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Abstract
Cardiac magnetic resonance imaging (CMRI) has 
emerged as a useful tertiary imaging tool in the inves-
tigation of patients suspected of many different types 
of cardiomyopathies. CMRI sequences are now of a 
sufficiently robust quality to enable high spatial and 
temporal resolution image acquisition. This has led to 
CMRI becoming an effective non-invasive imaging gold 
standard for many cardiomyopathies. In this 2-part re-
view, we outline the typical sequences used to image 
cardiomyopathy, and present the imaging spectrum of 
cardiomyopathy. Part 1 focuses on the current classifi-
cation of cardiomyopathy, basic CMRI sequences used 
in evaluating cardiomyopathy and the imaging spec-
trum of common phenotypes.   
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INTRODUCTION
A cardiomyopathy has been described as a myocardial 
disorder in which the heart muscle is structurally and 
functionally abnormal, in the absence of  coronary artery 
disease, hypertension, valvular disease and congenital 
heart disease sufficient to cause the observed myocardial 
abnormality, with the exception of  ischemic cardiomy-
opathy (Table 1)[1]. Cardiomyopathy follows myocardial 
infarction as the commonest cause of  sudden cardiac 
death[2]. 

Cardiac magnetic resonance imaging (CMRI) has 
emerged as a useful non-invasive imaging modality capa-
ble of  producing high-resolution images of  the heart in 
any desired image plane and without ionizing radiation. 
As a result, it has become a primary imaging modality 
for many cardiomyopathies[3,4]. There are many different 
sequences that can be performed in various combina-
tions, although a basic generic set of  sequences is com-
mon to most protocols[5]. 

CLASSIFICATION OF CARDIOMYOPATHY
A recent statement from the European Society of  Cardi-
ology working group on myocardial and pericardial dis-
eases[1] has grouped cardiomyopathies into specific mor-
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phological and functional phenotypes; each phenotype is 
then sub-classified into familial and non-familial forms. 
Familial refers to the occurrence, in more than one fam-
ily member, of  either the same disorder or a phenotype 
that is (or could be) caused by the same genetic muta-

tion and not from acquired cardiac or systemic diseases 
in which the clinical phenotype is influenced by genetic 
polymorphism. Most familial cardiomyopathies are 
monogenic disorders. Non-familial cardiomyopathies are 
subdivided into idiopathic and acquired cardiomyopa-
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HCM DCM ARVC RCM Unclassified

  Familial Familial, unknown gene Familial, unknown gene Familial, unknown gene Familial, unknown gene Familial, unknown 
gene

Sarcomeric protein mutations Sarcomeric protein mutations 
(see HCM)

Intercalated disc protein 
mutations

Sarcomeric protein mutations Left ventricular 
Non-compaction

b myosin heavy chain Z-band Plakoglobin Troponin Ⅰ (RCM +/- HCM) Barth syndrome
Cardiac myosin binding protein 

C
Muscle LIM protein Desmoplakin Essential light chain of myo-

sin
Lamin A/C

Cardiac troponin 1 TCAP Plakophilin 2 Familial amyloidosis ZASP
Troponin T Cytoskeletal genes Desmoglein 2 Transthyretin (RCM + neu-

ropathy)
a-dystrophin

a-tropomyosin Dystrophin Desmocollin 2 Apolipoprotein (RCM + 
neuropathy)

Essential myosin light chain Desmin Cardiac RyR2 Desminopathy
Regulatory myosin light chain Metavinculin TGFb3 Pseuxanthoma elasticum

Cardiac actin Sarcoglycan complex Haemochromatosis
a-myosin heavy chain CRYAB Anderson-Fabry disease

Titin Epicardin Glycogen storage disease
Troponin C Nuclear membrane

Muscle LIM protein Lamin A/C
Glycogen storage disease (e.g., 

Pompe; PRKAG2, Forbes’, 
Danon)

Emerin

Lysosomal storage disease (e.g., 
Anderson-Fabry, Hurler’s)

Mildly dilated cardiomyopahy

Disorders of fatty metabolism Intercalated disc protein muta-
tions (see ARVC)

Carnitine deficiency Mitochondrial myopathy
Phosphorylase B kinase defi-

ciency
Dystrophies

Mitochondrial cytopathies
Syndromic HCM

Noonan syndrome
LEOPARD syndrome

Friedriech’s ataxia
Beckwith-Wiedermann syn-

drome
Swyer’s syndrome

Other
Phospholamban promotor

Familal amyloid
  Non familial Obesity Myocarditis (infective/toxic/

autoimmune)
Inflammation? Amyloid (AL/prealbumin) Tako Tsubo cardio-

myopathy
Infants of diabetic mothers Kawasaki disease Scleroderma

Athletic training Eosinophilic (Churg Strauss 
syndrome)

Endomyocardial fibrosis

Amyloid (AL/prealbumin) Viral persistence Hypereosinophilic syndrome
Drugs Idiopathic

Pregnancy Chromosomal cause
Endocrine Drugs (serotonin, methyser-

gide, ergotamine)Nutritional - thiamine, carni-
tine, selenium, hypophospha-

temia, hypocalcemia
Alcohol Carcinoid heart disease

Tachycardiomyopathy Metastatic cancers
Radiation

Drugs (anthracyclines)

Table 1  Examples of common and rare cardiomyopathies

HCM: Hypertrophic cardiomyopathy; DCM: Dilated cardiomyopathy; ARVC: Arrhythmogenic right ventricular dysplasia; RCM: Restricted cardiomyopa-
thy; RyR2: Ryanodine receptor; TGF: Transforming growth factor.



thies in which ventricular dysfunction is a complication 
of  the disorder rather than an intrinsic feature of  the 
disease. Left ventricular (LV) dysfunction secondary to 
coronary artery occlusion, hypertension, valve disease, 
and congenital heart disease are excluded because the di-
agnosis and treatment of  these disorders are quite differ-
ent from those encountered in most cardiomyopathies. 
The division of  cardiomyopathies into familial and non-
familial forms is useful as it raises awareness of  genetic 
disease as a cause of  heart muscle dysfunction.

BASIC CMRI PROTOCOLS FOR 
CARDIOMYOPATHY ASSESSMENT
The CMRI protocol used in imaging cardiomyopathy 
should be tailored specifically to the suspected type of  
cardiomyopathy. There are many different sequences, 
but all follow a basic generic protocol[5,6]: (1) scouting 
images - axial, coronal and sagittal; (2) stacking of  axial 
slices of  the thorax [half-fourier acquisition single-shot 
turbo spin-echo or steady-state free precession (SSFP)]; 
(3) vertical long-axis or 2-chamber steady-state free 
precession (SSFP) - this imaging plane typically depicts 
the left atrium and ventricle. If  the right ventricle is the 

chamber of  interest, the plane can be placed along the 
right ventricle; (4) horizontal long-axis or 4-chamber 
SSFP - depicts all 4 cardiac chambers; (5) short-axis 
SSFP - from the annulus to the apex. These are used to 
allow quantification of  ventricular volumes and function; 
(6) T2-weighted typically short-axis sequence - to assess 
for acute myocardial edema; and (7) late gadolinium en-
hancement (LGE) - appears as high signal enhancement 
within the myocardium following a double-inversion fast 
spin echo sequence. Images are typically acquired 10 to 
30 min after contrast injection. Many studies have now 
shown that myocardial enhancement using this sequence 
enables the detection of  myocardial infarction, inflam-
mation, infiltration or fibrosis. Late gadolinium enhance-
ment sequences have added a tremendous additional 
dimension to CMRI in detecting, localizing and quantify-
ing myocardial disease[7]. 

Specific additional sequences may be added depend-
ing on the particular cardiomyopathy being investigat-
ed[5]. When describing the location of  myocardial pathol-
ogy it is important to use standardized nomenclature[8]. 
Typically, the ventricle is divided into 3 levels (basal, mid 
and apical) and each level can be divided into 6 (basal), 6 
(mid) and 4 (apical) segments with the 17th segment be-
ing represented by the apex. Note that there is normally 
a thin apical thin point, and it is important not to con-
fuse this normal appearance with an apical aneurysm[9].

Ischemic cardiomyopathy
In ischemic disease, myocardial ischemia may result in 3 
functionally altered states commonly referred to as stun-
ning, hibernation, and true infarction[10]. The stunned 
myocardium typically occurs in the setting of  an acute 
ischemic insult and results in reversible contractile 
dysfunction whereas hibernation is the term used to 
describe chronic contractile impairment secondary to 
obstructive coronary stenosis (Figure 1). CMRI allows 
the detection, location and quantification of  the extent 
of  acute and chronic myocardial infarction. Chronic 
myocardial infarction is defined as new pathological Q 
waves with or without symptoms, imaging evidence of  a 
loss of  myocardial viability with wall thinning that fails 
to contract, in the absence of  a non-ischemic cause or 
pathological findings of  a healed or healing myocardial 
infarction[11]. Cardiac MRI has become the clinical non-
invasive gold standard for the assessment of  myocardial 
viability. It has superseded cardiac positron emission 
tomography and single photon emission computed to-
mography scanning for the detection of  subendocardial 
infarction[12]. Revascularization of  viable tissue should 
lead to an improvement in myocardial contractility, as 
long as the myocardium is non-transmurally infarcted[13]. 
In full-thickness infarcted (scarred) tissue revasculariza-
tion does not improve myocardial function[14]. Despite 
the small size of  such infarcts, detection is critical, as 
even patients with small infarcts have a relatively poor 
prognosis compared to non-infarcted patients[15]. More 
recently, T2-weighted sequences (sensitive to myocardial 
edema) have shown the area-at-risk. This shows an area 
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Figure 1  A 42-year-old female who presented with acute chest pain to the 
emergency department. She had no risk factors for coronary artery disease 
and the clinical suspicion was of myocarditis. A: Late-enhancement short axis 
sequence shows a transmural area (arrow) of high signal involving the inferior seg-
ment consistent with an acute myocardial infarction involving the right coronary ar-
tery territory. Note that it is an acute rather than chronic infarct, because there is no 
wall thinning; B: An invasive angiogram confirmed diffuse coronary artery disease 
throughout the right coronary artery. Note that the likelihood of recovery of this seg-
ment with revascularization is extremely low because it is a transmural infarct.
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of  higher signal, larger than the actual infarcted ‘dead-
zone’ of  the myocardium, and thus indicates the area at 
risk of  further ischemia[16]. Regional wall motion abnor-
malities are detected on CMRI in the areas of  abnormal 
enhancement.

Hypertrophic cardiomyopathy
Hypertrophic cardiomyopathy (HCM) is characterized 
by ventricular muscle hypertrophy and impaired diastolic 
function associated with a non-dilated cavity, in the ab-
sence of  another cardiac or systemic disease that could 
produce the magnitude of  hypertrophy[17,18]. It is the 
commonest cause of  sudden cardiac death in young peo-
ple. It is genetically transmitted in an autosomal domi-
nant pattern with variable penetrance and expression[19]. 
Symptoms are variable but can include dyspnea, orthop-
nea, paroxysmal nocturnal dyspnea and sudden death. 
Patients may also be asymptomatic. CMRI is the gold-
standard non-invasive imaging modality for estimating 
LV volumetrics, ventricular mass and systolic function. 
As such, it has become a valuable imaging tool in pa-
tients suspected of  HCM (Figure 2). The role of  CMRI 
in providing prognostic information in HCM is evolving. 

An important initial study found LGE in the majority 
of  patients with HCM[20]. The enhancement typically 
occurred in the hypertrophied regions, predominantly 
involving the middle third of  the wall in a patchy, mul-
tifocal distribution. Moon et al[21] found that the extent 
of  LGE was strongly associated with other risk factors 
for sudden death in HCM. Another study showed that 
even in mild HCM or asymptomatic HCM, the presence 
of  LGE was associated with ventricular tachycardia[22]. 
More recently, O’Hanlon et al[23] demonstrated that in 
217 patients with HCM followed for 3.1 years, the risk 
of  unplanned heart failure admissions, deterioration to 
New York Heart Association functional class Ⅲ or Ⅳ, 
or heart failure-related death was greater in the fibrosis 
group on CMRI [hazard ratio (HR): 2.5, P = 0.021], and 
this risk increased as the extent of  fibrosis increased (HR: 
1.16; 5% increase, P = 0.017). Thus, the presence and 
extent of  late-enhancement on CMRI appears to hold 
prognostic information in patients with HCM.  

Dilated cardiomyopathy
Dilated cardiomyopathy (DCM) is characterized by di-
lation of  the cardiac chambers coupled with impaired 
contraction of  the ventricles. The ventricular chambers 
exhibit increased diastolic and systolic volumes and a low 
ejection fraction <45%[24]. Although 50% of  cases re-
main idiopathic[25], DCM may be a common end-pathway 
in many disease processes, such as chronic myocarditis 
and burnt-out HCM[26]. Several studies have shown that 
endomyocardial biopsy of  a subgroup of  patients with 
idiopathic dilated cardiomyopathy (IDC) reveals a viral 
genome or HCM genotype[27]. The presenting symptoms 
and signs are progressive dyspnea and orthopnea in the 
majority of  patients. Arrhythmias and sudden death may 
also occur. 

Chamber enlargement and decreased function are 
hallmarks of  the pathological process in DCM (Figure 3). 
CMRI is the gold-standard non-invasive imaging modality 
for detecting such changes[28,29]. In addition, late contrast 
enhancement has been reported, most frequently in the 
mid-interventricular septum, indicating myocardial fibro-
sis. The presence of  LGE has prognostic implications for 
patients with DCM[30]. Those patients with macroscopi-
cally detectable fibrosis on CMRI have a higher rate of  
repeat hospitalizations with cardiac failure, worsening 
symptoms, ventricular arrhythmias and cardiac related 
death. Thus, CMRI offers a useful non-invasive diagnos-
tic method of  diagnosing IDC whilst excluding many 
other potential causes of  DCM, including ischemia[29]. 
CMRI offers the most accurate non-invasive method for 
assessing LV ejection fraction, can provide baseline volu-
metric measurements in order to monitor response to 
therapy and provides prognostic information. 

Cardiac sarcoid
Cardiac abnormalities are caused by myocardial infiltra-
tion by sarcoid granulomas[31]. The classical clinical pre-
sentation is heart block; however, other clinical features 
of  sarcoid heart disease include congestive heart failure, 
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Figure 2  Hypertrophic cardiomyopathy. A: 28-year-old man who presented 
with progressive heart failure and palpitations. The horizontal long-axis steady-
state free precession sequence demonstrates a hypertrophic interventricular 
septum measuring 23 mm (normal ≤ 11 mm) consistent with hypertrophic 
cardiomyopathy (HCM); B: Late-enhancement short-axis image shows late-en-
hancement in the hypertrophied septum (arrow). Note that there are 2 abnormal 
areas of enhancement corresponding to the right superior and inferior ventricular 
insertion points. This is a characteristic pattern in HCM. Such late-enhancement 
has prognostic implications for patients with HCM, being associated with an in-
creased prevalence of heart failure admissions, deterioration to New York Heart 
Association functional class Ⅲ or Ⅳ, or heart failure-related death.
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cor pulmonale, supraventricular and ventricular arrhyth-
mias, conductive disturbances, ventricular aneurysms, 
pericardial effusion, and sudden death. About 7% of  
patients with sarcoidosis develop cardiac symptoms but 
postmortem studies have revealed cardiac involvement 
in 20%-50% of  patients[32].

The CMRI appearances of  cardiac sarcoidosis de-
pend on the acuteness of  the process (Figure 4). In 
cases of  acute inflammation, enhancement is typically 
in a subepicardial or mid-myocardial pattern[33]. In the 
chronic setting, granulomas cause focal areas of  myocar-
dial thinning resulting from scar formation. Late contrast 
enhancement can be seen in areas of  granulomatous 
infiltration and is frequently patchy and nodular[34]. One 
study found that cardiac sarcoidosis predominantly af-
fects the basal myocardium and the subepicardial layer[35]. 
They also found that hyperenhancement may be related 
to LV dysfunction[35]. CMRI provides an accurate esti-
mation of  the extent of  cardiac involvement and may 
reveal signs of  early infiltration that are not detected by 
standard echocardiographic assessment[36]. In a study of  
81 consecutive patients with biopsy-proven extra-cardiac 
sarcoidosis, patients underwent CMRI and Japanese 
Ministry of  Health (JMH) assessment[37]. Patients were 

followed for 21 ± 8 mo for major adverse events (death, 
defibrillator shock, or pacemaker requirement). Late 
gadolinium enhancement on CMRI identified cardiac 
involvement in 21 patients (26%) and JMH criteria in 
10 (12%, 8 overlapping), a 2-fold higher rate for delayed 
enhancement-CMRI (P < 0.005). Pathology evaluation 
in 15 patients (19%) identified 4 with cardiac sarcoidosis 
and all 4 were positive by LGE, whereas 2 were JMH 
positive. On follow-up, 8 had adverse events, including 
5 cardiac deaths. Patients with myocardial damage and 
LGE had a 9-fold higher rate of  adverse events and an 
11.5-fold higher rate of  cardiac death than patients with-
out enhancement.

Cardiac amyloidosis
Cardiac amyloidosis describes amyloid deposition in the 
heart, which may occur as part of  systemic amyloidosis 
or as a localized process. 

Systemic amyloidosis is a complication of  chronic 
inflammatory conditions with renal disease being the 
predominant feature, presenting with proteinuria and 
renal failure. Cardiac involvement is rare[38]. Systemic 
amyloidosis is the most commonly diagnosed form of  
clinical amyloid. Multiorgan involvement is common 
and the heart is affected approximately 90% of  the 
time. Diastolic heart failure with right heart failure is 
the most common mode of  presentation[38]. Hereditary 
systemic amyloidosis is due to deposition of  amyloid 
fibrils derived from transthyretin, lysosome or apolipo-
protein A-1. Clinical syndromes include cardiomyopathy, 
nephropathy or neuropathy. Senile systemic amyloidosis 
is caused by deposition of  amyloid fibrils derived from 
normal wild-type transthyretin and presents as a slowly 
progressive infiltrative amyloid cardiomyopathy[38]. 

Cardiac amyloid typically demonstrates a diffuse de-
crease in signal intensity on T1-weighted fast spin echo 
images[39,40]. It generally causes diffuse hypertrophy of  
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Figure 3  Dilated cardiomyopathy. A: A 48-year-old man with progressive 
shortness of breath. The short-axis steady-state free precession sequence 
demonstrates a dilated left ventricle with a thin wall characteristic of dilated 
cardiomyopathy (DCM); B: Late-enhancement short-axis image shows late-
enhancement in the interventricular septum (arrow). This is a characteristic lo-
cation for fibrosis detection in idiopathic DCM and effectively excludes an isch-
emic etiology. Such late-enhancement has prognostic implications for patients 
with idiopathic DCM, being associated with an increased prevalence of all-
cause death, hospitalization, sudden cardiac death and ventricular tachycardia.

Figure 4  Cardiac sarcoidosis. A 54-year-old woman who presented with 
recurring palpitations and progressive shortness of breath for several months 
before suddenly collapsing. Cardiac magnetic resonance imaging demonstrates 
extensive scarring throughout the anterior and anteroseptal segments of the left 
ventricle (arrows). However, the involvement of the anterior segment of the right 
ventricle is unusual for ischemia and suggests another cause for the images. 
An endomyocardial biopsy revealed cardiac sarcoidosis. There was no previous 
history of lung or mediastinal sarcoid.

McDermott S et al . Cardiac MRI in cardiomyopathy



both the left and right ventricles, in contrast to HCM, 
which typically causes more focal hypertrophy (Figure 5). 
Thickening of  the interatrial septum and posterior right 
atrial wall > 6 mm is also seen in cardiac amyloidosis[41]. 
Late gadolinium enhancement is another hallmark of  
cardiac amyloidosis on CMRI. In a study by Vogelsberg 
et al[42], LGE was demonstrated in 79% of  patients with 
cardiac amyloidosis. Several different patterns of  LGE 
were seen; LGE of  the entire subendocardial circum-
ference extending in various degrees into neighboring 
myocardium, circumferentially in the left ventricle with 
sparing of  the subepicardial myocardium, and in the 
papillary muscles. Ejection fractions, LV end-diastolic 
volume and myocardial mass were not significantly dif-
ferent between the cardiac amyloid group and the other 
group of  patients with various cardiac disorders. The 
average interventricular septum was 17 ± 4 mm in the 
amyloid group compared with 13 ± 3 mm in the non-
amyloid group[42]. A more recent study by Syed et al[43] of  
CMRI in 120 patients with cardiac amyloidosis demon-
strated LGE in 97% of  patients and increased LV wall 
thickness in 91%. Global transmural or subendocardial 
LGE was the most common pattern seen in 83% of  
patients and this was associated with greater interstitial 
amyloid deposition. 

Iron overload cardiomyopathy
Iron overload occurs either due to excess gastrointestinal 
absorption or secondary to repeated blood transfusion. 
Iron overload cardiomyopathy (IOC) is the leading cause 
of  death in patients receiving chronic blood transfusion 
therapy[44]. IOC is reversible, if  chelation is started in 
time, but the diagnosis is often delayed due to the late 
appearance of  symptoms and the absence of  echocar-
diographic abnormalities[45]. IOC has been defined as 
the presence of  systolic or diastolic cardiac dysfunction 
secondary to increased deposition of  iron in the heart 
independent of  other concomitant processes[46]. Serum 
ferritin or liver iron may be normal in the context of  
extensive myocardial iron overload. Similarly, echocar-
diography may be normal until extensive myocyte iron 
deposition has occurred. 

The T2* sequence is the optimal sequence for de-
tecting increased iron overload in the myocardium. Iron 
works as a paramagnetic substance, decreasing the T2* 
relaxation time of  precessing protons in the x-y image 
plane. This reduces the signal from these protons, and 
thus leads to a darker appearance of  the myocardium on 
grey-scale imaging (Figure 6). The decay in T2 signal can 
be semi-quantitatively graphed. In patients with moder-
ate-to-severe iron deposition T2* values are substantially 
reduced - from the normal value of  approximately 50 ms 
or greater to less than 20 ms. When T2* is less than 20 
ms, LV systolic function is seen to decline progressively, 
accompanied by an increase in LV end-systolic volume 
index and LV mass[47]. In order to assist with clinically 
grading the severity of  IOC, patients at risk of  IOC 
may be divided into 3 categories based on cardiac T2* 
values[48]: (1) those with T2* > 20 ms (green zone) are 
at low risk for the imminent development of  congestive 
heart failure; (2) those with T2* between 10 and 20 ms 
(yellow zone) in whom cardiac deposition has probably 
occurred are at intermediate risk of  cardiac decompen-
sation; and (3) those with T2* < 10 ms (red zone) are in 
the high-risk category of  cardiac decompensation and 
need intensification of  chelation therapy.

Metastatic disease 
Metastatic disease to the heart and pericardium is un-
common but far more frequent than primary cardiac 
tumors[49]. Cardiac metastases are associated with a poor 
prognosis. The most common tumors to metastasize to 
the cardiac structures are lung, lymphoma, breast, renal 
and melanoma[50,51]. Bronchogenic carcinoma is the most 
common malignancy to spread to the cardiac structures 
and adenocarcinoma is the most common histological 
type[51]. Metastatic disease from bronchogenic carcinoma 
to the heart may be via direct spread, lymphatic or he-
matogenous spread[52]. Involvement of  the heart and 
pericardium is usually a late manifestation of  lymphoma, 
occurring in approximately 18% of  cases. Primary car-
diac lymphoma is diagnosed when there is no identifiable 
disease outside of  the heart[53]. Metastases typically have 
the appearance of  multiple focal nodules within the myo-
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Figure 5  Right ventricular endomyocardial biopsy showed cardiac amy-
loid. A: Horizontal long axis steady-state free precession sequence showing 
hypertrophy of the basal segments of the left ventricle (straight arrow), and bi-
atrial enlargement and thickening of the interatrial septum (curved arrow). Note 
the small pericardial effusion; B: Late-enhanced sequence shows a circumfer-
ential subendocardial high signal. Note the high signal on the right ventricular 
side of the interventricular septum resulting in the tram track sign (arrow). Note 
also the small pericardial effusion. 
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cardium, and can also be found in the pericardium[54]. An 
interesting sub-type of  cardiac metastases is “charcoal 
heart”, which has been described in melanoma spreading 
to the heart, and is related to the excessive pigment visu-
alized in these metastases[55]. Breast cancer may spread via 
direct invasion (usually via the internal mammary lymph 
node chain) or hematogenous dissemination. Generally, 
metastases have irregular borders, are bulky, infiltrative, 
more commonly involve the right heart chambers and 
may be associated with a pericardial effusion[6]. 

Most cardiac metastases are low signal intensity on 
T1 sequences and brighter on T2 sequences[56] with the 
exception of  melanoma which appears as a high signal 
on T1 and T2 weighted sequences due to the paramag-
netic properties of  melanin. Malignant disease typically 
enhances post contrast administration (Figure 7). An 
issue that is a common problem on CMRI is the blood-
pool artifact on immediate post-gadolinium T1 weighted 
sequences. An adaption of  a double-inversion fast spin 
echo sequence using a tissue nulling time of  600 ms is 
a useful additional sequence to confirm a tumor and 
exclude a thrombus[57]. Osteogenic sarcoma involving 
the heart is rare but merits mention as the metastasis 
contains bone. These calcific areas of  increased opacity 
may be visible on a chest X-ray but are better character-
ized on computed tomography. Calcification is shown as 
a low signal on CMRI. 

CONCLUSION
CMRI has established itself  as an important diagnostic 
investigation tool for assessing the morphological and 
functional characteristics of  cardiomyopathy. Particular 
strengths of  CMRI are the ability to overcome anatomical 
limitations, suboptimal acoustic windows, a multi-sequenc-
ing approach to uniquely characterize the myocardium, 
and the absence of  ionizing radiation. The use of  LGE 
sequences has had an important impact on the ability to 
characterize the myocardium, and also aids in improving 
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Figure 6  A 79-year-old woman with myelodysplasia treated with blood transfusions over many years. A (echo time 10 ms) and B (echo time 20 ms) are two 
short axis T2star sequences from a normal patient with no evidence of myocardial iron overload; C (echo time 10 ms) and D (echo time 20 ms) are from the patient 
with myelodysplasia showing a progressive loss of signal with increasing T2 echo time indicating shortened T1 relation secondary to iron infiltration; E: Graph of de-
creasing T1 relaxation times (green line) compared with a normal patient (red line). 

Figure 7  A 72-year-old woman with metastatic breast cancer to the heart. 
Note the location of the metastatic nodules in the right heart chambers, the 
infiltration through the right ventricular free wall, the pericardial effusion and 
the pericardial metastasis. Any infiltrative appearing cardiac mass involving the 
right heart chambers in the presence of a pericardial effusion should be consid-
ered suspicious for malignancy. 
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clinical risk stratification for many cardiomyopathies.
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