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Abstract

The inclusion of cellulosic ethanol in the Energy Independence and Security Act (EISA) of 2007 and the
revised Renewable Fuel Standard (RFS2) has spurred development of the first commerecial scale cellulosic
ethanol biorefineries. These efforts have also revived interest in the development of dedicated energy
crops selected for biomass productivity and for properties that facilitate conversion of biomass to liquid
fuels. While many aspects of developing these feedstocks are compatible with current agricultural
activities, improving biomass productivity may provide opportunities to expand the potential for biofuel
production beyond the classical research objectives associated with improving traditional food and feed

crops.

Introduction

It is widely believed that anthropogenic loading of
greenhouse gasses, such as CO,, N,O and methane, into
the atmosphere is causing detrimental climate change. The
majority of CO, emissions arise from burning fossil fuels,
which supply about 85% of human energy consumption
globally. In response to this, there are currently many low-
carbon methods to generate electricity, including wind,
geothermal, hydroelectric, and solar approaches. When
considering the likely contribution of these approaches,
it is useful to remember that the Earth receives approxi-
mately 7000 times as much energy from the sun as all
human energy uses [1]. Energy from the sun can be
utilized in the following three ways: via photovoltaic
conversion to electricity, by using mirrors to heat liquids
that power sterling engines to produce electricity, or by
harvesting plant biomass that can be burned as solid or
liquid fuels. At present, none of these approaches can
provide for all our energy needs. Thus, it is essential to
approach renewable energy production through a basket
of complementary technologies rather than to rely on a
single technology. Generating biomass is currently the
most cost-effective route to produce renewable liquid
fuels. At present, in the USA, biomass provides about 40
times as much energy as photovoltaics [2] and represents
78% of the total renewable energy worldwide [3].

Liquid biofuels are currently made almost entirely from
sugar, starch, or fats and oils derived from plants that are
also used for food and feed. Appropriately, there is concern
that the use of food and feed crops for fuel may not
be sustainable in the face of expanding demand for food,
feed and fiber. However, there is a long-term opportunity
to produce fuels from non-edible lignocellulosic biomass
from plants. In this brief review, we have summarized
some of the issues associated with development of feed-
stocks for cellulosic transportation fuels and have
attempted to outline some of the scientific questions in
plant biology that are related specifically to this topic.
Many other reviews of this subject and related matters have
appeared [4-9], some include a particularly dynamic topic
that is beyond the scope of this review - estimates of the
impact of land use for biofuels on other uses of land
(‘consequential or ‘indirect’ land use change). In general, it
is apparent that some land is available for production of
biofuels without significant effects on food production or
on ecosystem services [10-12]. A recent study estimated
that more than 600 million hectares of land worldwide
have fallen out of agricultural production, mostly in the
last 100 years [11]. Some of this area appears suitable for
the production of perennial grasses or other types of energy
crops, but additional research is necessary to categorize
the land with respect to the potential for various types of
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energy crops. Our view is that biofuels can probably be
produced on a large enough scale to meet demand for
about 30% of all liquid transportation fuels [10].
Improvements in energy efficiency could significantly
increase the percentage of transportation fuels produced
from biomass.

First generation biofuels

At present, liquid biofuels are of two main types: ethanol
and biodiesel (fatty acid methyl esters of lipids). Ethanol is
primarily made by using yeast to ferment sugar extracted
from sugarcane and sugarbeet, or from the depolymerized
starch of corn, wheat or cassava. Some countries are
already using this technology to provide significant levels
of fuel. In 2009, in Brazil, production for fuel on about
4.6 million hectares resulted in about 27 billion liters of
ethanol plus two gigawatts of net electricity from combus-
tion of bagasse (the residual lignocellulosic material of
sugarcane stems left after processing for sugar) [10,13].
The introduction of flex-fuel vehicles into the Brazilian
light-duty fleet allows high-blending (all gasoline in Brazil
contains 25% ethanol) as well as mixing of ethanol and
gasoline by the consumer at the pump. In 2008, ethanol
replaced about 40% of the gasoline used in Brazil [14]. The
Brazilian government recently announced that expansion
of the sugarcane crop would be limited to 63.5 million
hectares [15]. This land could be made available without
the clearing of natural ecosystems by a slight increase in
the low stocking density of cattle ranching, which currently
occupies an estimated 237 million hectares [14]. Advances
in sugarcane breeding and agronomy, in addition to
process improvements in ethanol production from sugar
and bagasse, are also expected to significantly increase the
amount and efficiency of production, while also improving
the environmental impact of sugarcane production [16].

In 2011, about 49 billion liters of ethanol were produced
by fermentation of corn-derived sugars from 38% of the
32.2 million hectares of land used to grow corn for grain
in the US [17]. Most of the increase in use of corn for
ethanol during the period 2000-2009 was provided by
an increase in yield of the US corn crop during that
period [17]. Approximately 35% of the mass of corn
kernels is recovered from the ethanol production process
as a high-protein residue, called dried distiller grains,
which has high nutritional value and is used as cattle
feed. Although expansion of corn has displaced some soy
production, the feed value of the dried distiller grains
from a hectare of corn processed for ethanol is similar to
the feed value of soy protein obtained from a hectare of
soybean. Use of corn grain for ethanol production also
creates large amounts of stover, leftover leaves and stalks
similar to the bagasse in sugarcane production. Unlike
sugarcane bagasse, which is combusted for process heat
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and electricity to drive the process, corn stover is typically
unused and left in the field. Recent studies indicated that
the net energy return for corn ethanol could be almost
doubled by using stover for production of process heat
and electricity [18-19].

Biodiesel is produced primarily from triacylglycerol
obtained from soy, canola and other oilseeds or from
the mesocarp of palm fruits. Tallow, lard and used
cooking oil can also be converted to biodiesel but are
available in relatively small amounts. The conversion is
conveniently accomplished by trans-esterifying triacyl-
glycerols with methanol to produce fatty acid methyl
esters and glycerol. Fatty acid methyl esters can be used
directly in diesel engines, whereas ethanol cannot. Because
temperate oilseeds have much lower biofuel yields than
corn, economic incentives favor ethanol production
wherever corn can be grown.

Advanced biofuels

Biofuels made from feedstocks other than starch, sugar
or lipids are generally referred to as advanced biofuels.
The largest source of feedstock is lignocellulose, the
cell walls that comprise the bodies of higher plants.
There are several different technologies for conversion
of lignocellulose to fuels, and the choice of technology
can have substantial implications for the environmen-
tal and agronomic aspects of biofuel production
[6,8,20]. We consider here only biochemical conver-
sion technologies.

The potential attractiveness of bioconversion technolo-
gies for liquid fuel production is related to the idea that
they may have lower capital costs than thermal con-
version methods at scales that do not require long
distance transport of biomass (e.g. ~35-100 million
gallons per year). The key steps in bioconversion of
lignocellulose to fuels are size reduction through
grinding, pretreatment, hydrolysis and fuel production
[20]. The role of pretreatment methods is to increase the
porosity of biomass particles and to increase the
accessibility of cellulose and other polysaccharides to
enzymes [21]. One of the most developed methods
involves heating in dilute acid such as 1% H,SO,.
Treatment for a little as two minutes at 180°C in 1%
H,SO, can result in depolymerization of as much as 90%
of the hemicelluloses (i.e. xylan) [22]. Since a substantial
amount of xylan is thought to be hydrogen-bonded to the
surface of cellulose microfibrils, the acid pretreatment
presumably exposes the cellulose microfibrils to some
extent, both by hydrolysis of xylan and also by releasing
lignin from indirect association with cellulose via linkage
to xylan. Other methods, such as ammonia fiber expansion
cause similar effects [21].
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Following pretreatment, solubilized sugars are sepa-
rated from solids, which are subjected to further
hydrolysis catalyzed by enzymes that can collectively
hydrolyze cellulose and residual hemicellulose to free
sugars [23]. However, relatively large amounts of
enzyme (e.g. ~25kg/ton of cellulose) are reportedly
required to release most of the sugars from biomass at
rates compatible with the high-throughput production
of fuel [20]. Aside from capital costs, the requirement
for unusually large amounts of enzymes appears to be
the single largest cost in the production of cellulosic
fuels from non-thermal routes. Not surprisingly, this
has led to a search for more active glycosyl hydrolases
from incompletely explored sources, such as termites
and cow rumen [24].

The principal components of plant cell wall polysac-
charides from most higher plants are glucose and
xylose. In some species (e.g. conifers and seaweeds)
mannose is also abundant. Thus, a minimum cap-
ability of an industrial biofuel-producing microorgan-
ism is the ability to convert these sugars to liquid fuel
components, such as ethanol or other alcohols, alkanes
or terpenes. Although the industrially adapted strains
of yeast that are used for ethanol production cannot
use xylose, strains of yeast with this capability have
been developed through genetic engineering [25-26],
and many naturally occurring yeast and bacteria have
this capability.

In addition to using all sugars, microbial strains must be
resistant to the compounds produced or released during
biomass degradation [20,27]. Because it is desirable to
have concentrated sugar solutions in order to minimize
volume and maximize concentration of product, the
initial concentration of the biomass is very high. This
may result in a pre-treated solution or hydrolyzate that
also contains relatively high concentrations of toxic
compounds. Thus, for instance, acid pretreatment of
biomass produces dehydrated sugars, such as furfural
and hydroxymethyl-furfural that are toxic [27-28]. In
addition, many polysaccharides are acetylated and some
pretreatments release acetic acid, which can be toxic at
high concentrations. These compounds cause cell stress,
especially in conjunction with high sugar concentrations,
limiting fermentation efficiency. The biological function
of acetylation is unknown, so it is not known to what
degree this property of cell walls can be modified without
deleterious effects [29-30]. Finally, some potential bio-
mass crops contain secondary metabolites that are toxic
to microorganisms [31-32]. Identification and elimination
of such compounds by genetic methods is a priority for
research on plant feedstocks if it can be done without
creating pest and pathogen problems.
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Biofuel feedstocks

In terms of global grain or seed production, maize is
the largest crop, producing about 820 million mega-
grams of grain and a similar amount of stems and
stripped cobs, collectively referred to as stover, that is
potentially available for fuel production [10]. Conver-
sion of half of the maize stover in the US to cellulosic
ethanol would produce about 13.5 billion gallons of
ethanol. However, there is concern that removal of
even half the stover would exacerbate loss of soil
carbon and erosion and would also require additional
inputs of fertilizers to replace lost minerals [33]. Also,
the relatively low amount of residues produced per
hectare from other crops may impose unacceptably
large costs for collection and transportation to refi-
neries [34].

Cs and C, plants fix CO, into a compound with three of
four carbon atoms, respectively, before entering photo-
synthesis. Perennial C, species, such as sugarcane, energy
cane, elephant grass, switchgrass, and Miscanthus, have
intrinsically higher light, water and nitrogen use effi-
ciency than Cs species. Additionally, with perennial C4
plant species reduced tillage and perennial root systems
add carbon to the soil and protect against erosion.
Seasonality leads to an annual cycle of senescence,
whereas perennial grasses, such as Miscanthus, mobilize
mineral nutrients and carbohydrates from the stem and
leaves to rhizomes at the end of the growing season.
Consequently, harvest of biomass from perennial grasses
during the winter months has the advantage that it
allows relatively high retention of minerals in the
rhizomes, reducing or eliminating the need for fertilizers
[35]. Additionally, storage of carbohydrates in the
rhizomes allows rapid early growth following emergence
of new shoots in the spring, contributing to a high
biomass yield. In one study at Rothamsted UK, all above-
ground biomass was removed each year over a fourteen
year period from stands of Miscanthus with no decrease
inyield and no response to added nitrogen [36-37]. Side-
by-side trials in central Illinois showed that unfertilized
Miscanthus x giganteus produced 60% more biomass than
a well-fertilized, highly productive maize crop and,
across the state, winter harvestable yields averaged
30 megagrams/hectare/year [35,38]. Mechanistic models
developed to project yields based on the extensive trials
conducted in Europe, when applied to the USA, suggest
that many locations east of the Mississippi could
support average annual yields of over 30 megagrams/
hectare, with significant areas exceeding 40 megagrams/
hectare [10]. Work on tall perennial grasses native to the
American plains, such as switchgrass (Panicum spp.),
prairie cordgrass (Spartina spp.), big bluestem (Andropo-
gon spp.) little bluestem (Schizachyrium spp.) and others,
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could produce significant biomass in a variety of
biomes throughout the nothern plains and southeastern
grasslands [39].

Woody biomass can be harvested sustainably for lumber
and paper and may, therefore, provide biofuel feedstock
for some regions [40]. By one estimate, the biomass that is
harvested annually in the Northern Hemisphere for wood
products has an energy content equivalent to approxi-
mately 107% of the liquid fuel consumption in the US
[41]. Globally, large areas of land formerly used for
agriculture have reverted to forest [42], and the continuing
trend to electronic media and paper recycling may reduce
the demand for pulp woods. This presents an opportunity
to reallocate woody biomass for energy. In order to
maximize the amount of woody biomass produced per
hectare, the best practice appears to be coppice harvesting,
in which the plants are cut near ground level after the end
of the growing season every three to five years, depending
on the species and the growing conditions [43]. A wide
variety of trees are amenable to coppicing, although
willow (Salix spp.) has been the most studied in northern
regions and eucalyptus in the south. Coppice trees rapidly
regenerate shoots from the rootstock without any inter-
vention. This approach minimizes losses of mineral
nutrients, soil erosion and organic carbon emissions and
the investment of photosynthate in regrowing the roots.

The amount of land required to produce enough biofuel
to have a significant impact on demand depends entirely
on the productivity of a given feedstock on a given parcel
of land. The productivity is, in turn, governed by a wide
variety of physiological factors, including genetic diversity,
agronomic practice, and environmental factors, such as
soil quality, water availability, and climate [44-45]. Thus,
predicting the amount of land required to produce enough
biofuel to impact fossil fuel demand can be quite variable
[46], even for a single biofuel crop. The use of residual
biomass from agricultural, forestry, and municipal activ-
ities decreases the amount of land needed for energy crops
[9,47]. Likewise, the development of energy crops adapted
to be highly productive on lands marginal for other
agricultural uses will be needed to reduce the potential
impact of biofuel production on crop production. Clearly,
decisions regarding land use and feedstock choices will
have an impact on how much fossil fuel can be replaced.
Growing perennial grasses on the 13 million hectares of
land that farmers in the US are paid to keep out of
production to support commodity prices, combined with
available crop and forest residues, could provide enough
fuel to meet 65% of the demand for gasoline in the US [9].
The actual availability of land for biofuel production will
be determined by politics as societies weigh competing
demands for land.
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Potential new bioenergy crops

Approximately 18% of the terrestrial surface is semi-arid
and prone to drought and, therefore, does not support
crop production [10]. Indeed, much of the roughly
600 million hectares of land that has fallen out of
agricultural production worldwide is semi-arid [42]. It
may be possible to utilize this type of land for bioenergy
production by using species with high water-use efficiency
and drought resistance [10]. For example, Agave spp.
utilize a type of photosynthesis called Crassulacean acid
metabolism that strongly reduces the amount of water
transpired during growth. Thus, Agave spp. have a water
use efficiency that may be as much as six times greater than
that of C; species, such as wheat [48]. Several Agave species
(native to hot, dry regions) have been cultivated for
production of sisal coarse fibers (Agave sisalana, Agave
fourcroydes) or alcoholic beverages (Agave tequilana, Agave
salmiana), so agronomic practices are well established.
Some Agaves have been reported to exhibit high harvested
biomass yields on semi-arid land when harvested on
5-6 year cycles [49].

Salinization has also become an increasing problem in
marginal agricultural lands. The United Nations Food
and Agriculture Organization (FAO) estimates that 1-2%
of irrigated lands are lost to salinization each year.
Salinity also restricts the use of treated wastewater for
irrigation. Most crops, such as wheat and rice, are highly
salt-sensitive. Thus, salinized soils generally have low
productivity and are not utilized for food crop produc-
tion. Research on salt tolerant species, such as prairie
cordgrass [50] and Eucalyptus spp., could be useful in
bringing these lands back into production as well as
improving salt tolerance in other crops. A recent estimate
by Wicke and colleagues indicates that growth of salt-
tolerant trees on nearly a billion hectares of saline land
could produce 5-11% of global primary energy con-
sumption annually [51].

More generally, a challenge for plant biologists is to
identify the most highly productive plant species that can
be grown on the various types of marginal or abandoned
land, to optimize the genetics and production practices,
and to evaluate any environmental risks or benefits that
may accrue from encouraging the widespread use of such
species for energy production. A particularly important
topic in this respect is to identify species that are not
invasive, or to develop technologies, such as conditional
sterility, that can prevent invasive spread.

Improving biomass yield

In order to minimize the amount of land diverted from
other purposes to energy production it is essential to
maximize the “yield” — the amount of biomass produced
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per unit of land. Many of the goals of breeding perennial
grasses for maximal yield have been described in an
excellent review [52]. One of the primary goals is to
understand the diversity of biomass traits [53] and the
regulation of carbon partitioning and biomass produc-
tion [54-55]. Identifying and dissecting the complex
interaction between stresses, hormones, and signaling
pathways on biomass synthesis and composition is
underway [56-62].

Unlike crops used for food, where much of the yield gain
during the past century was accomplished by minimizing
the amount of biomass in the leaves, stalks and roots in
favor of grain yield, the opposite strategy is desirable for
energy crops. Indeed, prevention of flowering may allow
plants to remain in a vegetative growth phase longer than
for plants that undergo the transition to flowering, thereby
extending the period of biomass accumulation [63].
Additionally, allocation of resources to seed development
is relatively inefficient compared with production of addi-
tional leaf and stem biomass. Thus, eliminating produc-
tion of fruit or seeds is likely to increase total biomass and
may also be beneficial in preventing invasive propagation.
However, in order to propagate energy crops with maxi-
mal efficiency, it would be desirable to develop systems
that allow production of seeds under controlled condi-
tions, as propagation by other means (e.g. tissue culture,
rhizomes, or cuttings) is often more expensive and may
require specialized equipment.

One possible strategy for implementing conditional
flowering is to regulate the photoperiodic induction of
flowering (i.e. in response to the amount of daylight in a
24 hour period), so that it takes place in latitudes where
the crop is not normally produced. Thus, for example,
seed might be produced in equatorial regions for crops
grown at non-equatorial latitudes. Recent progress in
understanding photoperiodic induction may allow new
approaches to engineering this trait into energy crops
[64]. Similarly, progress in developing chemical control
of gene expression in plants may allow the development
of crops that flower only when treated with an inducing
compound.

Because bioenergy crops are expected to be grown on
marginal land that is not suitable for major food crops, it
will be desirable to identify varieties with robust environ-
mental stress tolerance. In addition to traits that are of
interest for food crops, such as drought tolerance, it may
be desirable to develop flooding tolerance, as water is
frequently limiting to plant growth. Unusually wet acres
are typically difficult to farm with annual row crops but
provide an opportunity for maximal biomass production
using perennials. Understanding how nutrients are stored
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and remobilized [65,66] and improving nutrient acquisi-
tion [67] are important for maximizing perennial traits.

Selection for cold tolerance during overwintering will
probably be important in extending the range of highly
productive perennial biomass species, such as sugarcane.
In some cases, the tolerance may be achieved by
production of interspecific hybrids, such as Miscane - a
hybrid between sugarcane and cold-tolerant Miscanthus
sp [52,68]. The importance of cold tolerance may extend
to tree species, such as the very productive but very cold-
sensitive Eucalyptus species, in which engineered cold
tolerance has been demonstrated.

One of the most worrisome threats to production of
perennial bioenergy crops is loss to pests and pathogens
[69]. Recent studies of prospective crops, such as
switchgrass and Miscanthus, have confirmed that these
species harbor a wide variety of viruses, fungi, insects and
nematodes. Because these crops will be replanted at long
intervals (e.g > 10 years) it will not be possible to
minimize biotic stress by alternating genotypes or
species. Thus, pest and pathogen populations could
grow. Presumably, the best strategy will be diversification
of the plantations to maximize the genetic diversity of
relevant tolerance and resistance pathways. Mixed stands
of species that mimic natural grasslands could accomplish
this and provide habitats for more diverse populations of
organisms. Although there has been some research
suggesting that natural grasslands have higher productivity
than pure stands of grassland species [70], other results
suggest that the effect may apply only to very low
productivity settings [71]. Even in mixed stands, it will
be desirable to maximize genetic variability within each
species. The fact that energy crops are likely to be harvested
after the end-of-season senescence implies that concerns
about uniformity of maturity and stature that have limited
the use of “multilines” in breeding of food crops will be
relaxed. However, the use of diverse genotypes may trigger
problems in managing interplant competition that has
been implicated as a factor limiting yield in older varieties
of some crops, such as maize and wheat.

Modification of plant architecture may also play an
important role in maximizing biomass yield. The existing
varieties of energy crops, like Miscanthus and switchgrass,
have a tendency to drop their leaves during late-season
senescence, thereby significantly reducing yield. Selection
for leaf retention could have a major benefit. More
generally, plant height, tiller number, leaf density and
stem thickness are determinants of biomass productivity
[52], and there is often a trade-off in growth habit and
architecture between tolerance for high-density planting
and efficient photocapture. Altering root architecture may
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be a good approach as it increases water and nutrient
capture efficiency as well as soil carbon [72].

Biomass composition

Most of the mass in the bodies of plants is attributable to
the polymers cellulose, hemicelluloses and lignin. Thus,
biochemical conversion processes are designed to depo-
lymerize the polysaccharides to sugars that can be
fermented to fuel, whereas the lignin is burned to produce
heat and electricity to support the overall biomass-to-fuel
conversion process. At present, the various conversion
processes that are advancing towards commercialization
have high capital costs and high operating costs per unit of
fuel produced, relative to the price of petroleum-based
fuels. Consequently, there is a lot of interest in the possi-
bility of altering the chemical composition or structure of
biomass genetically to render the conversion process less
expensive.

One focus of research is the effect of variation in lignin
content and composition on enzymatic depolymeriza-
tion of biomass [73]. Because lignin partially occludes
the polysaccharides, and because it cannot be readily
depolymerized, the presence of lignin directly impedes
polysaccharide depolymerization. Additionally, binding
to lignin appears to inactivate many of enzymes that are
used to depolymerize cell wall polysaccharides. The inter-
play between lignin and cellulose has long been recog-
nized. On the plus side, reduction in lignin is often
accompanied by increased cellulose and hemi-cellulose
deposition [74-76]. However, on the minus side, sig-
nificant reduction in lignin content is accompanied by
growth impairment [77]. This may be, in part, because
some of the intermediates in lignin synthesis are
precursors to hormones and other important secondary
metabolites that may have signaling roles. It was recently
observed that reduced lignin was accompanied by
increased salicylic acid, presumably induced in response
to a signal sensed as cell wall damage [78]. Thus, it is
possible that some of the negative effects on growth might
be alleviated by decoupling the cell wall integrity-sensing
system [79]. A notable recent study in which alfalfa caffeic
acid O-methyltransferase was downregulated resulted
in plants with slightly reduced lignin, but modified cell
wall composition that significantly reduced the severity of
pretreatment and the amount of enzymes required to
depolymerize polysaccharides [80]. Studies of natural
variation in lignin content and composition have indi-
cated that it is possible to significantly improve the
digestibility of biomass by selection for certain composi-
tions [81]. This and related work clearly illustrates
opportunities to modify lignin with useful effects
[82,83]. However, much remains to be done to under-
stand the mechanistic basis for the effects. Also, it remains
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to be seen if the conditions used to test depolymerization
in laboratory studies of a species that is not a suitable
energy crop will be relevant to the industrial conditions
that are under development.

If it were possible to separate lignin from polysaccharides
before depolymerization of biomass, the problems caused
by lignin might be significantly ameliorated. However,
none of the pretreatment processes remove all of the lignin
[84], possibly because, in herbaceous species, lignin is
covalently linked to hemicelluloses that are hydrogen
bonded to cellulose. Thus, a largely unexplored opportu-
nity might be to reduce or eliminate the enzymes that
catalyze cross-links between lignin and hemicelluloses.
Perhaps the most creative idea about how to facilitate
lignin removal is to introduce new components into lignin
that are susceptible to enzymatic or chemical cleavage [83].

Another approach to the modification of biomass
composition is to increase the abundance of easily
depolymerized polysaccharides. In principle, it may be
possible to significantly increase the amount of cellulose,
hemicelluloses or other polysaccharides in cell walls, but
the mechanisms that control synthesis and deposition of
these polymers are not yet known. However, it was
recently observed that the corngrass1 (Cgl) gene of maize,
which encodes a microRNA, promotes juvenile cell wall
composition and starch accumulation in maize, and also
when transferred to switchgrass [85]. These effects
increased the amount of sugar released by depolymeriza-
tion (saccharification). It will be important to carry out
careful measurements of the effects of such alteration on
total yield per acre under a variety of growth conditions in
order to know whether such changes have practical utility.

Many polysaccharides are acetylated and, during the
processing of biomass, acetate is released and subsequently
inhibits metabolism of the microorganisms that convert
sugars to fuels. The biological function of acetylation is not
understood, and very little is known about the enzymes
that catalyze acetylation. Thus, the recent discovery of
several types of genes that are required for acetylation
opens up the possibility of evaluating whether this aspect
of biomass composition can be altered [29,30].

The development of improved bioenergy crops poses
significant challenges. Many of the perennial energy
grasses are self-incompatible, making it difficult to
produce true breeding lines. It is conceivable that this
might be overcome by exploiting advances in under-
standing the molecular mechanisms of incompatibility,
which might enable suppression. Conventional con-
trolled crossing and screening of switchgrass has allowed
identification of self-compatible and dihaploid stocks,
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which can enable production of inbred lines [86-87].
Where segregating populations are available, it should be
possible to implement marker-assisted breeding to
accelerate development of useful traits. Complete gen-
ome sequences are available for a number of important
bioenergy crops, such as poplar [88], sorghum [89] and
the model grass brachypodium [90], with sequencing of
eucalyptus underway [91]. Genetic maps and partial
sequences have also been generated for miscanthus [92]
and sugarcane [93]. Since biomass accumulation and
biomass digestibility are complex traits associated with
many different pathways and genes, quantitative trait
loci mapping has been used to identify contributing
genetic factors in willow [94], poplar [95], sorghum [96],
sugarcane [97], rice [53] and miscanthus [98].

Sustainability

It would be shortsighted to replace unsustainable
petroleum production with unsustainable agricultural
production of fuels. There is concern that current
practices for production of major field crops are not
sustainable because of factors such as declining aquifers,
soil erosion, and energy intensive and environmentally
damaging inputs of fertilizers and agrichemicals. Part of
the interest in development of perennial energy crops
arises from the evidence that such crops greatly diminish
erosion, minimize inputs of minerals and lead to
accumulation of soil carbon [36,37]. Thus, there appears
to bean opportunity to develop biomass cropping systems
that have positive impacts on agroecosystems. It is
conceivable that because some prospective energy crops
increase soil carbon, it may be possible to grow them in
rotation with annual food crops that typically deplete soil
carbon [37]. It is also possible that energy crops could be
used to provide some ecosystem services that support
conventional agriculture, such as providing refuge for
insects that are targeted by Bt toxins or related technologies.

Because water is a major limitation of plant productivity, a
key goal of developing bioenergy crops will be to
maximize water use efficiency and drought tolerance for
regions that do not receive excess rainfall. The aforemen-
tioned use of Agave species is particularly promising
because such species can be up to ten-fold more water
efficient than some C3 species and can be extremely
drought tolerant. More generally, the use of perennial C4
grasses that have deep roots from the beginning of the
growing season may allow significant production without
irrigation in regions where annual crops require irrigation.
There may also be opportunities to select for water-use
efficiency traits [99].

The ability of some perennial species to recycle mineral
nutrients on an annual basis by programmed senescence

http://f1000.com/reports/b/4/10

and mobilization of mineral nutrients from vegetative
tissues to rhizomes for subsequent reuse is an extremely
promising strategy for minimizing mineral inputs. By
harvesting biomass after the senescence process, rela-
tively low amounts of mineral nutrients are removed
from the land. It follows that understanding the
biological processes involved in mobilization and
storage of nutrients is an important priority for future
research. There have also been suggestions that some
grasses are able to fix significant amounts of nitrogen
without the involvement of nodules [37,100]. However,
very little is known about the mechanism. If such
mechanisms can be substantiated, they would seem to
have implications for production of cereals that extend
far beyond biofuels.

Concluding remarks

The topic of cellulosic biofuels is a complex subject
with dimensions that prominently include economics,
ecology, environmental sciences, agronomy, plant bio-
logy, microbiology, biochemistry, chemistry, genetics,
chemical engineering, mechanical engineering, law and
policy. In this brief commentary, we have highlighted
some of the issues that are of most relevance to basic
research on plants. Such advances have a crucial part to
play in the expansion of biofuel production needed to
help reduce the effect of fossil fuels on climate change.
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