
Enhancer and promoter interactions — long distance calls

Ivan Krivega1 and Ann Dean1,2

1Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes of Health, Bethesda, MD 20982

Abstract
In metazoans, enhancers of gene transcription must often exert their effects over tens of kilobases
of DNA. Over the last decade it has become clear that to do this, enhancers come into close
proximity with target promoters with the looping away of intervening sequences. In a few cases
proteins that are involved in the establishment or maintenance of these loops have been revealed
but how the proper gene target is selected remains mysterious. Chromatin insulators had been
appreciated as elements that play a role in enhancer fidelity through their enhancer blocking or
barrier activity. However, recent work suggests more direct participation of insulators in enhancer-
gene interactions. The emerging view begins to incorporate transcription activation by distant
enhancers with large scale nuclear architecture and sub-nuclear movement.

Introduction
Enhancers are regulatory elements that increase the transcriptional output of target genes. In
metazoans enhancers and the genes they regulate can be as far as 2 or 3 Mbp distant from
each other. This geometry produced lively debates on how the distant enhancers could
activate their target genes. Models considered included looping and tracking and variations
thereof [1]. The advent of new technologies, including 3C [2] confirmed the establishment
of close proximity between enhancers and target genes. In the first example, loop formation
between the β-globin locus control region enhancer (LCR) and gene was shown to
accompany transcriptional activation [3–5]. While this new information did not rule out the
possibility that a tracking mechanism contributes to gene activation by distant enhancers
[6;7], it did establish a paradigm that was borne out in numerous other loci where
developmentally regulated gene clusters and single genes are activated by a distant
enhancer. These include the α-globin gene cluster, TH2, IFNG, MHC class II and IgH loci
among others [8].

Genomes also contain insulators that modulate enhancer activity. These elements are
protein-DNA complexes that prevent an enhancer from activating a gene when positioned
between them and can act as barriers to the inappropriate spread of heterochromatin.
Chromatin looping underlies their behavior as well (Figure 1). In vertebrates the only known
insulator protein is CTCF, which recruits cohesin to many of its functional sites [9]. The
cohesin complex forms a ring to embrace chromosomes during sister chromatid exchange
and its role at insulator sites could be similar. Although insulators influence enhancer
function and gene expression, these elements were thought be distinct; however, the
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distinctions are blurring. In this review we will discuss new attributes of enhancers and new
direct roles for CTCF insulators in enhancer-promoter interactions and in broadly
configuring the genome.

Enhancer loops and functions—an update
Genome profiling of enhancers

Two studies localized putative enhancers genome wide by their signature of CBP/p300
binding and H3K4me1 modification [10;11]. However, discovering the targets of these
enhancers is a formidable task. A different approach, Hi-C, has allowed investigators to
capture long range interactions genome-wide by combining the classical 3C assay with high-
throughput sequencing [12]. The resolution of the method was about 2 Mb but was sufficient
to show that long range looping interactions underlie the co-localization of chromosomal
domains based on functional state. Increased computing power has improved the resolution
of Hi-C. Moreover, one could imagine combining this data with enhancer localization by
CBP/p300 signature [10;11] to identify novel enhancers that function by long range
interaction and their targets. This would allow an assessment of how general this
phenomenon is.

In parallel with Hi-C, a different approach called ChIA-PET (chromatin interaction assay
with paired end sequencing) was pioneered to investigate chromatin interactions on a
genome-wide scale [13]. ChIA-PET is a ChIP-based assay allowing capture of long range
chromatin interactions that are established by a specific protein of choice at high resolution.
Fullwood et al. used an antibody to estrogen receptor-α (ER-α) to pull down chromatin
interactions. Sequencing the resultant ChIA-PET library showed that remote ER-α
enhancer-like sites interact with proximal promoters of target genes. It is of great interest to
investigate the genome wide looping associations of other enhancer binding proteins.

Mediators of loops between enhancers and genes
Transcription factors or their complexes are thought to mediate enhancer-promoter loop
formation but the proteins involved have been functionally identified in only a few cases. In
the TH2 cytokine locus, the Il4, Il5 and Il13 genes cluster in close proximity to the TH2
locus control region (LCR) in the poised or active state in T cells but these interactions do
not occur in cells lacking the transcription factors STAT6 or GATA-3 [14]. In the β-globin
locus, reduction of the erythroid factors GATA-1 and EKLF (KLF1) or the more widely
expressed factor Ldb1showed that are required for β-globin activation and for looping
between the gene and the β-globin LCR [15–17]. Ren et al now show that OCA-B and
general transcription factor TFII-I are required for long range enhancer-promoter
communication in the IgH locus [18]. The IgH promoter interacts with 3’ enhancers over
100 kb distant and depletion of OCA-B or TFII-I using RNAi reduced the interactions and
IgH transcription. The architectural protein SATB1 also participates in long range enhancer
interaction, binding to the BCL2 gene promoter and its distant enhancer to form a loop in
cells where the gene is expressed [19]. SATB1 reduction compromised loop formation and
transcription. This MAR binding protein engages in many interactions genome wide,
making it difficult to rule out the contribution of indirect affects to this outcome [20]. There
is a clear need to expand the repertoire of factors that participate in enhancer loop formation
and/or maintenance and to decipher specifically what protein-protein contacts suffice for the
long range interactions.

Enhancer-gene looping and transcriptional activation
Numerous enhancers have been described that loop to their target genes and increase
transcription but how the transcriptional output is changed is unclear. The loop might
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increase the local concentration of factors that recruit RNA pol II or pol II might be
transferred from an enhancer to a promoter through their proximity [21]. The loop might
affect the nuclear localization of the enhancer-promoter pair to a favorable transcriptional
compartment (see below). In any case, the enhancer-gene loop appears to be necessary for
transcriptional up-regulation as gain or loss of a competing promoter [22;23], reduction of
loop-associated proteins [15–18] or interruption of looping by an insulator [24;25] all affect
transcriptional outcome. Is the enhancer loop a cause or effect of the onset of transcription?
This is a challenging question but a recent study correlated nascent transcripts with
proximity of the sonic hedgehog (Shh) promoter and the limb bud enhancer, supporting a
causative role [26]. This is one area where careful time course studies might be revealing,
perhaps in a system like mouse G1E cells where LCR-β-globin looping and transcriptional
activation can be induced by GATA-1 expression [15].

Enhancers and locus migration
Gene re-localization in nuclei upon activation is a well documented finding although how
general this phenomenon is remains in question [27–29]. In animal cells, the migration
typically involves moving from a peripheral position to a more interior one. Thus, the β-
globin locus moves away from the nuclear periphery in maturing fetal liver cell nuclei
before becoming highly. Re-localization requires the β-globin LCR but also the protein
factor Ldb1, required for looping [30;31]. Recent work shows that GATA-1, its co-factor
FOG1, EKLF (KLF1) and chromatin remodeler Mi-2β are also required for migration of the
β-globin locus to the nuclear interior [32]. Locus movement occurred before the appearance
of key markers of erythroid differentiation, suggesting it is a pre-requisite and not a
consequence of high level transcription. Interestingly, inactivation of FOG-1 and Μi-2β
after re-localization did not return β-globin loci to the nuclear periphery [32].

Very recently it has been shown that the Eµ enhancer is required for movement of the IgH
locus to the nuclear interior [33]. Enhancer dependent long range interactions involved YY1
binding to Eµ and to the sites with which it interacted. Taken together, these results
implicate enhancers and factors required for enhancer loops to form in locus movement,
raising the question whether looping precedes locus migration. The Eµ enhancer loops and
IgH locus migration occur without recombination or transcription of the rearranged gene,
arguing that looping and migration happen first (Figure 2A). Alternatively, looping might
occur after association with a transcription factory, possibly as a result of transcription
(Figure 2B). Further experiments will be necessary to distinguish these models and
illuminate this fundamental question.

Intra-nuclear migration during transcription activation correlates with entry into a
transcription factory [34]. These entities are independent nuclear sub-compartments that are
repositories of hyper-phosphorylated RNA pol II [35]. The β-globin locus enters a
transcription factory after migration away from the nuclear periphery [30]. If transcription is
interrupted the LCR- β-globin loop is retained, arguing that at least the maintenance of this
proximity does not require ongoing transcription or even residence in a transcription factory
[35;36]. Furthermore, the choice of transcription factory is non-random [37]. EKLF-
dependent genes, including β-globin, co-localize at a subset of “specialized” factories that
are enriched for EKLF. The underlying mechanisms are unclear. Do EKLF regulated genes
seek out the proper factory, or are genes regulated by EKLF first bound by the factor and
then co-migrate to a factory making it “specialized”. The precise sequence of events and
interrelationships among factor binding, enhancer looping and intra-nuclear migration
remain to be established.
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Enhancers and long, non-coding RNAs
Genome profiling revealed that it is not unusual for RNA pol II to localize at enhancers [10].
It has also been known for many years that RNA pol II localizes at LCRs and that sense and
antisense transcripts arise from these regions, although the function of such transcripts is
unknown [38–41]. Using the pol II hallmark and p300 and H3K4me1 localization, Kim et al
used ChIP-seq to identify thousands of neuronal activity-regulated putative enhancers
genome wide [42]. A subset of the enhancers was transcribed bi-directionally by pol II into
enhancer RNAs (eRNAs) which were not poly-adenylated and were generally short (<2 kb).
The eRNA levels correlated with mRNA synthesis at nearby genes, suggesting that eRNA
transcription might be necessary for activation of the genes. Interestingly, eRNA
transcription, although not pol II occupancy, required the presence of an intact target
promoter, at least in the case of the Arc gene [42].

Orom et al took a different approach and looked directly at the function of long non-coding
RNAs (ncRNAs) [43]. They began with the GENCODE annotation of the human genome
and filtered out transcripts over-lapping protein coding genes or belonging to known classes
of non-coding RNAs. The resulting collection of ncRNA loci displayed CBP/p300 and RNA
pol II occupancy but the ncRNAs were polyadenylated and less than 1% of them were bi-
directional, in contrast to eRNAs described by Kim et al. Knock down of a subset of the
ncRNAs (termed ncRNA-a, for activating) resulted in decreased transcription of neighboring
protein coding genes and, in one case, a gene 150 kb distant. The ncRNA-a itself was
required for the enhancer effect and not just transcription of the ncRNA gene. A direct role
for a broader class of large non-coding RNAs (lincRNAs) in gene regulation was suggested
by isolation of a subset as part of chromatin regulatory protein complexes in ES cells [44].
However, a comprehensive survey of lincRNAs in ES cells revealed that 15% of them
overlapped enhancers but only 1% did so in neuronal cells [45]. At this point, the enhancer
function of eRNAa and nc-RNA-a requires considerable further study and validation.

Interestingly, for nc-RNA-a there were often genes intervening between the putative
enhancer and the activated target that were unaffected [43]. Viewed from an enhancer-
centric perspective, the strong suggestion is that these enhancers loop to their target genes to
activate their transcription, skipping over intervening genes, although the study did not
include 3C experiments. Possibly, eRNAs and ncRNAs-a have a structural role in
establishing or stabilizing enhancer-promoter loops although this remains unclear (Figure 2).

Enhancer and insulator functions converge
CTCF insulators protect enhancer-promoter interactions in vertebrates and insects. The β-
globin LCR and genes are encompassed within a CTCF-mediated loop [46]. While reduction
of CTCF in precursor cells not yet transcribing the globin genes does not appear to affect the
locus, reduction of CTCF in cells actively transcribing γ-globin results in decreased
transcription and incursion of repressive histone modifications, consistent with insulator
function for these CTCF sites [46;47]. Likewise, disruption of interaction among
surrounding insulators by CTCF depletion negatively impacts interaction of an enhancer
with the APO gene promoters [48]. These examples illustrate positive indirect effects of
CTCF insulator loops on enhancer-mediated gene expression (Figure 3A).

Genome wide role of insulator loops
Genome profiling by Hi-C revealed that chromatin loops are central to the organization of
active and silent chromatin into separate functional domains [12]. The emerging picture is
that insulators are key contributors to this organization. Using ChIA-PET, new data show
that CTCF mediates interaction between thousands of loci and organizes the genome into
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different functional compartments [49]. Handoko et al observed that many of the CTCF-
mediated long range interacting sites coincided with an enhancer and promoter. Depletion of
CTCF using RNAi reduced looping between the elements at select loci and reduced
transcription of the gene involved. The suggestion is that CTCF facilitates enhancer-
promoter interaction directly (Figure 3B). Thus, in addition to the classical view of domain
separation by insulators to topologically isolate an enhancer and a proper gene target, we can
envision other arrangements more directly involving insulators in this communication. Of
note, insulator interaction with an enhancer and promoter can also be associated with a
negative influence on transcription activation by the enhancer [50].

Direct interaction of enhancers and genes with insulators
Recent work documents CTCF occupied sites at insulators, within genes and in enhancers
that participate in looping interactions and play a role in transcription activation. For
example, the INFG gene has a CTCF site in the first intron that contacts two distant CTCF
sites in the locus to form loops that are required for activation (Figure 3C) [51]. The INFG
CTCF site interactions are modulated by recruitment of cohesin. In the MHC-II locus, a
CTCF bound insulator site interacts with HLA-DRB1 and HLA-DQA1 promoters to form a
chromatin loop [52]. These long range interactions depend on promoter-bound transcription
factors CIITA and RFX and on CTCF whose reduction compromises gene transcription
(Figure 3C). In addition, other insulator sites in the locus form long range associations
among themselves that are dependent on CTCF but not on CIITA and RFX. Cohesin is also
important for contact between the CTCF insulator site and MHC-II gene promoters [53].

In addition to promoters, enhancers can directly interact with insulators (Figure 3D). The Eμ
recombination enhancer in the IgH locus of pro-B cells interacts with upstream and
downstream CTCF insulators forming loops that are thought to contract the locus and
facilitate recombination [54;55]. These interactions are CTCF and cohesin dependent and
necessary for IgH locus functioning. At least one of the sites downstream from Eµ has
enhancer blocking activity. Interestingly, one of the CTCF insulators downstream of Eμ
(HS4) was found in the work of Ren et al (see above) to interact with the VDJ promoter in
an OCA-B and TFII-I dependent fashion adding complexity to the overall locus structure.
Very recent work using 4C details two sets of loops at the IgH locus; those dependent on
CTCF but not on Eµ and those dependent on Eµ along with YY1 [33]. Several of the YY1
sites involved in Eµ looping bind CTCF and thus represent heterotypic interactions of the
two factors [33;55].

In another example, T cell receptor rearrangement in the Tcra locus in mouse thymocytes
involves CTCF and cohesin occupancy and long range interactions among the TEA gene,
the Eα enhancer and the Tcra LCR. Deletion of the cohesin subunit Rad21 disrupted the
long range interactions, accompanied by down-regulation of TEA, H3K4me3 depletion and
aberrant TCRα rearrangement [56]. A regulatory element that engages in a similar
mechanism is revealed in studies of the general transcription factor TAF3 [57]. Some distant
TAF3 binding sites were found to colocalize with CTCF and cohesin and CTCF tethers
these sites to TAF3 dependent promoters. However, the distant TAF3 sites were not
otherwise tested for enhancer activity. The data discussed above collectively indicate that
enhancer/insulator interplay is more complex that it was thought to be. In some cases,
insulator protein CTCF and/or cohesin can facilitate enhancer-promoter interaction directly
by interacting with these elements to bring them together.

Influence of cohesion on enhancer-promoter interactions
Cohesin is recruited to CTCF sites genome wide but a subset of sites is unique to cohesin
[58;59]. New data has shed light on the function of these sites. ER-α binding sites colocalize

Krivega and Dean Page 5

Curr Opin Genet Dev. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with cohesin sites that lack CTCF [60]. It was proposed that ER-α together with cohesin
provides long range interactions, although this was not tested directly by 3C. In another
example, cohesin and the Mediator complex are implicated in enhancer-promoter interaction
[61]. Kagey et al found that Mediator subunits colocalize with cohesin at enhancers and
promoters and are necessary for loop formation between them. The data illustrate the
potential role of cohesin as a physical tether mediating enhancer-gene proximity in
combination with mediator, which may coordinate signals between enhancers and the
general transcription machinery. What recruits cohesin to these non-CTCF sites and whether
they have insulator function are unknown.

Conclusions
The very recent data summarized here strikingly illustrate that enhancer/insulator interplay
in regulation of gene transcription is more complex than was previously appreciated. In
some cases, enhancer-promoter interaction appears to be directly facilitated by CTCF/
cohesin occupancy. In other cases, the promoter or the enhancer is occupied by CTCF/
cohesin and additional factors cooperate to support interaction between them. It will be
important to determine the exact geometry of the CTCF/cohesin binding sites vis-à-vis
transcription factors when they co-occupy enhancers or promoters. In view of its interaction
with potential enhancers [49], RNA pol II transcription factories [62] and the general
transcription machinery [57], does CTCF have a direct role in transcription activation? Are
all CTCF and cohesin sites insulator sites in the classic view? The genome wide
architectural role of CTCF loops may provide a clue to how enhancer-promoter ensembles
migrate within the nucleus. Almost nothing is known about this process although it seems to
involve actin-myosin motors [63;64]. The novel convergence of enhancer-promoter pairs
and CTCF insulators impacts important unresolved questions such as how enhancers and
promoters establish a connection, how they move within the nucleus and how transcriptional
output is increased by these events.
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Figure 1. Models of enhancer and insulator function
A. An enhancer is depicted as activating transcription from a target gene promoter through
direct interaction over a large distance by creating a chromatin loop. B. An insulator located
between an enhancer and a gene can block promoter-enhancer interaction by acting as a road
block to a processive signal from the enhancer or by forming a loop with another insulator
located distal to the gene. C. An insulator functions as a barrier to block the spreading of
repressive chromatin into an inappropriate locus. This function is depicted as a road block
but could also be carried out as in panel 1B by the insulator interacting directly with another
insulator to form a loop encompassing the active gene. In all panels, the yellow rectangle is
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the enhancer and the blue rectangle is the gene. The red rectangle is the insulator. The
hatched rectangle represents condensed heterochromatin.
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Figure 2. Influence of enhancer-promoter interaction on intra-nuclear migration to a
transcription factory
Before activation a locus occupies a position near the nuclear periphery and the enhancer
and promoter do not yet interact with each other. A. In one view, after activation the
enhancer interacts with the promoter which in turn leads to locus migration into the nuclear
interior and localization in an RNA pol II transcription factory. Subsequently, transcription
at the enhancer and promoter produces ncRNA that stabilize the interaction and mRNA
respectively. B. Alternatively, the locus migrates to an interior position without
communication between the enhancer and the target gene promoter and their interaction is
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established in the RNA polII factory, possibly with the participation of the ncRNA
transcript. Designations are the same as in Figure 1.
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Figure 3. CTCF role in facilitating long range interaction between an enhancer and promoter
A. CTCF mediates interaction between two insulators which positively influences enhancer-
promoter interaction. This model reflects the arrangement in the β-globin and APO loci
[4;48]. B. CTCF interacts with an enhancer and target promoter and participates directly in
long range interaction between them that leads to transcription activation. Examples of this
arrangement have been recently been described [49]. C. CTCF interacts with an insulator
and provides interaction with a promoter which in turn activates transcription. The INFG
and MHC class II loci provide examples of this mechanism [51;53]. D. Insulator bound
CTCF provides interaction with an enhancer which in turn interacts with a target promoter.
This mechanism is utilized in the IgH locus [54;55]. Variants A, C and D can be
incorporated into the concept of the active chromatin hub which provides an environment
conducive to transcription activation. Designations are as in Figure 1.
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