�1)

HMMM Simulations

HMMM-0 DVPS 5 Naþ 133.0 —

HMMM-1 DVPS 5 Naþ 294.0 314.0

HMMM-2 DVPS 5 Naþ 144.0 171.0

HMMM-3 DVPS 5 Ca2þ 144.0 134.0

HMMM-4 DVPS 5 Naþ 100.0 97.7

HMMM-5 DVPS 5 Naþ 68.6 26.4

GLA Domain Binding

HMMM-GLA (�10) DVPS 5 Naþ 127.0 —

Full Membrane Simulations

Full-1 DOPS 18 Naþ 65.3 4.93

Full-2 DOPS 18 Ca2þ 65.3 2.10

Systems simulated in this study for spontaneous membrane formation

(HMMM-0), diffusion constant calculation (HMMM-1 to HMMM-5,

Full-1, and Full-2), and GLA-domain binding (HMMM-GLA) are listed

along with the membrane-forming lipid, the number of acyl tail carbons

(n), the counterion, the area/lipid (AL), and the measured lateral diffusion

constant of the lipids (D). —, not measured. Simulation of system

HMMM-GLA was repeated 10 times. An expanded version of this table

including more details is provided as Supporting Material.
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tion (49) was positioned in the bulk water at least 8 Å above the membrane

(see Fig. 5). The system was then fully equilibrated for 50 ns.
Simulation protocols

All the simulations were performed using NAMD2 (50) with the

CHARMM36 force field parameter set (51), the CMAP corrections (52)

for proteins, and the TIP3P model for water (53) in the NPnAT ensemble.

Langevin dynamics with a damping coefficient, g, of 0.5 ps�1 and Langevin

piston Nosé-Hoover methods (54,55) were employed to maintain the

temperature at 310 K and the pressure at 1 atm, respectively. To evaluate

long-range electrostatic forces without truncation, the particle mesh Ewald

(PME) method (56), with a grid density of slightly finer than 1 Å�3, was

used. The cut-off for van der Waals interaction was set at 12 Å. Integration

time steps were set at 2, 2, and 4 fs for bonded, nonbonded, and PME calcu-

lations, respectively. For the simulations of full DOPS membranes, integra-

tion time steps of 1, 1, and 2 fs (for bonded, nonbonded, and PME) and

CHARMM27 force field parameters were used; other conditions were the

same as described above.
RESULTS AND DISCUSSION

Spontaneous formation of stable bilayer
by the HMMM model

To examine whether the employed st-lipids partition prop-
erly into the interfacial region of the biphasic solvent used
in the HMMM model, and to test their robustness toward
forming and sustaining a bilayer structure within affordable
simulation time, a 40-ns-long MD simulation was per-
formed in which the st-lipids (54 DVPS molecules) were
scattered initially on a grid spanning the two solvent phases
with approximately half of the lipids in the organic phase
and the other half in the water phase (Fig. 2). The DVPS
molecules rapidly partitioned to the organic-aqueous inter-
face, with their headgroups optimally positioned in water
and their acyl tails immersed in the organic phase. The st-
lipids initially positioned in the organic phase exhibited
faster partitioning; within<6 ns all of the lipids in this phase
emerge from the organic layer, with 72% of them (13 lipids)
doing so within only 1 ns and 83% (15 st-lipids) within 2 ns
(Fig. 2). DVPS lipids in the aqueous phase remained in
water longer, on average, before partitioning to the inter-
face. Nevertheless, 83% of water-immersed DVPS lipids
reached the interface within 10 ns, with the remaining three
molecules completing their partitioning into the interface
within 14, 16, and 20 ns. This behavior is fully expected
from a surfactantlike molecule such as DVPS, whose
charged headgroup establishes strong favorable interaction
with water. Overall, the entire process of the formation of
the bilayer is very fast and completed within 20 ns. Once
partitioned into the interface, DVPS lipids remain there
for the remainder of the 40-ns simulation (Fig. 2; data shown
only for the first 22 ns). The results clearly indicate the effi-
ciency of the model toward capturing the formation of
a stable bilayerlike structure within short and affordable
simulation times without compromising the atomic resolu-
tion of the system.



FIGURE 2 Spontaneous formation of the

HMMM membrane. The formation of a bilayer-

like structure is depicted using snapshots taken

from the membrane-formation simulation at t ¼
0, 0.25, 2, 7, and 17 ns (upper, left to right).

Short-tailed DVPS molecules were initially scat-

tered over the simulation box on a grid to have

an even distribution among different phases. The

positions along the membrane normal, z, of indi-

vidual phosphorus atoms of DVPS molecules as

a function of the simulation time is shown with

red lines (lower left). Also shown is a snapshot of

the system (to scale) at t ¼ 22 ns that depicts the

fully formed bilayer (lower right). The z coordi-

nate for individual lipids has been calculated in

each frame in reference to the actual center of

mass (COM) of the organic phase, i.e., in each

frame, z ¼ 0 is set to the COM of the DCLE layer.

Note that the time axis is in the log scale for t ¼
0–2 ns and linear for the rest, to highlight fast

movement of the lipids during the early phase of

the simulation.
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A key attribute of a membrane-mimetic model is its
ability to reproduce the structure and atomic distribution
of various chemical groups within the membrane, especially
in the headgroup region, where specific interactions with
coagulation proteins are formed. To examine this aspect of
the HMMM model, atomic density profiles were calculated
for the HMMM bilayer structure and compared with those
of a full DOPS membrane (Fig. 3). Regarding interaction
with a coagulation protein, the most important characteris-
tics of these profiles are the positions and shapes of the
density peaks for the headgroup moieties, which exhibit
remarkable similarities in the two profiles (Fig. 3). The
extent of hydration and the degree of counterion penetration
are also similar for the two different membrane representa-
tions. The results clearly indicate that the HMMM model
successfully captures the essential properties of a full
membrane, despite the marked difference in acyl tail length
(18 carbons for DOPS vs. 5 for DVPS) and lipid density.
Minor differences include the relative distribution of the car-
boxy carbons, which indicates a more upright arrangement
of the lipids in the DOPS membrane compared to the
membrane composed of DVPS, an effect that is partially
due to the lower lipid density of the latter model.
Enhanced lipid mobility in the HMMM model

The main objective in constructing the HMMM model was
to achieve enhanced mobility of the lipid molecules within
the membrane without compromising atomic resolution
of the headgroups. Fig. 4 A compares the lipid mobility of
the HMMM and full-membrane models. The enhanced
mobility of the lipids in the HMMM model is quite evident,
even though the trajectory used for plotting full lipids is
10 times longer than the one used for the HMMM model
(10 ns vs. 1 ns). Although DVPS lipids rapidly exchange
positions within only 1 ns (average RMSDxy of over
10 Å), DOPS lipids essentially retain their initial positions
(average RMSDxy of only ~2 Å) within the 10-ns segment
used to generate the plot (Fig. 4). The calculated lateral
diffusion constant, D (Eq. S1 in the Supporting Material),
for the HMMM and full-membrane models are 2.5 �
10�6 cm2 s�1 and 4.0 � 10�8 cm2 s�1, respectively, indi-
cating the enhanced lateral lipid diffusion achieved by the
HMMM model.

A more systematic comparison of the lateral diffusion
constants for the HMMM models constructed and simu-
lated using different configurations (different counterions
and area/lipid values, AL) is provided in Fig. 4 B. The
average slopes of the mean-square displacement of the
phosphorus atoms as a function of the time lag, D(t),
defined in Eq. S1, are plotted for full DOPS membranes
and different HMMM membranes. The lateral diffusion
constant, D, was quantified as the asymptote of D(t) by
averaging D(t) over larger t (10–20 ns), with the calcu-
lated values also summarized in the rightmost column of
Table 1.
Biophysical Journal 102(9) 2130–2139



FIGURE 3 Structural comparison of full and HMMM membranes. The

membrane profiles of a full DOPS membrane (upper) and an HMMM

DVPS membrane (lower) aligned by the peak of the PO�
4 groups. The

atomic densities are plotted along the membrane normal, z, using a bin

size of 1 Å for most of the heavy atoms: oxygen of bulk water (blue

line, �0.1), Ca2þ counterion (red), carboxy carbon (thin red), amine

nitrogen (thin black), phosphate phosphorus (black), carbonyl carbon

(thin black), C2 (black), C3 (green), C4 (red), C5 (blue), and C1 of DCLE

(maroon,�0.1). Note that the distance between the COMs of the membrane

and the PO�
4 peak is different for the two membrane models (20.0 Å for

DOPS and 33.0 Å for DVPS) due to different membrane thicknesses. The

difference in the absolute heights of the density peaks are related to the

different AL of the two membranes (AL of 65.3 Å2 for DOPS vs. 133 Å2

for DVPS). The lefthand-side y axes (atomic density) are scaled so that

the PO�
4 peaks are shown on the same scale.
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When simulated at an experimental area/lipid ratio, AL,
with Naþ as the counterion, D of PS lipids is enhanced by
more than a factor of 5 for the HMMM model (2.64 �
10�7 cm2 s�1, compared to 4.93 � 10�8 cm2 s�1 for a full
membrane composed of DOPS; Table 1), an effect mainly
caused by shortening of the acyl tails. Around an order of
magnitude further enhancement in lateral mobility is attained
by reducing the lipid density, e.g., 1.71 � 10�6 cm2 s�1 and
3.14 � 10�6 cm2 s�1 for DVPS with AL ¼ 144 Å2 and
294 Å2, respectively.

In comparison with Naþ ions, divalent Ca2þ counterions
interact with PS headgroups more strongly and form far
longer-lived lipid-ion clusters, rigidifying the membrane
lipids (57) and thus resulting in a smaller D for both the
Biophysical Journal 102(9) 2130–2139
fullDOPSmembrane andHMMMmodels studied.Thecalcu-
lated D for the DOPS membrane is 4.93 � 10�8 cm2 s�1

when simulated with Naþ, and 2.10 � 10�8 cm2 s�1 with
Ca2þ. This counterion effect is also clearly present in the
HMMM simulations, although to a lesser degree, e.g.,
1.71 � 10�6 cm2 s�1 with Naþ vs. 1.34 � 10�6 cm2 s�1

with Ca2þ.
Spontaneous membrane insertion of coagulation
factor VII

The main motivation for developing the HMMM model is
to have an efficient model that allows for accelerated estab-
lishment of lipid-protein interactions and a membrane suffi-
ciently mobile to allow the insertion of proteins to be
captured without the need of additional forces or biased
potential within affordable simulation times. To test the
accuracy and efficiency of the HMMMmodel in this regard,
the membrane-anchoring domain of a coagulation protein
was used as an example. Binding to specific regions of
the cellular membrane constitutes a pivotal step in the acti-
vation of almost all coagulation factors. Through largely
unknown mechanisms, membrane binding and assembly
of coagulation proteins result in an increase of several
orders of magnitude in their catalytic activity, a process
vital to the entire clotting cascade (58). The importance
of membrane binding in the function of these proteins can
be best highlighted by the presence of specialized
membrane anchors in almost all coagulation factors, de-
signed to bind to specific areas of the membrane that are
rich in anionic lipids, particularly PS (58). Specifically,
for the simulations presented here, we have used the GLA
domain of hFVII. The GLA domain is a common
membrane-anchoring domain in coagulation proteins and
is known to bind to PS-rich regions of the cellular
membrane. In one of our earlier reports (49), we con-
structed a membrane-bound model of the same anchoring
domain by using steered MD (SMD) (59,60) simulations
in which external forces were employed for insertion of
the GLA domain of hFVII into a full DOPS membrane
and the subsequent extended free equilibration. Although
in that study the membrane-bound model was developed
through biased simulations and computational cost
permitted only one simulation (49), its comparison with
the results obtained here will be helpful in further assessing
the quality of the resulting structures from the HMMM
simulations.

Given the efficiency of the HMMM model, the simula-
tions of membrane insertion of the GLA domain were
repeated 10 times, resulting in spontaneous insertion of
the domain into the membrane in all cases. Here, we
provide details of a typical scenario qualitatively describing
the process for one of the simulations (Fig. 5; several addi-
tional examples are also provided in the Supporting Mate-
rial). The GLA domain, initially placed in bulk water



FIGURE 4 Enhanced lipid lateral diffusion in

the HMMM membrane. (A) Comparison of the

trajectory of phosphorus atoms within the

membrane in a 10-ns-long segment of a simulation

of a full DOPS membrane (left) with a 1-ns-long

segment of a simulation of an HMMM DVPS

membrane (right). In the DVPS membrane

segment, some of the trajectory lines are depicted

in red to make the distinction between different

lipids more clear. Despite an order-of-magnitude-

shorter simulation, the HMMM model exhibits

clearly much larger lateral mobility for the lipids.

(B) Lateral diffusion constants of DOPS and

DVPS in different environments. The slope of the

mean-square displacement of lipids (within the xy

plane) as a function of time lag is plotted for

membranes composed of pure DOPS (thin lines)

or DVPS (thick lines) neutralized with either Naþ

(black) or Ca2þ (red). The phosphate phosphorus

atoms were used for the calculations. The area/

lipid, AL, of individual systems is also shown.
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with the tip of the N-terminal u-loop ~8 Å away from the
surface of the HMMM membrane (i.e., the headgroups of
DVPS lipids; cf. Fig. 3), approaches the membrane within
the first 1 ns, establishing direct interaction with the PS
headgroups by its basic side chains (Arg9 and Lys18),
leaning on the N-terminal helix side (Fig. 5, upper right).
By t ¼ 2.5 ns, the u-loop has completely landed on, and
is fully engaged with, the lipid surface (Fig. 5). The GLA
domain continues its rapid insertion into the DVPS
membrane, with the bound Ca2þ ions reaching the carboxy
layer of PS lipids around 3 ns, at which point the GLA
domain recovers a more upright configuration on the
surface of the membrane. The structurally bound Ca2þ

ions observed in the established membrane-bound model
of the GLA domain by t ¼ 6 ns (Fig. 5, middle right) shows
a level of penetration into the membrane (converged to the
level of the lipid phosphates) essentially identical to that ob-
tained by >60 ns of SMD in a full DOPS membrane (Fig. 5
of Ohkubo and Tajkhorshid (49)).

The GLA domain completes its insertion into the
membrane rather quickly during the first part of the simu-
lation and does not further penetrate the membrane during
the remainder of the simulation. Nevertheless, specific
contacts between the PS headgroups and the GLA domain
continue to form over a longer timescale (Fig. 5). The
contact pattern between the GLA-bound Ca2þ ions and
the PS headgroups (Fig. 6, upper) indicates that, similar
to the results obtained from full-DOPS-membrane simula-
tions (49), the HMMM model also captures two distinct
roles for the GLA-bound Ca2þ ions. The Ca2þ ions located
toward the periphery of the GLA domain participate
primarily in direct interaction with the headgroups,
whereas the ions in the middle remain buried inside the
protein, thereby stabilizing the fold of the membrane
anchor. The HMMM model, therefore, captures the essen-
tial features of membrane binding of the GLA domain,
including the insertion depth and the orientation of the
protein on the membrane as well as the specific patterns
of lipid-Ca2þ interactions observed in full membrane
systems (49). However, we also observe additional patterns
of interaction between basic side chains and the head-
groups in the HMMM model. For example, Lys32, which
has been reported to affect membrane binding (61), forms
contacts with both the phosphate and the carboxy groups in
the HMMM model, whereas it did not do so in the full
DOPS membrane simulation (49). We note that the above
Biophysical Journal 102(9) 2130–2139



FIGURE 5 Spontaneous binding of the GLA

domain to an HMMM membrane. (Left middle)

Average heights (z) of the GLA-bound Ca2þ ions

(red line; <Ca2þ>), the Ca atoms of residues

4–8 (membrane anchor) in the u-loop (blue;

labeled <FLeeL>), the carboxy carbon atoms of

DVPS lipids (black, <COO�>), the phosphate

phosphorus atoms of DVPS lipids (black,

<PO�
4 >), and the C5 atoms of DVPS acyl tails

(black, <C5>) as a function of simulation time.

(Lower left) Time series for specific interactions

between the GLA domain and the DVPS lipids in

terms of the number of the contribution of various

moieties of the lipid headgroups: first row, number

of phosphate phosphorus atoms within 5.0 Å of any

basic side chains of the GLA domain (black bars);

second row, number of carboxy carbon atoms

within 5.0 Å of any basic side chains of the GLA

domain (red); third row, number of phosphate

phosphorus atoms within 5.0 Å of any GLA-bound

Ca2þ ions (green); fourth row, number of carboxy

carbon atoms within 5.0 Å of any GLA-bound

Ca2þ ions (blue). Molecular images depict, in

side view, the whole simulation system at 0 ns

(upper left) and close-up snapshots of the GLA

domain interacting with DVPS lipids at 1.0 ns

(upper right), 6.0 ns (middle right), and 48.0 ns

(lower right). The backbone of the GLA domain

is drawn in a thick violet tube representation with

the hydrophobic side chains of Phe4, Leu5, and

Leu8 in the u-loop in an orange surface representa-

tion. The GLA-bound Ca2þ ions are drawn as

purple spheres, basic side chains as thin green

tubes, and the DCLE layer in gray.
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described patterns of interactions are observed in the re-
sulting membrane-bound structures in repeated simula-
tions, although the binding pathway and trajectory for
the GLA domain are different among different simulations
(Fig. S1). Consistent observation of specific interactions in
different simulations using the HMMM model supports the
notion that the HMMM model is effective in capturing
lipid-protein interactions that were not identified using
Biophysical Journal 102(9) 2130–2139
the full DOPS membrane simulation due to insufficient
sampling.
CONCLUSIONS

A membrane representation for use in atomistic MD simu-
lations of membrane-associated phenomena has been pre-
sented. This representation, termed the HMMM model,
FIGURE 6 Interactions between the Ca2þ ions

and basic residues of the GLA domain and lipid

headgroups. The average number of phosphate or

carboxy groups within 5.0 Å of each moiety

(with the standard deviation below in parentheses)

are calculated from the 30–50 ns portion of the MD

simulation of hFVII-GLA and the HMMM

membrane shown in Fig. 5. Color coding is the

same as in Fig. 5.
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which to our knowledge is new, is based on the conceptually
novel idea of ‘‘selective fragmentation’’, i.e., replacing long
acyl chains of lipids with an organic phase, in which the
hydrophobic interactions are well represented. The atom-
istic details of the lipid headgroups are fully preserved by
having st-lipids occupy the aqueous/organic interfacial
region(s). We have demonstrated the unparalleled efficiency
of this atomistic model in describing the self-assembly
process of lipids into stable bilayerlike structures within
several nanoseconds.

The lateral diffusion constant of the lipids in the studied
HMMM membranes is in the range of 10�5–10�6 cm2s�1,
which exhibits an increase of one to two orders of magni-
tude in comparison to the conventional full-membrane
representation. This improvement will allow for more effi-
cient sampling of headgroup configurations, for example,
during the binding and insertion of peripheral proteins.
Using the membrane-binding domain of a coagulation
protein (the GLA domain of hFVII) as an example, we
have also demonstrated the robustness of the HMMMmodel
in describing spontaneous membrane insertion of peripheral
proteins and in capturing membrane-bound forms of these
proteins at the all-atom level within routinely accessible
simulation times. Given the efficiency of the model, we
have been able to simulate the process of membrane inser-
tion 10 times and achieved a converged picture and an
unprecedented level of statistics on the lipid-protein interac-
tions involved in this process.

The HMMM model can be readily used in MD simula-
tions employing the standard and generalized (62,63)
ensembles. The fully atomistic representation of the model
makes it easy to use for any atomistic force field of choice,
avoiding the need to develop a model-specific force field
(64) or repeated transformation to different resolutions
(65,66). Most important, the central concept of ‘‘selective
fragmentation’’ (representing the membrane by smaller
fragments) in the HMMM model may be further extended
and used in other lipid structures, or even more generally
in other molecular systems.

In addition to the large number of peripheral membrane
proteins, the HMMM model can potentially be used for
studying any membrane-associated phenomena in which
atomistic details are desired but slow diffusion of the fully
represented lipids is prohibitive of observing such
phenomena. The immediate applications of the HMMM
model include such membrane phenomena as diffusion
and domain formation of lipids (67) and proteins (68,69),
pore formation by (antimicrobial) peptides (65,66,70,71),
hydrophobic matching of transmembrane helices (72), and
membrane-associated assembly of coagulation factors
(73–75). We note, however, that the HMMM model is by
design not expected to reproduce all characteristics of
a full membrane; in particular, mechanical properties such
as volume/area compressibility and bending moduli can be
only partially captured by the model (preliminary results
not shown). The main purpose of the model is to provide
a more flexible and mobile environment that allows for rapid
rearrangement and displacement of the lipid headgroups,
thereby facilitating any phenomenon that might be inacces-
sible with conventional membrane models due to the inher-
ently slow dynamics of full lipids therein.

Finally, we note that the resulting membrane-bound
models developed by the HMMMmodel can be readily con-
verted into full-membrane representations using various
molecular modeling techniques. For example, one might
mutate the st-lipids into full lipids in one step or alterna-
tively grow the lipid tails gradually (one carbon or two at
a time) to their full length while subjecting the system to
MD relaxations at each step. Our preliminary applications
of such approaches have yielded promising results.
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