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Abstract
The cellular and molecular processes that control vascular injury responses following PCI involve
a complex interplay among vascular cells and progenitor cells that control arterial remodeling,
neoinitimal proliferation and reendothelialization. Drug eluting stents (DES) improve the efficacy
of peructaneous coronary intervention (PCI) by modulating vascular inflammation and preventing
neointimal proliferation and restenosis. Although positive effects of DES reduce inflammation and
restenosis, negative effects delay reendothelialization and impair endothelial function. Delayed
reendothelialization and impaired endothelial function may be linked to stent thrombosis and
adverse clinical outcomes following DES use. Compared with BMS, DES may also differentially
modulate mobilization, homing and differentiation of vascular progenitor cells involved
reendothelialization and neointimal proliferation. The effects of DES on vascular inflammation
and repair directly impact clinical outcomes with these devices and dictate requirements for
extended duration dual antiplatelet therapy.
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Introduction
Drug-eluting stents (DES) substantially reduce angiographic and clinical restenosis by 70%
across broad patient and lesion subsets, and decrease repeat target lesion interventions. The
prototypical antiproliferative DES agents sirolimus (CYPHER stent, Johnson and Johnson),
paclitaxel (Taxus Stent, Boston Scientific), zotarolimus (Endeavor stent, Medtronic), and
everolimus (Xience stent, Abbott and Boston Scientific) have potent anti-mitotic actions that
strongly inhibit smooth muscle proliferation and matrix production,1–3 and thus reduce
neointimal formation and restenosis. Despite efficacy in reducing neointimal proliferation
and restenosis, DES failure and restenosis still occurs, and is more frequent in the settings of
diabetes mellitus and during treatment of restenotic lesions, bypass grafts, and
bifurcations.4–6 In addition to restenosis, concern has arisen about the potential for late
thromboses or very late thromboses after DES stent implantation, and this concern has led to
extended-duration dual anti-platelet therapy.7–9 Mechanisms of stent thrombosis may vary
depending on the timing of the event.10 Acute stent thrombosis (within 24h of implantation)
and early stent thrombosis (within 30 days) are likely related to mechanical issues with the
stent, inadequate platelet inhibition, or prothrombotic patient risk factors. In contrast, late
stent thrombosis (up to 1 year), and very late stent thrombosis (after 1 year), have been
attributed to delayed reendothelialization and inhibition of vascular repair. The potential for
delayed reendothelialization and inhibition of vascular repair is particularly important
following implantation of DES because the antiproliferative agents used to prevent smooth
muscle cell proliferation also delay reendothelialization in the stented segment.11, 12

Angioscopic13 and pathologic11, 12, 14, 15 evidence suggests that there is delayed arterial
healing with DES compared to BMS as DES-treated arteries have more histologic evidence
of incomplete reendothelialization, chronic inflammatory cell infiltration, fibrin deposition,
and platelet activation. It is important to recognize that inflammatory and thrombotic
pathways share commons signaling pathways and that inflammatory responses promote
activation of the clotting cascade and stimulate platelet activation (reviewed 16).
Experimental studies also suggest that delayed arterial healing and DES-associated
inflammation is greatest at sites of overlapping DES with placement of multiple stents.17

The finding of increased inflammation in areas of stent overlap suggest a possible molecular
mechanism to explain higher stent thrombosis rates that are associated with overlapping
stents.

In addition to antiproliferative drug-associated delayed healing with DES, stent-induced or
polymer-induced inflammation has also been identified as a possible contributor to stent
thrombosis, especially because late and very late stent thrombosis occurs long after
antiproliferative dugs have been eluted from the polymer.18–20 Inflammatory responses to
drug, stent, or polymer may result from non-specific innate immune responses which have a
predominance of monocyte/macrophage infiltrates, or may be related to antigen-specific
adaptive immune hypersensitivity responses typified by infiltration of eosinophils, B-cells,
and T-cells (reviewed 21). Several studies have also implicated DES-polymer-induced
inflammation in the pathobiology of restenosis and stent thrombosis.18, 19 Currently, the four
stent platforms approved for use by the United States Food and Drug Administration utilize
different non-erodable polymeric coatings for drug delivery, and experimental animal
studies suggest that biological compatibility, immunogenicity, and thrombogenicity may
vary among specific polymeric compounds.22 The next generations of DES are attempting
to reduce the possibility of polymer-induced inflammation, delayed arterial healing,
restenosis, and stent thrombosis through use of polymers that have better biocompatibility
and/or are biodegradable.

Aside from delayed arterial healing, emerging evidence suggests that compared to BMS,
DES impair endothelial function in arterial segments distal to the stented site.23, 24 Even 6
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months following implantation of DES, artery segments distal to the DES show abnormal
vasoreactivity. 252627 DES-associated abnormalities in endothelial function could be related
to delayed vascular repair and not the DES drug itself, because the kinetics of DES are such
that the drugs are completely eluted within months after implantation.28–31 It possible
however that in certain circumstances, drug accumulation in the arterial wall32 and the
liphophilic core of stented atheroma results in prolonged drug retention/release and ongoing
vascular dysfunction. The mechanism of DES-associated endothelial dysfunction is not
established, and recent studies have demonstrated that there is variability in the severity of
DES-associated endothelial dysfunction among specific DES agents.33–35 It is unclear if
DES-associated vascular dysfunction influences clinical outcomes following DES
implantation. One small study demonstrated impaired endothelial function in patients
presenting with in-stent restenosis compared with matched controls,36 however this
association will require validation in larger prospective investigations.

Based on the biology of DES and the potential for delayed reendothelialization and repair,
concern was raised about the possibility for increased rates of late and very late stent
thrombosis in DES trials, and excess mortality in DES- vs. BMS-treated patients
(reviewed7). Because of the insufficient power of individual trials to assess the low-
incidence events of late and very late stent thrombosis, multiple meta-analyses were
performed to evaluate the risk of stent thrombosis in patients treated with DES vs. BMS
using the standardized Academic Research Consortium (ARC)-definition of sent
thrombosis 37–41. These meta-analyses and subsequent analyses of stent registry data 42–45

demonstrated nearly equivalent risk of stent thrombosis (approximately 0.5%) in patients
treated with DES or BMS. A small increase in the risk of late and very late stent thrombosis
on the order of 1–2% cannot be excluded however because available data have insufficient
power to evaluate this very rare event.

Analyses of stent thrombosis and outcomes with DES are further complicated by significant
differences in stent structure, drug delivery polymers, and anti-proliferative drugs among the
rapidly expanding panel of DES. In addition, complex biology controls vascular repair
following PCI. Understanding the common and differential molecular pathways that regulate
reendothelialization vs. restenosis will provide a biological context for rational use of DES,
and will enable development of new DES technologies that can inhibit neointimal
proliferation and preserve or even promote endothelial repair. In the following sections, we
will highlight key cellular and molecular pathways that regulate vascular injury and repair in
the setting of percutaneous coronary revascularization, and we will discuss the role of DES
in modulating vascular repair processes.

Role of Inflammation in Restenosis and Vascular Repair
Stent placement leads to mechanical injury that induces substantial local inflammation
which stimulates vascular smooth muscle cell proliferation and extracellular matrix
deposition, resulting in neointimal thickening and restenosis.46, 47 Vascular inflammation
following PCI involves complex interactions between multiple vascular cell types and under
normal circumstances, the cellular and molecular processes that control vascular injury
responses direct repair and vascular healing. In pathological conditions, dysregulation of
vascular repair results in persistent vascular inflammation, neointimal proliferation, and
restenotic obstruction of the stent lumen.

Immediately following PCI, platelets, neutrophils and monocytes play a central role in the
initial inflammatory response.47, 48 Platelets and fibrin deposit on the de-endothelialized
vessel wall and recruit leukocytes to the injured vessel segment through a cascade of cell
adhesion molecules that direct leukocyte attachment and transmigration across surface-
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adherent platelets. 49 The initial tethering and rolling of leukocytes on platelets is mediated
through binding of the leukocyte receptor P-selectin glycoprotein ligand-1 (PSGL-1) to
platelet P-selectin.50–52 Rolling leukocytes stop and firmly attach to adherent platelets when
the leukocyte integrin Mac-1(CD11b/CD18) binds to platelet glycoprotein Ibα 53 or to
fibrinogen bound to the platelet glycoprotein IIb/IIIa (Fig. 1).54 A direct role for Mac-1 in
leukocyte adhesion following mechanical injury has been demonstrated in several
experimental studies where Mac-1 targeting reduces neointimal thickening after
experimental angioplasty.5556. Clinical studies of patients undergoing PCI further support
the premise that Mac-1 and platelet-mediated leukocyte adhesion (also termed secondary
capture) plays an important role in vascular inflammation and restenosis following coronary
stenting. We have previously shown that compared with circulating neutrophils, Mac-1
surface expression is significantly increased in the neutrophils obtained from the coronary
sinus of patients who underwent PCI within the preceding 48 hours, and that high levels of
Mac-1 expression are associated with angiographic late lumen loss and increased risk of
restenosis.57–60 Increased Mac-1 expression also correlates with increased expression of
Pselectin on the surface platelets obtained from the coronary sinus following PCI.57–60

Role of Bone Marrow-derived Stem Cells in Restenosis and Vascular Repair
Emerging research is demonstrating that bone marrow-derived progenitor cells play an
important role in vascular inflammation responses and in vascular repair. Endothelial
progenitor cells (EPCs) mobilized from bone marrow into peripheral blood promote
endothelial regeneration and postnatal neovascularization.61, 62 In contrast to the potential
protective effects of EPCs, it has been hypothesized that smooth muscle progenitor cells
(SMPCs) which are also mobilized from bone marrow, migrate to the sites of vascular injury
where they contribute to smooth muscle cell expansion and neointimal
proliferation. 63–65, 66, 67

The precise function of EPCs and SMPCs once they home to sites of vascular inflammation
is controversial. Previously, CD34-positive cells were believed to be committed population
of EPCs, however further study demonstrated that the CD34 surface antigen actually
identifies undifferentiated bone marrow-derived stem cells that have the ability differentiate
into EPC and SMPCs. Transdifferentiation of CD34 positive cells into EPC or SMPC
lineages depends on the local environment; ischemic conditions signal differentiation toward
EPC phenotypes in order to promote reendothelialization, 61, 66 and inflammatory conditions
signal differentiation toward SMPC phenotypes that promote neointimal proliferation63(Fig.
2).

Several studies have implicated CD34 positive progenitors cells in vascular injury responses
following PCI. Circulating CD34 positive cells are increased in the days following acute
myocardial infarction, and characterization of these circulating cells suggests that they have
an EPC-like phenotype raising the possibility that CD34-positive EPC-like cells are
mobilized to promote angiogenesis in the ischemic myocardium. In contrast to ischemia-
mediated mobilization, SMPC-like CD34-positive cells increase following PCI in patients
with chronic coronary artery disease presumably in response to inflammatory mediators
produced at sites of stent implantation.67 In this setting, elevated levels of circulating CD34-
positive cells are associated with increased rates of restenosis, suggesting possible
involvement regulation of neointimal formation.68

We have also demonstrated that molecular signals generated at sites of local arterial
inflammation promote the mobilization of CD34-positive stem cells. 69 In our study, the
number of CD34-positive cells in the peripheral blood increased day 7–14 following PCI,
and patients who received BMS had significantly more CD34-postive cells than those who
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received DES (Fig. 3A).69, 70, 72 G-CSF and Mac-1 levels were significantly reduced in
patients who underwent implantation of DES compared to those who received BMS,
suggesting the anti-proliferative effect of stent drug influenced inflammatory cell activation
in this setting (Fig. 3-B).69 This observation is consistent with our hypothesis that
inflammatory signals generated at sites of coronary injury mobilize bone marrow-derived
progenitor cells involved in vascular repair. To further elucidate the role of CD34-positive
cells in vascular injury and repair following PCI, we isolated circulating CD34-positive
progenitor cells from patients who received DES and BMS and performed in vitro
differentiation assays (Fig. 4).69 In most patients, a proportion of the cultured CD34-positive
cells differentiated into both CD31-positive endothelial-like cells and into α-actin-positive
cells with features suggestive of smooth muscle cell lineage. Several other observations
were made: First, the number of differentiated colonies that formed from the CD34-postive
cells correlated with the extent of restenosis during angiographic follow up. Second, patients
with more angiographic restenosis appeared to have more CD34-postive cells that
differentiated into α-actin containing SMPC-like cells. Third, implantation of SES resulted
in reduced differentiation of CD34-positive cells into CD31-positive cells, and reduced
differentiation into α-actin-positive cells with smooth muscle cell feature. This finding is
consistent with in vitro data demonstrating that sirolimus inhibits differentiation of human
bone marrow-derived stem cells into endothelial or smooth muscle cells.71, 72

Several lines of evidence support the premise that PCI induces local inflammatory signals
that mobilize bone marrow-derived CD34-postive stem cells, and that these cells have the
ability to differentiate along endothelial or smooth muscle cell lines. In the setting of
vascular injury, there appears to be a balance between endothelial-like stem cell responses
that favor reendothelialization and smooth muscle-like stem cell responses that promote
restenosis (Fig. 2). Furthermore, it appears that compared with BMS, SES implantation
attenuates production of local inflammatory signals that promote stem cell mobilization and
differentiation into smooth muscle like cells that contribute to neointimal proliferation. In
the future, targeted pharmacologic therapies might be able to promote reparative progenitor
cell responses and/or inhibit responses that result in excess neointimal proliferation.

Local Vascular Inflammation Signals Stem Cell Recruitment
As described above, inflammatory and hematopoietic cytokines produced locally at sites of
vascular inflammation direct mobilization of stem cells from the bone marrow. Vascular-
derived molecules involved in stem cell mobilization include GCSF, MMP-9, and stromal
cell-derived factor-1.

G-CSF, a potent hematopoietic cytokine produced by endothelium and immune cells, is
expressed at sites of vascular injury.73 G-CSF promotes stem cell proliferation and
mobilization and it has been hypothesized that following PCI and/or myocardial infarction,
G-CSF signals production and homing of reparative stem cells that promote angiogenesis
and myocardial repair. Despite its experimental effects on stem mobilization, clinical
evaluation of systemic G-CSF therapy following myocardial infarction failed to show
benefit in limiting infarct size or in improving left ventricular function.74, 75, 77 It is possible
that the non-selective mobilization of both EPCs and SMPCs by G-CSF may limit its
therapeutic value for treating restenosis and promoting vascular repair.

Neutrophil-derived MMP-9 is another inflammatory mediator that has a role in stem cell
mobilization.76 MMP-9 is secreted locally in response to inflammatory inputs including
ligand binding to the leukocyte integrin Mac-1.77 MMP-9 is required for G-CSF and
chemokine-induced mobilization of hematopoietic stem cells from the bone marrow,78, 79

Inoue et al. Page 5

JACC Cardiovasc Interv. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and provides a mechanism through which inflamed vascular beds generate systemic signals
that promote bone marrow-derived stem cell mobilization and vascular repair.

Stromal cell-derived factor-1 (SDF-1) is a member of the CXC group of chemokines that
plays a role in stem cell plasticity and engraftment.80 SDF-1 is expressed by smooth muscle
cells at sites of atherosclerosis and vascular inflammation. SDF-1 signals the bone marrow
to mobilize Sca-1+ lineage progenitor cells that home to sites of vascular injury where the
progenitor cells adopt smooth muscle cell phenotypes. In experimental models, SDF-1
directly regulates neointimal smooth muscle cell content, and inhibition of SDF-1 function
decreases neointimal formation.80 Because of its function in stimulating neointimal
formation, therapies targeting SDF-1 function could potentially inhibit restenosis following
PCI.

Modulating Vascular Injury and Repair: New Frontiers in DES technology
Current generation DES agents prevent restenosis by inhibiting smooth muscle cell
proliferation. In developing the next generation of DES agents it may be possible to harness
differential drug effects on smooth muscle cell proliferation vs. reendothelialization in a
manner that could accelerate repair. Vascular endothelial growth factor has attracted
attention as a DES agent that could promote endothelial regeneration and angiogenesis.81

Proof of concept investigations have demonstrated that VEGF-gene–eluting stents accelerate
reendothelialization and reduce in-stent neointimal area in animal models.82 Another new
strategy to promote vascular repair following PCI involves the use of antibodies83 or
peptides84 that bind membrane receptors on circulating endothelial progenitor cells. This
strategy promotes capture of these cells in order to accelerate healing.83 CD34 antibody-
coated stents have been implanted in human coronary arteries in the multicenter Healthy
Endothelial Accelerated Lining Inhibits Neointimal Growth (HEALING) II pilot trial and in
later follow up studies.85, 86 The long term safety and efficacy of this pro-healing stent
technology awaits further evaluation in randomized trials.

In addition to DES technology itself, adjunctive systemic medications may also influence
the stem cell homing and the balance between reendothelialization and neointimal
proliferation. Interestingly, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase
inhibitors (statins) were recently shown to promote EPC proliferation in vitro87 and increase
the number of circulating EPCs in patients with coronary artery disease.88 Despite initial
optimism that statins might favorably influence arterial healing following DES implantation,
enthusiasm has tempered following release of data that high doses of statins started before
PCI and continued thereafter increased EPC mobilization but did not increase circulating
CD34+ cells and did not improve the angiographic outcome after implantation of a
bioengineered EPC-capture stent89.

Thiazolidinediones which are used to treat diabetes, function by activating peroxisome
proliferator activating receptor (PPAR) transcription factors. Several of these agents increase
the number of EPCs in both circulating blood and bone marrow, and reduce EPC apoptosis
in a phosphatidylinositol 3-kinase dependent manner.90 Although there are several potential
vasculoprotective actions of statins and thiazilidinediones, further clinical investigation will
be required to determine if these medications will positively influence vascular repair
resulting in reduced rates of restenosis and enhanced reendothelialization following PCI.

Summary
PCI results in mechanical injury that induces vascular inflammation. Vascular inflammation
in this setting involves complex interactions between endothelial cells, smooth muscle cells,
platelets, and inflammatory cells including neutrophils, monocytes, and lymphocytes.
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Signaling molecules produced by cells at the site of vascular injury stimulate mobilization of
bone marrow derived EPCs and SMPCs which are recruited to the sites of vascular
inflammation. The cellular and molecular processes that control vascular injury responses
direct repair and vascular healing however, dysregulation of these responses can result in
adverse arterial remodeling, neointimal proliferation and restenosis. DES effectively reduce
neointimal proliferation but also slow the reendothelialization and the healing process. DES
also appear to influence the mobilization, homing and differentiation of reparative stem
cells. Despite the potential for delayed vascular healing with DES, analysis of clinical trials
have demonstrated equivalent safety to BMS in the setting of extended dual antiplatelet use.
In the future, improved DES technologies may be able to abolish restenosis and further
improve safety by inhibiting maladaptive neointimal proliferation while promoting
reendothelialization and repair.
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Figure 1. Transplatelet leukocyte migration
At the site of stent implantation following PCI, endothelial cells are denuded and the
subendothelial matrix is exposed to flowing blood. Platelets and fibrinogen immediately
adhere surface of the injured vessel. A multistep cascade of platelet and leukocyte adhesion
molecules direct leukocyte adhesion to the adherent platelets in a process termed “secondary
capture”. Leukocyte capture and rolling are mediated by interaction between platelet P-
selectin and leukocyte PSGL-1. Arrest and firm adhesion are mediated by platelet
glycoprotien Ibα and leukocyte Mac-1. Chemokines stimulate transmigration into the
extraluminal tissue.
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Figure 2. Differentiation of bone marrow-derived stem cells
Previously, CD34-positive cells were believed to be committed population of EPCs,
however further study demonstrated that the CD34 surface antigen actually identifies
undifferentiated bone marrow-derived stem cells that have the ability differentiate into EPC
and SMPCs. Ischemic conditions signal differentiation toward EPC phenotypes in order to
promote reendothelialization. Inflammatory conditions signal differentiation toward SMPC
phenotypes that promote neointimal proliferation.
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Figure 3. CD34-positive cell counts and CD34-positive cell Mac-1 expression following PCI
(A) Circulating CD34 positive cells increase following PCI. The highest levels of CD34-
positve cells were seen in the peripheral blood of patients who received BMS that went on to
have restenosis at 6 month angiographic follow-up. Implantation of DES was associated
with a significant reduction in the number of circulating CD34 positive cells. (B) Neutrophil
Mac-1 expression correlates with mobilization of CD34-positive cells. Forty eight hours
after PCI, neutrophils were harvested from the coronary sinus of patients who had coronary
stents implanted. Neutrophil Mac-1 expression was quantified by flow cytometry.
Neutrophil Mac-1 expression at 48 hours correlated with circulating levels of CD34-positive
cells 7 days after PCI, demonstrating that higher levels of local vascular inflammation are
associated with increased systemic CD34-postive progenitor cell mobilization. Data are
expressed as percent change of the baseline values. (adapted with permission: Inoue T,
Circulation. 2007;115(5):553-561).
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Figure 4. Differentiation of patient-derived CD34-positve stem cells into endothelial-like and
smooth muscle-like cells following PCI
Circulating CD34-positve stem cells were isolated from peripheral blood of patients 7 days
after implantation of BMS or SES. Immunohistochemical staining for CD31(A–D). (A)
BMS without restenosis, (B) BMS with restenosis, (C) SES, (D) quantification of CD31-
positive cell clusters. Patients that received BMS had similar differentiation of CD34-
positve stem cells into CD31-positive endothelial-like cells regardless of whether they went
on to have restenosis at 6 month angiographic follow-up. Patients that received SES had a
significant reduction in the differentiation of CD34-positve stem cells into CD31-positive
endothelial-like cells compared to patients that received BMS. Actin staining (E–H). (E)
BMS without restenosis, (F) BMS with restenosis, (G) SES, (H) quantification of actin
positive cells. Patients that received BMS and went on to have restenosis at 6 month
angiographic follow-up had increased numbers of CD34-positve stem cells that
differentiated into actin-positive smooth muscle-like cells. Patients that received SES had a
significant reduction in the differentiation of CD34-positve stem cells into actin-positive
smooth muscle-like cells compared to patients that received BMS. Arrow denotes
representative actin-positive cell. (adapted with permission: Inoue T, Circulation.
2007;115(5):553-561).
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