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Geometry-Induced Bursting Dynamics in Gene Expression
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†UMR 7600, Université Pierre et Marie Curie/CNRS, Paris, France; and ‡Department of Physics, Technion, Haifa, Israel
ABSTRACT In prokaryotes and eukaryotes, genes are transcribed stochastically according to various temporal patterns that
range from simple first-order kinetics to marked bursts, resulting in temporal and cell-to-cell variations of mRNA and protein
levels. Here, we consider the effect of the transport of regulatory molecules on the noise in gene expression by taking
into account explicitly the dynamics of a finite number of transcription factors confined in the cell. We calculate analytically
time-dependent correlation functions of mRNA levels for a wide range of transport mechanisms and find that in the limit of
small-transcription-factor copy number, the results differ significantly from standard approaches, which ignore confinement. It
is shown how such dynamical quantities, which can now be obtained experimentally, can be used to identify the underlying
mechanisms of transcription. Of particular importance, it is demonstrated that the geometry of transcription-factor trajectories
in the cellular environment plays a key role in transcription kinetics, and can intrinsically generate the observed various transcrip-
tion patterns ranging from simple first-order kinetics to bursts.
INTRODUCTION
Gene transcription is initiated by a series of intrinsically
stochastic events of binding and unbinding of specific
factors to their target sequence. These events, as well as
others, such as cell division, result in fluctuations in time
of messenger RNA (mRNA) and protein levels that play
a key role in phenotypic variability, adaptation, and develop-
mental transitions (1,2). Observations made possible over
the last decade by new imaging techniques (3,4) show that
mRNAs are produced in transcriptional patterns that depend
strongly on both the gene and the cell type. For example, the
transcription of constitutive genes in yeast was shown to
occur in single uncorrelated events, i.e., to be well captured
by simple first-order kinetics (5,6). In contrast to this
simple scenario, in many cases it is found that the mRNA
production occurs in bursts, which suggest more compli-
cated kinetic schemes. In particular, transcriptional bursts
seem extremely common in genes of higher eukaryotic cells
(7–10). In prokaryotes, most of the data suggest that tran-
scription is described well by first-order kinetics (3,11),
although transcriptional bursts have also been observed in
these cells (12).

Along with such increasing experimental evidence of
variability in transcriptional patterns, it has been recognized
theoretically that bursts give rise to a source of stochasticity
in mRNA and protein levels that is much larger than
that predicted by first-order stochastic chemical kinetics
(13–16). These theoretical studies generally focus on the
variance and distribution of mRNA and protein levels in
the stationary state and reveal that such time-independent
observables only poorly constrain transcriptional models
(5,16). The microscopic origin of bursting is consequently
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largely undetermined, even though possible mechanisms,
such as chromatin remodeling, have been proposed (2).

In this article, we discuss a prototypical model in which
the limiting step in mRNA synthesis is given by the binding
to the gene locus of a specific transcription factor (TF).
Activation is then controlled by the distribution of the
first-passage time of the TF to the target locus. It has been
suggested that in many cases this transport step is a limiting
factor of transcription (6), but so far, with the exception of
the numerical results of van Zon et al. (17), theoretical
approaches to quantify its impact on noise have been mostly
restricted to classical Brownian motion (17–19) and have
considered the case of a homogeneous concentration of
transcription factors in infinite space.

The distribution of the first-passage time of a particle to a
target in a confined volume was obtained recently for a wide
range of transport processes (20) and was shown to strongly
depend on the confinement and to involve a nontrivial range
of timescales dependent on the geometry of the trajectories.
Making use of these new tools, we quantify analytically the
effect of the transport of regulatory molecules on noise in
gene expression and find that in the regime of small copy
numbers of TFs, the results differ significantly from those
obtained by assuming a homogeneous concentration in
infinite space (see Fig. 2 c). More precisely, our findings
are as follows. 1), We quantify analytically the contribution
of the transport step to the noise and show that, in contrast to
the time-independent observables that have been the focus
of most studies so far, time-dependent correlation functions,
which can now be obtained experimentally (6,21), make
it possible to identify microscopic mechanisms of tran-
scription. 2), We distinguish between uncorrelated mRNA
production events, which stem from an underlying Poisson
process, and correlated bursts, which originate from non-
trivial kinetics; we show that these two mechanisms are
characterized by markedly different behaviors of correlation
doi: 10.1016/j.bpj.2012.03.060
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functions. 3), Of most importance, we show that within the
framework of the model, the geometry of the TF trajectories
in the cellular environment can intrinsically generate the
various observed transcription patterns, ranging from simple
first-order kinetics to marked correlated bursts.
MODEL

We consider the basic reaction scheme in which a gene, G,
when activated by a TF, produces mRNA molecules, M, at
rate k (see Fig. 1). Note that strictly speaking, we consider
pre-mRNA molecules and do not aim at describing the
maturation process. The TFs are assumed to diffuse in
a nucleus or cell of volume V, and we consider that their
copy number, n, is regulated over long timescales and
remains constant. The gene G is activated only when a TF
is localized at the gene locus. The time, T, between succes-
sive production events ofM is then a random variable (here-
after, time variables are discrete and expressed in the unit of
a small elementary time step, t0) whose distribution, fnðTÞ,
is governed by successive arrivals of TFs to the locus. The
degradation process of a given mRNA molecule is generi-
cally described by the probability distribution, h(t), of its
lifetime; in practice, we will assume a single-step reaction
and write h ðtÞ ¼ ld e

�ld t. The case of aging, where h(t)
is not exponential (16), is discussed in the Supporting Mate-
rial. Since the typical lifetime of mRNAs is smaller than
a cell cycle, cell division can be ignored. We denote by t
the average residence time/visit at the locus, which is
assumed to be much smaller than the mean waiting time
between activation events, hTin (12); the number m of
transcripts produced per visit is then Poisson-distributed
with mean hmi ¼ kt. The case of larger binding times at
the gene locus, which seems relevant to higher eukaryotes,
can be treated in a similar manner and leads to increased
are weak: the typical number of fast returns of a TF to a given site is small and t

The production of mRNA is then shown to follow classical first-order kinetics.

case of a fractal organization of DNA: the typical number of fast returns of a TF

that the geometry of compact trajectories induces large correlated bursts of mR
noise levels. We focus on the random variable, nMðtÞ,
which gives the number of mRNA molecules in the cell at
time t.

To analyze quantitatively the fluctuations of nMðtÞ in the
stationary state, we go beyond the standard tools, which yield
the variance, s2M, of nMðtÞ (14,16), and focus on dynamical
properties, which can be quantified by the autocorrelation
function RMðtÞ ¼ hnMðt0Þ nMðt0 þ tÞi � hnMðt0Þi2, where
hnMðt0Þi denotes the mean number of mRNAs in the
stationary state. Denoting the Fourier transform of a given
function, g, by bgðuÞ ¼ RN�N eiutgðtÞdt, the autocorrelation
function RMðtÞ can be derived analytically using queuing-
statistics tools (22,23) and yields in Fourier space (see
Supporting Material for details)

bRMðuÞ ¼ hmi
hTin

�
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This equation elucidates the dynamics of fluctuations of the
mRNA copy number, and in particular readily yields the
usual static measure of noise, s2M ¼ 1

2p

Z N

�N

bRMðuÞdu. It
has a clear interpretation: the first term accounts for random
uncorrelated mRNA production events, whereas the second
term accounts for memory effects generated by the waiting-
time distribution, fnðTÞ. In particular, it can be checked that
the second term vanishes only if fnðTÞ is a single exponen-
tial. In that simple case, the autocorrelation function RMðtÞ
is a single exponential and reads

RMðtÞ ¼ hmi
ldhTin

�
1þ hmi

2

�
e�ld t: (2)
FIGURE 1 (A) Effect of the transport step on the

noise in mRNA levels. A gene, G, is activated only

when a TF is localized at the gene locus and

produces mRNA molecules, M, at rate k. The

TFs, of copy number n, are assumed to diffuse in

a nucleus or cell of volume V. The space accessible

to TFs is depicted in yellow and the space made

inaccessible due to crowding effects in red. T

denotes the random waiting time between succes-

sive production events of M, whose distribution,

fnðTÞ, is governed by successive returns of TFs

to the locus. The mRNA molecules are degraded

at rate ld . We will consider here both cases of

eukaryotes (for which degradation generally

occurs outside the nucleus) and prokaryotes. (B)

Schematic TF trajectory when crowding effects

he exploration of the cellular or nuclear environment is called noncompact.

(C) Schematic TF trajectory when crowding effects are important, as in the

to a given site is very large and the exploration is called compact. We show

NA.
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This is reminiscent of the fact that the dynamics is in this
case Markovian, as is generally assumed in the literature,
with the notable exception of the article by Pedraza and
Paulsson (16). One can then distinguish two cases. In the
first case, each visit of a TF yields a small number of
mRNAs, so that hmi � 1, as observed in Zenklusen et al.
(5), leading to first-order kinetics with no bursts. The second
case hmi[1 corresponds to a standard mechanism for
producing bursts (2): each visit of a transcription factor
yields a large number of mRNA molecules. Note that the
bursts, whose amplitude is directly controlled by hmi, are
then uncorrelated, since the waiting time distribution,
fnðTÞ, is exponential. This manifests itself in RMðtÞ decaying
in time as a single exponential.
0 100 200 300 400 500
t

0,01

0 100 200 300 400 500
t

0,001

FIGURE 2 Fluctuations in mRNA level in the case of diffusion in a dilute

environment, leading to noncompact exploration. The nucleus volume is

V ¼ 103 mm3, and we take D ¼ 1 mm2=s, and hmi ¼ 5. (A) Typical evolu-

tion of the mRNA copy number, nMðtÞ (red line), obtained by numerical

simulations of the model for n ¼ 10, ld ¼ 0:02 min�1. Here, the nucleus

is modeled as a 3-dimensional cubic lattice and hTi ¼ 648 min. Green

bars mark the activation of the gene. (B) Waiting-time distribution, fnðTÞ,
between activation events for n ¼ 1 (violet circles) and n ¼ 10 (magenta

triangles), compared to the theoretical prediction, derived in the Supporting

Material (plain and dashed lines, respectively). (C) Normalized autocorre-

lation function RMðtÞ=n for diffusion on a 3-dimensional cubic lattice.

Numerical simulations (symbols) for different values of ld and n are

compared to the theoretical prediction (plain and dashed lines).

ld ¼ 0:1 min�1 (n ¼ 1 (green circles) and n ¼ 10 (light green crosses));

ld ¼ 0:02 min�1 (n ¼ 1 (dark blue triangles) and n ¼ 10 (light blue

inverted triangles)); ld ¼ 0:005 min�1 (n ¼ 1 (red triangles) and n ¼ 10

(orange triangles)). The dotted line is obtained by assuming a homogeneous

concentration c0 ¼ 1=V of TFs in infinite space (case ld ¼ 0:02 min�1).

(D) Normalized autocorrelation function RMðtÞ=n for diffusion with dilute

obstacles (here modeled by a 3-dimensional supercritical percolation

cluster with p ¼ 0:8). ld ¼ 0:02 min�1 (n ¼ 1 (dark blue triangles) and

n ¼ 10 (light blue inverted triangles)); ld ¼ 0:005 min�1 (n ¼ 1 (red trian-

gles) and n ¼ 10 (orange triangles)).
RESULTS AND DISCUSSION

It is important to note that the assumption that the waiting-
time distribution is exponential ignores the geometry of TF
trajectories. Very recently, it was shown that depending on
the geometry of the accessible space, the waiting-time
distribution, f1ðTÞ, of a single diffusing particle to a given
target site can significantly depart from a single exponential
(20). Furthermore, this quantity is very different from the in-
finite volume limit implicitly used in works by Tkacik and
colleagues (18,19) in the case of Brownian diffusion. As
we now show, this results in markedly different dynamics
for nMðtÞ.
The so-called survival probability, SnðTÞ, for n particles,

i.e., the probability that the gene, activated at t ¼ 0, remains
unactivated until t ¼ T, is readily obtained from the explicit
expression of f1ðTÞ derived in Bénichou et al. (20). One
finds that SnðTÞ ¼ S

n�1
S1, where S is the survival proba-

bility of a TF averaged over all possible starting positions,
which was derived in Bénichou et al. (24). The desired wait-
ing-time distribution, fnðTÞ, for n particles is then eventually
given by fn ¼ �dSn=dT. At this point, we stress that the deri-
vation of Eq. 1 for the autocorrelation function relies on
a renewal property (25). Renewal holds exactly in the case
of a single TF but is approximate in the case of n TFs, as
it does not account for events where several TFs are present
simultaneously in the vicinity of the locus. This approxima-
tion is, however, accurate in the regime of a small TF copy
number, as is checked in our numerical simulations (see
Figs. 2 and 3).

As discussed in Bénichou et al. (20), on general grounds,
the range of timescales involved in f1ðTÞ, and therefore in
fnðTÞ, crucially depends on the compact or noncompact
nature of the transport process. This property is controlled
by the geometry of the trajectories and therefore by the
geometry of the accessible space. In dilute 3-dimensional
environments, crowding effects are weak and the average
number of visits of a diffusing particle to a given site is
finite: exploration is then weakly redundant and said to be
Biophysical Journal 102(9) 2186–2191
noncompact (26) (see Fig. 1). When crowding effects are
important, as exemplified by diffusion in fractal environ-
ments, trajectories can become highly redundant due to
multiple dead ends. The average number of visits to a given
site can then be infinite, and exploration is called compact
(26) (see Fig. 1). For concreteness, we will consider first
the case where the accessible space has fractal properties
and discuss more general cases later on. The transport
process can then be parameterized by its walk dimension,
dw, defined by the scaling with time of the mean-squared
displacement, hr2ift2=dw (strictly, for diffusion on a lattice,
t should be taken as the number of steps), and the fractal
dimension, df, of the medium defined by the scaling of the
accessible volume with its linear dimension, Vfrdf . Note
that diffusion in a fractal medium is generally subdiffusive
(i.e., dwR2). The compact case then corresponds to
dwRdf , and the noncompact case to df >dw (26).
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FIGURE 3 Fluctuations in mRNA levels in the case of diffusion with

fractal crowding leading to compact exploration. (A) Typical evolution of

the mRNA copy number, nMðtÞ (red line), obtained by numerical simula-

tions of the model. The nucleus is modeled as a fractal environment

(here, a 3-dimensional critical percolation cluster embedded in a 123 cube)

embedded in a volume V ¼ 1:7 103 mm3, such that hTi ¼ 500 min. Other

parameter values are hmi ¼ 5, n ¼ 10, ld ¼ 0:02 min�1. Green bars

mark the activation of the gene. (B) Waiting time distribution, fnðTÞ,
between activation events for n ¼ 1 (violet circles) and n ¼ 10 (magenta

triangles), compared to the theoretical prediction derived in the Supporting

Material (plain and dashed lines, respectively) for the same critical

percolation cluster. (C) Normalized autocorrelation function RMðtÞ=n
for diffusion on the same 3-dimensional critical percolation cluster.

Numerical simulations (symbols) for different values of ld and n are

compared to the theoretical prediction (plain and dashed lines, respectively).

ld ¼ 0:1 min�1 (n¼ 1 (dark green circles) and n¼ 10 (light green crosses)),

ld ¼ 0:02 min�1 (n¼ 1 (dark blue triangles) and n¼ 10 (light blue inverted

triangles)), ld ¼ 0:005 min�1 (n ¼ 1 (red triangles) and n ¼ 10 (orange

triangles)). (D) Normalized autocorrelation function RMðtÞ=n for diffusion

on a Sierpinski gasket (example of deterministic fractal) such that

hTi ¼ 729 min. ld ¼ 0:1 min�1 (n ¼ 1 (dark green circles) and n ¼ 10

(green crosses)), ld ¼ 0:02 min�1 (n ¼ 1 (dark blue triangles) and n ¼ 10

(light blue inverted triangles)).
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In the case of proteins in cellular and nuclear media, the
existence of both compact and noncompact exploration
seems to depend on protein types and their interactions
with DNA. In particular, a fractal organization of the chro-
matin implying compact transport has been put forward by
Bancaud et al. (27) and Lieberman-Aiden et al. (28). We
give details of each scenario below and discuss the impact
of each on the dynamics of fluctuations of themRNAnumber.
Noncompact exploration

In the case of noncompact exploration, e.g., for regular
diffusion in a 3-dimensional environment with weak crowd-
ing effects, the distribution of return times to the locus for n
TFs can be written explicitly in the limit of large volume:

fnðTÞ ¼ ð1�PÞdðTÞ þP
n

hTie
�nT=hTi; (3)
where hTi � V is the mean first-passage time for a single TF
to the target averaged over all possible starting positions, the
Diract delta function dðTÞ accounts for trajectories returning
to the gene locus within timescales much shorter than hTi,
and 1�P is the probability of such fast returns (see Sup-
porting Material for explicit expressions of all quantities).
Using Eq. 1, the following expression of the autocorrelation
function is obtained:

RMðtÞx nhmi
hTi1ld

�
1þ hmi

2
þ hmið1�PÞ

P

�
e�ld t; (4)

where hTi1 denotes the mean waiting time for a single TF.

The analysis of the autocorrelation function, which differs
significantly from the results obtained by assuming a homo-
geneous concentration of TFs in infinite space (see Fig. 2 c)
therefore shows that the dynamics of mRNA is in this case
very similar to the case where fnðTÞ is a single exponential,
discussed above: it is governed only by the degradation rate,
ld, of mRNA and the production events of mRNAs, of
typical size hmi, are fully uncorrelated (see Fig. 2).

This result has important consequences. 1), First-order
kinetics with a Poisson distribution of the mRNA number
is recovered in the regime of small hmi, and the noise
in the mRNA level is then quantified by s2M=hnMi2 ¼
RMð0Þ=hnMi2xhTi1ld=ðnhmiÞx1=hnMi. 2), The quantity
hTi1 � V can be very large, which indicates that the trans-
port step is a significant source of noise, especially in the
regime of small TF copy number. For example, taking bio-
logically relevant values for eukaryotes (see Fig. 2) indeed
yields hTi1 of the order of hours and noise levels >1. 3),
The scaling of the noise as the inverse of the mean mRNA
number, here with a prefactor of order 1 (unless hmi is
large), is consistent with experimental findings across
various genes and even organisms (29–31). 4), Last, we
note that the autocorrelation function depends linearly on
the TF copy number, n, and that the dependence on hmi
appears only in the amplitude of RMðtÞ but not in its time
dependence.
Compact exploration

In the case of compact exploration, as exemplified by diffu-
sion in fractal environments, the distribution of return times
to the gene locus can be asymptotically written in the limit
of large volume:

fnðTÞ ¼ ð1�PÞdðTÞ þP
XN
i¼ 1

aie
�binT=hTi; (5)

where hTi � Vdw=df is again the mean first-passage time for

a single TF to the target averaged over all possible starting
positions (see Supporting Material for explicit expressions
of P and the constants ai; bi). In this case the autocorrela-
tion function can be written in Fourier space using Eq. 1.
Biophysical Journal 102(9) 2186–2191
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Due to the wide spectrum of timescales involved in fnðTÞ,
fluctuations are clearly non-Poissonian in this case and
display large correlated bursts even for hmi small (see
Fig. 3). The major difference from the noncompact case is
that in the compact case the probability P of long waiting
times is extremely small (see Supporting Material) so
that repeated fast returns to the gene locus are very likely
and eventually collectively contribute to large bursts of
mRNA. This amplification mechanism has a clear signature
in the autocorrelation function, which is in marked contrast
to the Poissonian case: it shows two different timescales,
one of order 1=ld, characterizing the burst duration, and
one controlled by hTi � Vdw=df , stemming from the waiting
times between successive bursts. More precisely, in the long
time regime the autocorrelation function decays as a series
of exponentials whose characteristic times are all of the
order of magnitude of Vdw=df (see Supporting Material).
This shows finally that in the case of compact exploration,
the very geometry of TF trajectories has a striking impact
on mRNA dynamics and is at the origin of a mechanism
generating large correlated bursts, which constitutes
a central result of this study.

Several comments are in order. 1), The correlated bursts
that we describe for compact transport are very different
by nature from bursts that result only from the production
of a large amount of mRNA at each visit of a TF. The latter
case, which corresponds to hmi[1, leads to uncorrelated
bursts that are characterized by an autocorrelation function
with a single-exponential decay, as shown by Eq. 2. 2),
The resulting noise in the mRNA level can be obtained
and reads s2M=hnMi2 � hTi1=ðn t0Þ � ðld t0Þ�1=hnMi,
where hTi1 � V can be very large. Taking biologically rele-
vant values for eukaryotes (see Fig. 3) yields hTi1 of the
order of hours and typical noise levels >10, which is
much larger than in the noncompact case. 3), The scaling
of the noise as the inverse of the mean mRNA number is
recovered and is similar to the noncompact case. However,
the prefactor ðld t0Þ�1 can be large in the compact case and
depends more strongly on the gene, as seems to be the case
for eukaryotes (10). 4), The dependence of the autocorrela-
tion function on n and hmi is similar to that in the noncom-
pact case: it affects only the amplitude of the autocorrelation
function but not its time dependence. In particular, it is
linear in n, as illustrated in Fig. 3 (see Supporting Material
for a derivation of this property).

The analysis above clearly illustrates the importance of
the geometry of TF trajectories in the dynamics of mRNA
levels. This result is in fact robust and remains unchanged
for a broad class of transport processes. More precisely,
the discussion above makes it clear that the mechanism of
burst amplification relies on the occurrence with high prob-
ability of short timescales in the waiting-time distribution,
fnðTÞ, so that the hypothesis of a compact-scale invariant
process made above can be relaxed and in fact only needs
to hold over a given length or timescale, which only needs
Biophysical Journal 102(9) 2186–2191
to be long enough to allow for multiple returns. In particular,
our analysis shows that burst amplification can occur in
environments that are fractal only over a finite range (as
in the examples of Fig. 3), as is observed for the nuclear
medium (27). This mechanism also applies to TFs whose
trajectories, because of nonspecific interactions with DNA,
are best described by a mechanism usually termed facili-
tated diffusion (32–34), that combines phases of compact
sliding on the DNA and phases of noncompact bulk excur-
sions (see, e.g., (35–39) for experimental evidence). The
waiting-time distribution, fnðTÞ, for facilitated diffusion
can be obtained analytically according to the methods of
others (34,40–42) and proves to be well approximated in
the limit of long DNA length (compared to the average
DNA length explored during a sliding phase) by the func-
tional form described in Eq. 5. P in this case denotes the
weight of the long timescales, which is extremely small,
since the compact property of sliding favors successive fast
rebinding events to the gene locus (43). The dynamics of
mRNA synthesis is then very similar to the compact case
above: correlated bursts of mRNA of amplitude much larger
than hmi emerge due to the repeated fast returns of the TFs to
the gene locus, and themRNAdynamics can be characterized
by the emergence of two timescales in the autocorrelation
function. We note also that the very nature of the nonspecific
TF/DNA interaction was shown to yield in some cases
a marked timescale separation leading to a waiting-time
distribution, fnðTÞ, similar to that in Eq. 5 (41,44).

Finally, our analysis underlines the importance of the
geometry of TF trajectories and reveals the role of correla-
tions induced by the statistics of returns. One could expect
that in the case of multiple target genes regulated by the
same TFs, correlations of expression levels could arise in
the compact case due to a similar mechanism. This would
be at work only if genes are close to each other, i.e., colocal-
ized, which seems consistent with the available experi-
mental data (45).
CONCLUSION

To conclude, autocorrelation functions of mRNA levels,
which can nowbe obtained experimentally (6,21), carry clear
signatures of the underlying mechanisms of transcription,
as opposed to the classical static measures of noise. The
geometry of TF trajectories, namely, their compact or non-
compact nature, can generically generate markedly different
transcription patterns ranging from first-order kinetics to
correlated bursts, as observed in vivo. The compact or non-
compact nature of transport strongly depends on the geom-
etry of the cellular or nuclear environment as probed by
TFs, and therefore on the nonspecific affinity for TFs with
DNA, which we suggest could be used as a regulating param-
eter. Overall, our results highlight the importance of deter-
mining the geometry of in vivo TF trajectories, which was
initiated recently (27).
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SUPPORTING MATERIAL

Derivation of the correlation function of the mRNA number is available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)00401-8.
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