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The hierarchical properties of potential energy landscapes have
been used to gain insight into thermodynamic and kinetic prop-
erties of protein ensembles. It also may be possible to use them to
direct computational searches for thermodynamically stable mac-
roscopic states, i.e., computational protein folding. To this end, we
have developed a top-down search procedure in which conforma-
tion space is recursively dissected according to the intrinsic hier-
archical structure of a landscape’s effective-energy barriers. This
procedure generates an inverted tree similar to the disconnectivity
graphs generated by local minima-clustering methods, but it fun-
damentally differs in the manner in which the portion of the tree
that is to be computationally explored is selected. A key ingredient
is a branch-selection algorithm that takes advantage of statistically
predictive properties of the landscape to guide searches down the
tree branches that are most likely to lead to the physically relevant
macroscopic states. Using the computational folding of a b-hairpin-
forming peptide as an example, we show that such predictive
properties indeed exist and can be used for structure prediction by
free-energy global minimization.

New methods have been developed in recent years for using
the global properties of protein potential energy landscapes

to analyze overall thermodynamic and kinetic properties of
protein ensembles. The method pioneered by Bryngelson and
Wolynes (1) uses order parameters to characterize global dy-
namic properties such as funneling (2–8). Other methods gen-
erate hierarchical inverted trees or disconnectivity graphs, whose
topologies reflect selected aspects of landscape structure, by
finding and hierarchically grouping local minima according to
metrics such as Euclidean distance in conformation space (9–
13), potential energy barrier height (14–23), or effective-energy
barrier (peak of a potential-of-mean-force) height (24–28).
Different methods for finding local minima have been used for
this purpose, such as steepest descent quenching from molecular
dynamics simulations (10, 11, 14, 15), and the threshold method,
which progressively extends a search of the basin surrounding a
known local minimum until a new minimum of lower energy is
found (21–23). By grouping the catchment regions [steepest-
descent minimization starting from any point in a catchment
region leads to its local minimum (29)] of the local minima, a
disconnectivity graph defines a variable-scale decomposition of
conformation space: The ‘‘root’’ (the top) is the complete region
containing all conformation space, the ‘‘leaves’’ (the bottom) are
the local minima catchment regions, and each branch at a given
level parameter corresponds to an extended region that is
connected by virtue of satisfying a level inequality by using the
graph’s metric.

The branches of trees constructed with the effective-energy
metric (24–28), which are parameterized by thermal energy or
temperature T (in units where kB is unity), correspond to the
macroscopic thermodynamic states (macrostates) of the sys-
tem—i.e., to conformation space regions that kinetically confine
the system at T (28, 30, 31). (If entropic effects are not too
important, the macrostates also can be approximated as
branches of trees constructed by using the potential barrier
metric.) The top is reached when T exceeds all effective-energy
barriers, the leaves (local minima) are at T 5 0 and the level of

experimental relevance is (for biological problems) T 5 Tphys ;
310 °K ; 0.6 kcalymol.† The top macrostate contains the entire
space, and macrostates decrease in size and increase in number
with decreasing T until they correspond to local minima catch-
ment regions at low T.

It also may be possible to use such hierarchical trees for
another purpose—to efficiently guide searches for the mac-
rostates of lowest free-energy (the physically relevant subset of
macrostates, PRSM) at Tphys; i.e. for global free-energy mini-
mization. Our focus here is the possibility of developing a
top-down tree-search method for global minimization that pro-
gressively subdivides conformation space and explores only
selected branches as T is lowered toward Tphys. Although this
type of search implicitly relies on the existence of an underlying
tree structure, most of the tree is never computed: the utility of
a top-down method lies in its ability to find a global minimum
while computing very little of the tree. This requires a branch
selection algorithm that can choose, during the annealing process
itself, the branches that are most likely to lead to low free-energy
macrostates at Tphys. Branches that are not selected are not
explored, resulting in computational efficiency, but at the risk of
excluding important regions from subsequent search.

Local minima-based methods are not top-down in this context
because they all start from local minima, progress by finding
more local minima, and build the higher (and larger) branches
of a disconnectivity graph by aggregating local minima (see ref.
21 for an example of a global minimization method that moves
from local minima to local minima using the ‘‘threshold’’ algo-
rithm and ref. 20 for a method of building a disconnectivity graph
starting with knowledge of the global minimum). These methods
do not attempt to select the most promising branches by using a
branch-selection algorithm. In contrast, a top-down search to
nonzero Tphys does not seek any local minima. Even if a top-down
search were used to find local minima by continuing the search
down to T 5 0, only a few local minima would be computed at
the very end of the search process.) Instead, it subdivides
branches by using distance-geometry inequalities. Most impor-
tantly, this procedure provides a context in which a branch
selection algorithm can select the most promising descendent
branches for further search.
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A top-down search requires: (i) an algorithm for recursive
subdivision of macrostatesybranches, and (ii) an effective branch
selection algorithm. We previously have described a method for
recursive subdivision based on the identification of effective-
energy barriers during a computational cooling process that
starts from the top macrostate (25, 26). Stochastic sampling of
the landscape is algorithmically monitored during cooling for the
appearance of effective-energy barriers that would trap sampling
in subregions (i.e., break computational ergodicity), and thus
reduce sampling efficiency, if temperature were further lowered
(see ref. 32 for an interesting discussion of this problem). Before
T is lowered to a point where trapping occurs, the parent
macrostate is subdivided into child macrostates that are sepa-
rated by the effective-energy barrier. Independent search pro-
cesses can then be spawned (e.g., a coarse-grained parallel
computer) for each child that do not need to cross the barrier.
This maintains computational ergodicity and efficient sampling
at all T at the expense of an increased number of separate search
processes.

The second task, effective branch selection, will only be
possible if there are inheritance properties of the macrostates at
T . Tphys that can be used to partially predict that their
descendents will be PRSM members. This is not guaranteed, and
it is easy to construct landscapes whose hierarchies have no
predictive power (33). Yet it seems plausible that predictive
properties exist and can be used to hierarchically solve the global
minimization problem with reduced computational cost. Here
we empirically explore this key question: Using a b-hairpin-
forming octapeptide as an example, we show that this hypothesis
is true and compare the utility of different branch-selection
algorithms. We conclude that hierarchical top-down searching
can be a valuable tool in computational structure prediction.

Methods
We fix bond lengths and angles and sample conformation space
by using the protein backbone and side-chain torsion angles,
denoted V, as variables.

Recursive Computation of Window Functions in Distance Variables.
The fundamentals already have been described (24–26, 30); we
summarize here: Each macrostate a is specified by a macrostate
window function wa(T; V), which is ;1 within the macrostate
and ;0 outside. Here it is adequate to use ‘‘hard’’ window
functions that are either 1 or 0, and to assume that the window
functions only change discontinuously (i.e., by subdivision) and
are otherwise constant between bifurcation temperatures. The
top macrostate, 0, includes all conformation space, so w0 5 1. At
lower T there are multiple macrostates {a}T, whose window
functions satisfy (awa(T; V) 5 1, @V. That is, they completely
dissect conformation space.

As T is lowered through a descending sequence of tempera-
tures {Ti}, each of the macrostates of interest are separately
tested for bifurcation (see below). When a macrostate a divides
into children b and g, wa is divided into wb and wg:

wb~V! 5 Qba~V!wa~V!, [1]

wg~V! 5 Qga~V!wa~V!, [2]

where Qba(V) and Qga(V) equal 0 or 1, and Qba(V) 1 Qga(V) 5
1. Recursive application of Eqs. 1 and 2 yields window functions
of the form

wd~T; V! 5 Qdd1~V!Qd1d2~V! . . . QdN0~V!, [3]

where d1 is the parent of d, d2 is the parent of d1, and so on up
to dN, which is a child of the top macrostate.

Detecting Bifurcations. The equilibrium probability distribution
within macrostate a is

pa~T; V! } e2V@R~V!#yTwa~V!,

where V(R) is the potential in Cartesian coordinates R. [The
Jacobian of the change of variables from R to V is ignored
because it is independent of V and factors out of all conforma-
tion space integrations (34).] To detect bifurcations of wa we first
approximate pa(T; V) as a sum of localized distributions whose
number and character (i.e., zero, first and second moments) are
determined by characteristic packet equations as described in
refs. 24 and 30. It is then simple to define window functions that
separate these regions (24, 30). However, applying the packet
equations in multidimensional form can be costly. Instead we
apply them to one-dimensional effective-energy reaction coor-
dinates that are derived by separately projecting pa(T; V) onto
each of the interatomic distance variables rij(V) [ urWi(V) 2
rWj(V)u, where rWi is the 3-vector Cartesian coordinate of atom i. Fig.
1 displays one such projected probability distribution,
pa

Thr2Cg2Thr7Cg(T; r), at two different temperatures. At T 5 1.1
kcalymol the packet equations have only a single solution, so
there is only one macrostate, which contains the entire region.
When T is lowered to ;0.6 kcalymol, pa

Thr2Cg2Thr7Cg(T; r) be-
comes sufficiently bimodal so that two independent child solu-
tions appear corresponding to the two separate concentrations
of probability. This signals the bifurcation of the macrostate into
two children. The window functions are then defined by Eqs. 1
and 2 with the approximation

Qba~V! < u@rij~V! 2 rij
t #, [4]

Qga~V! < u@rij
t 2 rij~V!#, [5]

where rij
t is the value of rij corresponding to the node of pa

ij (see
Fig. 1) and u is the Heaviside step function.

Because the distance variables are highly redundant, we expect
that this procedure will identify each macrostate as an isolated
concentration of probability in at least one projected represen-
tation. In effect, the distance variables provide a large set of
possible reaction coordinates that can be examined for confining
effective-energy barriers. No artifactual barriers will be intro-
duced by this approximation, although it is possible (though

Fig. 1. Probability histograms for BH8 at high and low T. The mean structures
of the two children after bifurcation are shown; the double-headed arrow
identifies the bifurcating distance.
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unlikely) that an effective-energy barrier could be missed. The
danger of missing an effective-energy barrier is that computa-
tional ergodicity may be broken within the (spuriously undi-
vided) macrostate. We have not yet encountered any case in
which this has occurred.

The use of the rij as reaction coordinates for analyzing
metastability implicitly assumes that probability equilibrates
rapidly in the transverse directions. This will not be true for all
rij, but should be true when there is an effective-energy barrier
in the coordinate. Because this is the only case in which the ij
projection will be used, the assumption is self-consistent. To
maintain dynamical significance, the projection must account for
the fact that the rij are nonlinear functions of V. This is described
in ref. 26.

We sampled pa(T; V) within each macrostate a by using the
Metropolis Monte Carlo method with an anisotropic multivar-
iate wrapped Gaussian transition function (35, 36) and the
J-walking algorithm (37). Distance-variable probability histo-
grams describing pa

ij(T; r) were computed (typically with 20 bins)
for all the interatomic pairs using every tenth sample point. The
fractional energy-f luctuation autocorrelation between sample
points decayed to ;0.5 after 50 steps. Computing these histo-
grams added little cost compared with the cost of evaluating
V[R(V)], because the interatomic distances were already re-
quired to compute the potential. The characteristic packet
equations were solved by using trapezoidal integration over the
histogram bins.

Computing Macrostate Thermodynamic Properties. Intensive prop-
erties, such as mean energy,

Ea~T! 5
*V@R~V!#pa~T; V!dV

*pa~T, V!dV
, [6]

were computed from the Metropolis Monte Carlo sampling at
each T 5 Ti.

Macrostate entropy Sa(T) is extensive and can not be com-
puted in this manner. Instead, we computed it and macrostate
free energy Fa(T) as follows: We fixed the (classical) arbitrary
entropy scale by setting F0(Thi) 5 0 (i.e., for the top macrostate).
When it bifurcated at temperature Tbg the free energies of its
children, b and g, were calculated from their probability ratio
pbypg. In accord with Eqs. 4 and 5, this is

pb~Tbg!

pg~Tbg!
5

*pa
ij~Tbg; r!u~r 2 rij

t !dr

*pa
ij~Tbg; r!u~rij

t 2 r!dr
, [7]

where rij is the distance variable in which the bifurcation occurs.
Then, Fb and Fg at Tbg were calculated by using

pb~Tbg!

pg~Tbg!
5 e2~Fb 2 Fg!yTbg [8]

and the conservation of probability relationship

e2F0yTbg
5 e2FbyTbg

1 e2FgyTbg. [9]

Sb and Sg were then calculated by using the thermodynamic
relationship

Fa 5 Ea 2 TbgSa. [10]

As T decreased, the mean energies were updated by using Eq. 6.
Entropies were updated by (discretely) integrating

dSa~T!

dT
5

dEa~T!ydT
T

. [11]

The derivative of Ea in Eq. 11 was calculated by finite difference.
While the derivative could be calculated from the potential
energy variance, it is more accurate to use the finite difference
because of its faster convergence. Moreover, when the finite
difference is used, computational errors in Ea at different T
largely cancel when Eq. 11 is integrated.

Annealing and Branch Selection. The algorithm is summarized in
Fig. 2. The cooling schedule was empirically chosen to be slow
enough so that each macrostate bifurcated before sampling
ergodicity was broken:

DTi 5 Ti 2 Ti11 5 H1.0, Ti . 4.0
0.1, 4.0 , Ti , 1.1
0.05, Ti , 1.1

. [12]

Each member of the set of macrostates being tracked, }(T), was
sampled and tested for bifurcations at each Ti as described above
by using 128,000 sample points, a value that gave DEa(T)yT ;
0.05 for all macrostates (where DEa is the standard error of the
mean.) To handle multifurcations, after each bifurcation, the
children were resampled and tested for additional bifurcations at
the same temperature. The thermodynamic parameters of the
children were computed by partitioning the parental sample
points. The parent was replaced in }(T) by its children. The
branch-selection algorithm then was applied to reduce the
number of macrostates in }(T) according to the specified
criterion.

Number of Contacts. We defined the number of nonlocal contacts
NC,a(T) for macrostate a as the number of rij for pairs separated
by more than one torsion angle that had

E
0

1.2 rij
vdW

pa
ij~T; r!dr . 0.5, [13]

where rij
vdW is the van der Waals contact distance for pair ij. The

probability-weighted number of contacts

Fig. 2. Algorithm. }(T) is the set of macrostates that are being tracked at
temperature T; a refers to a macrostate and b and g to its children. }(T) is first
expanded by identifying the subset of macrostates that undergo bifurcation,
}9, and recursively bifurcating them and their children until no bifurcations
remain. Bifurcations expand }(T); the branch-selection algorithm is used to
prune macrostates z before T is lowered according to the cooling schedule.
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^NC&~T! 5
(aNC,a~T!e2FayT

(ae2FayT , [14]

is a T-dependent estimator of overall compactness.

Estimated Number of Macrostates. Not all macrostates were com-
puted, but their T-dependent total number NM(T) was estimated
(assuming that the rate, in T, of bifurcation is similar for the
unobserved and observed branches) by calculating the observed
average rate of bifurcation, g(T) [ d log(NM

obs)ydT, and
integrating

dNM~T!

dT
5 NM~T!g~T!, [15]

using the boundary condition NM(Thi) 5 1.

Computation. Tree analysis was performed with coarse-grained
parallelization on a cluster of Pentium processors using a
master-slave configuration. Slaves computed individual mac-
rostate branches independently as scheduled by the master
according to the branch-selection algorithm. Therefore, inter-
processor communication was minimal, and parallelization ef-
ficiency was essentially 100%.

Results and Discussion
Top-Down Discovery of the BH8 Macrostate Tree. To provide a model
for examining different branch-selection algorithms, an exten-
sive macrostate tree was generated by using the top-down
method for the BH8 octapeptide (ITVNGKTY), a peptide
designed to fold into a b-hairpin (38). We used the ECEPPy3
potential (39), an all-atom potential with fixed bond lengths and
bond angles, in torsion-angle coordinates, V, augmented by
empirical solvation based on solvent-accessible surface area (40).
As a benchmark for subsequent analysis, a large number of
macrostates (all those having equilibrium probability $1023)
were computed, even though most would not be computed in an
actual free-energy global minimization run guided by a branch-
selection algorithm.

The Gibbs–Boltzmann distribution was sampled by using a
modified Metropolis algorithm (see Methods), starting at a
temperature (Thi 5 35 kcalymol) well above the maximum
ECEPPy3 barriers to individual torsion-angle rotation. Mac-
rostate thermodynamic properties were computed as T was
gradually lowered (see Eq. 12). In addition, the effective-energy
functions that resulted from projecting the Gibbs–Boltzmann
probability distribution onto each of the interatomic-distance
variables were algorithmically monitored for signals of mac-
rostate bifurcation: When a bifurcation temperature was
reached at which an effective-energy barrier appeared that
satisfied the bifurcation conditions (which imply macrostate
metastability), the macrostate was subdivided by a distance-
variable inequality (see Methods for details). By this means, large
effective-energy barriers were detected during sampling at high
T, and small barriers were detected at lower T.

For example, Fig. 1 shows the projected probability histo-
grams for rThr2Cg2Thr7Cg

, the distance between the Cg atoms of
Thr-2 and Thr-7 for one macrostate at two different temper-
atures. The histogram is effectively unimodal at T 5 1.1
kcalymol (i.e., the small dip in probability between the modes
does not restrict the transition rate), but is sufficiently bimodal
at its bifurcation temperature, 0.6 kcalymol, to satisfy the
bifurcation conditions. Thus, at this temperature the parent
macrostate a was subdivided, using rThr2Cg2Thr7Cg

as a reaction
coordinate, into children b and g centered around
rThr2Cg2Thr7Cg

;4.5 Å and rThr2Cg2Thr7Cg
;8 Å.

Because of the partial redundancy between different distance

variables [resulting from the fact that there are O(N2) distance
variables but only O(N) degrees of freedom, where N is the
number of atoms], a single effective-energy barrier (i.e., having
a unique location in the internal coordinate or Cartesian space)
often will manifest as probability gaps in multiple distance
variables. When this happens, the bifurcating reaction coordi-
nate will be the one that first satisfies the bifurcation conditions.
But this choice is somewhat arbitrary (and could be influenced
by numerical details). A different choice would result in a slightly
different boundary definition. However, because the boundaries
are only used for coarse-graining, this is not a problem: small
differences will only affect the negligible probabilities located in
the transition regions (30, 41) between macrostates and will not
affect thermodynamic properties. For example, the bifurcation
illustrated in Fig. 1 happened to use the Thr-2 Cg–Thr-7 Cg

distance, but there would not have been a significant difference
in the macrostate boundary (when projected onto the internal
coordinate space) if the Thr-2 Cb–Thr-7 Cb distance had been
used instead. Because the fluctuations in rThr2Cg2Thr7Cg

and
rThr2Cb2Thr7Cb

are correlated, the effective-energy barriers in both
distance variables are simultaneously removed when the paren-
tal macrostate is subdivided by using either distance variable.

Multiple recursive dissections as T was lowered yielded mac-
rostate specifications that were products of inequality con-
straints involving multiple distance variables (see Eq. 3). Com-
putational sampling of the macrostates converged rapidly at all
T because the bifurcation procedure ensured that there were
never any significant barriers to sampling within a single
macrostate.

Properties of the Macrostate Probability Tree. We first analyzed the
hierarchical organization of the macrostates by plotting the
macrostate probabilities pa(T) as a function of T (Fig. 3). Each
continuous line segment is a macrostate branch, and each
macrostate bifurcation corresponds to a fork. This tree provides
significant insight into the underlying structure of the potential
energy landscape and illustrates some features that will be
common in all cases: (i) At high T (here, .25 kcalymol) a single

Fig. 3. Probability macrostate tree for BH8. The trajectories leading to PRSM
members are highlighted. The peptide figures show the average macrostate
conformations at three different temperatures on the trajectory that leads to
the most probable macrostate (i.e., the native state). The PRSM trajectories are
darkened. The inset plots the T-dependent number of macrostates NM(T) (Eq.
15) and the probability-weighted mean number of nonlocal atom pairs in
contact ^NC&(T) (Eq. 14).
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macrostate contains all the ensemble probability. (ii) The num-
ber of macrostates, NM(T), computed by integrating Eq. 15,
increases geometrically with decreasing T (see Inset, Fig. 3), and
probability is distributed between many macrostates in the
temperature midrange. (iii) NM(T) continues to increase with
decreasing T until, as T 3 0, each steepest-descent catchment
region corresponds to a macrostate. (iv) As T 3 0, the mac-
rostate that contains the energy global minimum (whose trajec-
tory is the black line in Fig. 3) captures all the probability. This
will not necessarily correspond to the macrostate that contains
the most probability at Tphys (i.e., the folded state, if there is one).
(v) The PRSM is not huge for peptides and proteins that assume
a folded state. For example, 93% of the BH8 probability at Tphys
is contained in only four macrostates.

The nonuniform variation of NM with T (Fig. 3 Inset) suggests
that the structure of the BH8 potential energy landscape can be
qualitatively classified into four different temperature regimes.
Analyzing the bifurcations in these regimes indicates that: (i) The
burst of bifurcations at T ; 25 kcalymol is associated with energy
barriers imposed by the rigid covalent geometry used by
ECEPPy3. These only affect the local structure of the molecule.
(ii) NM increases only slowly until T ; 4 kcalymol where
attractive forces become strong enough to initiate collapse with
a consequent increase in the mean number of atom pairs in
contact, ^NC& (see Eq. 14). Below this ‘‘transition temperature’’
the van der Waals attraction becomes significant and probability
can get trapped in an increasing number of dynamic catchment
regions. (iii) The rate of increase decreases for T ; 1.5 kcalymol,
probably because most van der Waals contacts have already been
made.

Branch-Selection Algorithms. All branches having pa $ 1023 are
plotted in Fig. 3 for reference. But as discussed above, our goal
is to determine whether the PRSM can be found while comput-
ing only a small fraction of the branches selected during the
annealing process. The BH8 macrostate tree provides an illus-
trative example: Because the PRSM members have the lowest
Fa(Tphys), it was plausible a priori that PRSM ancestors might be
identified at high T as the states of lowest Fa(T). But Fig. 3 shows
that, for 1.4 , T , 2 kcalymol, some of the PRSM trajectories
pass through temperature regions where they have very small
probability (i.e., high Fa). Therefore, they would not be followed
by a low-Fa branch-selection algorithm (i.e., which kept only a
fixed number of the lowest Fa macrostates at each T) unless a
large number of trajectories were followed.

We examined two additional branch selection strategies,
branch selection based on: (i) low Ea (low energy), which ignores
entropy in making predictions, and (ii) low Ja (low exergy, Ja [
Ea 2 TphysSa; ref. 42), which gives some weight to entropy, but
not as much as does the low-Fa strategy. To compare the

predictive power of these three strategies, we determined the
trajectory subsets that emerged when only 30 trajectories were
followed by using either Fa, Ea, or Ja as the branch-selection
criterion (dark trajectories in Fig. 4 Left, Middle, and Right,
respectively). In this test, success is measured by the number of
high-probability (at Tphys) macrostates that are tracked by each
branch-selection method. Clearly, the exergetic selection has a
much stronger propensity to track macrostates that have low free
energy at Tphys; thus it provides a superior branch-selection
algorithm to both energy and free energy. Similar analysis of the
pentapeptide Met-enkephalin showed that Ja is a good predic-
tor for this case as well (data not shown).

Next Steps. This study provides proof of principle for top-down
free-energy minimization, but efficiency will have to be in-
creased for much larger problems. Many improvements are
possible. For example, instead of monitoring effective-energies
for each of the distance variables, because distance variable
redundancy grows with the number of atoms, for large systems
it should be sufficient to consider only a representative subset of
distance variables that includes an appropriately selected mix of
small and large distances. For example, including all atom pairs
that were separated by 1, 2, 4, . . . covalent bonds would result in
a representative subset having only O(N log N) distance vari-
ables, where N is the number of atoms. It also may be possible
to use smoothing methods (33) to more rapidly approximate
branches at higher temperatures, and to combine these with
principal-component and -coordinate methods (13, 17) to elim-
inate inessential degrees of freedom. And the accuracy (and
cost) of numerical integrations at T . Tphys can be adaptively
relaxed consistent only with the need to detect bifurcations and
apply the branch-selection criteria.

The most significant efficiency increases probably will come
from improved branch-selection strategies: The ones tested here
simply compare macrostate properties at the same T, pick those
of highest rank, and discard the others. But this all-or-nothing
approach tends to concentrate excessively on closely related
macrostates and does not allow for reexamination of previously
discarded macrostates. It should be possible for a more sophis-
ticated algorithm to probabilistically allocate computational
effort and to dynamically adjust the balance between depth and
breadth of search while simultaneously searching macrostates to
different depths in T. In addition, thermodynamic branch-
selection parameters can be augmented with database-derived
empirical parameters such as Ramachandran and secondary
structure propensities that might be more powerful at high T. It
also will be interesting to explore the possibility of making the
potentials themselves T-dependent to improve branch selection
without affecting the Tphys behavior.

Potentials with empirical solvation, such as used here, have

Fig. 4. Branch-selection strategies. The BH8 macrostate tree shown in Fig. 3 is replotted in gray. The subsets of 30 trajectories that were followed by a
trajectory-selection algorithm using free energy Fa(T) (a), mean energy Ea(T) (b), and exergy Ja(T) (c) are darkened. The PRSM corresponds to the four trajectories
with lowest Ja (equivalently, lowest Fa) states at Tphys.
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been successful in predicting the structures of peptides contain-
ing up to about 60 amino acids (43). And they are currently useful
for perturbative folding problems such as refining experimen-
tally-determined structures or homology modeling predictions.
Although we have used an ab initio problem as an example, the
top-down approach also can be used for perturbative folding. As
with all potential energy-based methods, the accuracy of top-
down searches ultimately will depend on the development of
improved potentials. The hierarchical approach can assist this
development by providing a such developments in two ways. In
addition to helping perform the global minimization required to
determine the predictions of a potential function, macrostate
trees may help by providing a meaningful measure of the
distance between the experimental and potential-predicted mac-
rostates: The temperature at which ancestors first diverge (i.e.,
analogous to the time of evolutionary divergence) may be more
valuable than conventional rms deviation measures for system-
atically improving potential energy performance.

Although not the main focus here, we note that like hierar-
chical methods based on grouping local minima macrostate
analysis provides the information needed for a thermodynamic
analysis of ensembles and for an approximate master equation
description of the dynamics of folding and conformational
change. It has the advantage that branch selection can be used
to restrict computational effort to the branches of physical
relevance (i.e., significant probability at Tphys). Moreover, in the
top-down approach there is no need to separately search for
saddle points and reaction coordinates between all pairs of
catchment regions because the bifurcation temperatures esti-
mate the barrier activation free energies and if more accurate
results are needed, the bifurcating distance variables and (the
negative logarithms of) their probability histograms provide
reaction coordinates and effective-potential functions, respec-
tively, for computing isothermal folding at Tphys. By projecting

the kinetic description in the macrostate basis onto a reduced
representation by using order parameters such as density and
number of native contacts, it should be possible to examine the
dynamics predicted by the macrostate tree for funneling and
related properties (3, 8).

It is possible that the hierarchical inheritance property of
exergy that makes it a useful branch-selection parameter is a
general statistical consequence of the fact that the peptide
potential energy function is a sum of a large number of semi-
independent terms; or this may depend on other specific prop-
erties. Nymeyer et al. (44), comparing three lattice model
systems, recently showed that the number of native contacts was
a useful order parameter for dynamical folding-rate calculations
only when the potential energy landscape possessed funneling
properties defined by the relationship between the glass and
folding temperatures. It seems plausible that funneling proper-
ties would favor accurate branch-selection, though it is not
evident that they are required for it. Hierarchical analysis of
many systems will be needed to study this and to determine
whether there are prerequisites, beyond semiseparability of the
potential, that are required for effective branch selection.

In summary, top-down macrostate tree analysis provides a
potentially advantageous alternative to local minimum-based
approaches for analyzing the hierarchical structure of protein
energy landscapes. It naturally includes entropic as well as
energetic effects and can identify and exploit hidden hierarchical
properties in new types of global search procedures. Developing
further improved branch-selection algorithms and understand-
ing how they perform as protein size increases are important
future tasks.
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