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Abstract
Next-generation sequencing is rapidly transforming our ability to profile the transcriptional,
genetic, and epigenetic states of a cell. In particular, sequencing DNA from the
immunoprecipitation of protein-DNA complexes (ChIP-seq) and methylated DNA (MeDIP-seq)
can reveal the locations of protein binding sites and epigenetic modifications. These approaches
contain numerous biases which may significantly influence the interpretation of the resulting data.
Rigorous computational methods for detecting and removing such biases are still lacking. Also,
multi-sample normalization still remains an important open problem. This theoretical paper
systematically characterizes the biases and properties of ChIP-seq data by comparing 62 separate
publicly available datasets, using rigorous statistical models and signal processing techniques.
Statistical methods for separating ChIP-seq signal from background noise, as well as correcting
enrichment test statistics for sequence-dependent and sonication biases, are presented. Our method
effectively separates reads into signal and background components prior to normalization,
improving the signal-to-noise ratio. Moreover, most peak callers currently use a generic null
model which suffers from low specificity at the sensitivity level requisite for detecting subtle, but
true, ChIP enrichment. The proposed method of determining a cell type-specific null model, which
accounts for cell type-specific biases, is shown to be capable of achieving a lower false discovery
rate at a given significance threshold than current methods.
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1 Background
Next-generation DNA Sequencing (NGS) provides enormous potential for rapidly
identifying epigenetic modifications, transcription factor (TF) binding sites, and RNA
transcriptional profiles. Sequencing cost continues to drop, while sequencing depth is
increasing every year. In the near future, a single experiment will be able to sequence tens of
giga-bases, far exceeding the size of a typical mammalian genome. Processing and
interpreting such data sets present complex computational challenges at multiple levels.
Although cross-hybridization problems associated with microarrays have disappeared in
NGS, many of the old problems captured in terms of continuous measurements are
rephrased into new discrete problems of counting short reads, and numerous biases that are
intrinsic to experimental procedures still persist. It is thus critical to develop effective
computational methods for processing NGS data in order to ensure the correct inference of
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biologically meaningful information. To facilitate the development, this paper provides
rigorous theoretical studies of normalization and bias correction methods and also clarifies
the suitability of various model assumptions commonly used.

Chromatin immunoprecipitated DNA sequencing (ChIP-seq) and Methylated-DNA
immunoprecipitation sequencing (MeDIP-seq) are powerful tools for profiling the genome-
wide binding sites of TFs and epigenetic modification sites; see Figure 1 for an illustration
of the techniques. Proper data normalization is critical for comparing different biological
samples. Currently, researchers typically normalize immunoprecipitation (IP) data together
with corresponding control experiments (Input), or normalize multiple IP samples together,
by scaling the local read density by a multiplicative ratio of total sequencing depths. This
method does not account for the fact that there should be a significant enrichment of reads in
regions targeted by IP compared to flanking regions. Equalizing the total number of reads
can thus artificially inflate the background noise, as illustrated in Figure 2. In contrast, the
method proposed here normalizes paired datasets by equalizing the expected number of
reads only in background regions that contain non-specific DNA not targeted by IP.

Several studies have recently focused on removing sequence-dependent biases and inferring
transcriptional levels from RNA-seq data (Hansen et al., 2010, Anders and Huber, 2010,
Robinson and Smyth, 2007). However, rigorous analysis methods are still limited for ChIP-
seq and MeDIP-seq. ChIP-seq has numerous sources of bias stemming from differential
protection against sonication across the genome, variable antibody quality, sequence-
dependent PCR amplification, and differential mappability of short reads to repeat-rich
genomic regions (Teytelman et al., 2009, Aird et al., 2011). The general pattern of these
complex biases has not yet been characterized, and appropriate correction methods are still
lacking. This paper develops signal processing and statistical methods for detecting and
adjusting for numerous biases found in ChIP-seq data.

The paper is organized as follows: in the next section we propose a method for ChIP-seq and
MeDIP-seq data normalization. After describing the algorithm and associated significance
test, we then demonstrate the power of this procedure to identify enriched loci which would
otherwise be drowned out by background noise under scaling by sequencing depth. In the
third section, we motivate the need for bias correction by analyzing an ensemble of 62
publicly available ChIP-seq data sets using test statistics designed to rigorously qualify the
common assumption that read count is Poisson distributed. A technique from signal
processing known as spectral analysis is used to decompose an alignment density into peaks
of various amplitudes and frequencies. This information can then be correlated across
control experiments from the same cell type to generate a cell type-specific model of
sonication bias. We demonstrate this technique in the fourth section, where we advocate the
use of nonlinear regression to model the local propensity of chromatin to sonicate as a
response to sequence-dependent and cell type-dependent predictors. We compare the
performance of this approach in detecting histone methylation in wild type mouse neural
stem cells with that of a commonly used Poisson model.

2 Normalization
Proper normalization methods are crucial for comparing two independent ChIP-seq data
sets. For example, researchers are often interested in combining the whole-genome profiles
of two different transcription factors in order to study their interactions. Different antibodies
have different affinities, and experimental conditions are intrinsically variable.
Consequently, independent ChIP-seq experiments can produce quite different distributions
of reads, and arbitrarily choosing a common p-value cutoff for two experiments may
unfairly bias the peak-calling algorithm towards one experiment. Standardizing ChIP-seq
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data thus remains an important unsolved problem. Let N be the total number of reads in the
IP channel and M that in the Input channel. A simple algorithm is to multiply the Input read
density by N/M. We refer to this method as sequencing depth scaling (SDS). The
distribution of alignments across the genome is never uniform, and increasing sequencing
depth does not uniformly increase alignment density genome wide; however, this is
precisely the underlying assumption in SDS. Scaling the Input density by the ratio N/M
often incorrectly estimates the background, inducing false negatives and false positives in
peak detection, as illustrated in Figure 2. The IP channel is actually composed of two pools
of DNA fragments in unknown ratio: the genomic background and those DNA fragments
pulled down by the antibody. The optimal scaling factor should thus normalize Input only to
the background component of the IP, and not the entire IP data. We here propose a method
of signal extraction scaling (SES) which estimates this background component. Other
currently used approaches employ chromosome-wise regression of IP and Input data
(Rozowsky et al., 2009) or normalization of low count regions that are below a pre-defined
significance level (Kharchenko et al., 2008). However, our analysis shows that regression-
based scaling factors can be sensitive to outliers and may over-estimate the scaling factor.
Furthermore, it is not clear why the same significance level predefined by an arbitrarily
chosen p-value cutoff should be applied to all ChIP-seq data, since the quality of each
antibody may influence the minimum enrichment level of targeted loci. We thus propose a
robust, data-driven normalization scheme based on the order statistics of binned count data.

Given a reference genome, we partition it into n non-overlapping windows of fixed width.
We then count the number of alignments which fall within a given window. Let [Yi]:= [Y1,
…, Yn] and [Xi]:= [X1, …, Xn] be the resulting lists of alignment counts for the IP and
Input, respectively. We then sort [Yi] in increasing order to obtain the list [Y(i)] of order
statistics, where (i) denotes the i-th element of the sorted vector. Let [X(i)] be the list of
Input channel counts reordered to match [Y(i)]; i.e., X(i) and Y(i) count alignments in the

same window. Denote the partial sums of [Y(i)] and [X(i)] by  and ,
respectively, and consider the percentage pj = Ȳj/Ȳn of reads from the IP channel and qj =
X̄j/X̄n from the Input channel, allocated to the first j ordered bins (1),…,(j). Our working
assumption is that IP bins of relatively low tag count correspond to background regions that
are not directly targeted by the antibody. Consequently, the percentage pj of tags allocated to
the first j ordered bins from the IP channel should not exceed the percentage allocation qj of
tags from the Input channel, since the Input channel is entirely comprised of background,
while the IP channel is a mixture of background and immunoprecipitated DNA. Moreover,
the difference |qj − pj|, which gives the differential cumulative percentage tag count between
IP and Input, will initially increase from 0 as j increases. However, once we begin to include
bins of sufficiently large tag count corresponding to ChIP-enriched loci, the difference will
rapidly drop to zero. Therefore, an estimate of the background component in IP data can be
obtained by identifying the bin cutoff k at which the percentage allocation of tags in the
Input channel maximally exceeds that of the IP channel. That is, we propose to choose the
cutoff k = argmaxj|qj − pj| and normalize the Input density with a multiplicative scaling
factor α = Ȳk/X̄k.

This approach is similar to the approaches of CCAT (Xu et al., 2010) and SPP (Kharchenko
et al., 2008), both of which attempt to identify a subset of relatively low tag count
background bins from the IP channel. This background region is then normalized to the
Input channel, as in our approach. SPP arbitrarily defines background regions as those
whose tag count has a Poisson p-value greater than 10−5. It is not clear why the same p-
value cutoff should be applied to every ChIP-seq dataset or why this particular choice is
guaranteed to identify regions devoid of signal. Also, our analysis of the Poisson model
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described in the next section suggests that this model is sensitive to scaling; and, thus, which
bins are included as background under SPP is sensitive to sequencing depth. The CCAT
method determines a background set as the complement of a signal set on which what they
call “signal-to-noise-ratio” (SNR) between the IP and Input is maximized. Their definition
of SNR is similar to the ratio pj/qj, with the key distinction that we sum over indices defined
by the order statistic of the IP, while they allow sums over arbitrary sets of bin indices. We
identify a background partition by maximizing qj − pj over the order statistic. This choice
maximizes qj/pj, the “noise-to-signal-ratio,” over low order bins identified by the lower
component of the order statistic and consequently maximizes SNR on the complement set of
signal bins. The CCAT algorithm attempts to identify a SNR maximizing subset by
heuristically generating a sequence of genomic partitions. There is no guarantee that the
CCAT algorithm will converge as they acknowledge by including a trip count threshold in
their termination criterion. Moreover, upon termination, there is no guarantee that the
resulting partition will contain all background bins. Ideally, in order to determine the set of
background bins, one would enumerate all partitions of the genome and choose the partition
which maximized SNR. Unfortunately, complete subset enumeration requires an operation
count exponential in the number of bins and is computationally not feasible. For this reason,
we limit our search to partitions induced by the order statistic of the IP. Under the
assumption that background bins have relatively lower tag counts than signal bins, our
method identifies the smallest subset of the order statistic which contains the background
partition. Our method is thus motivated by a well-developed theory of order statistics which
we describe below, is guaranteed by construction to maximize SNR over all partitions of the
genome induced by the order statistic, and has a significance test associated with it, which
can be used for quality control also described below.

To demonstrate this technique, we applied our method to histone 3 lysine 4 tri-methylation
(H3K4me3) ChIP-seq data in mouse neural stem cells (NSC). We partitioned the MM9
mouse reference genome into 1 kb non-overlapping bins and generated the IP alignment
density order statistics as above. In Figure 3, pj and qj are ploted as a function of j/n, where n
is the total number of bins. The scaling factor computed via the SES method is Ȳk/X̄k ≈
0.3394. CCAT and SPP produced similar estimates of 0.36 and 0.38 respectively. In
contrast, normalizing by the total sequencing depths would scale Input by a factor of 1.05,
severely inflating the Input channel. A regression-based method (Rozowsky et al., 2009)
also yielded an inflated scaling factor of 1.8. This dramatic difference stems from the fact
that the H3K4me3 antibody is very strong and that up to 80% of reads in the IP channel
localize within H3K4me3 peaks (data not shown). Our method will thus be able to recover
many false negatives that result when improperly scaling by the total sequencing depth. For
example, gene expression profiles determined via Affymetrix microarrays show that the
expression level of Sp110 is 2.4 fold higher than the median expression level of all genes,
suggesting that Sp110 is being transcribed. H3K4me3 is an epigenetic mark of active
transcription, yet Figure 4 shows that under the sequencing depth scaling of 1.05, there is
almost no enrichment of IP over Input in the promoter region (Figure 4(A)), and the
associated p-value is not statistically significant (Figure 4(B)). The commonly used peak
caller MACS (Zhang et al., 2008) for example does not call a peak here under the default
settings. Under our method of SES, however, the promoter region shown in Figure 4
exhibits statistically significant enrichment of H3K4me3 over Input.

To further demonstrate the advantage of our method, we ran MACS (Zhang et al., 2008) and
PeakSeq (Rozowsky et al., 2009) on our H3K4me3 data. Both MACS and PeakSeq
overestimate the scaling factor for Input by 2–5 fold compared to our method, thus
potentially missing many peaks with subtle H3K4me3 enrichment. Figure 5 shows the
genomic location distribution of H3K4me3 peaks detected by our method, but missed by
PeakSeq. A similar distribution is obtained when comparing with MACS. As expected, the
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missed peaks strongly localize at the transcription start sites (TSS) of known genes, and
those genes have ~3 fold higher expression index than the genes that do not have any
H3K4me3 peak (Wilcoxon test p-value = 2.0 × 10−81). Similarly, PeakSeq’s scaling factor
for H3K27me3 ChIP-seq in neural stem cells was more than twice our estimated scaling
factor. Our method identified 1,177 H3K27me3 peaks that were not found in the list of
281,720 peaks detected by PeakSeq at a very loose p-value cutoff of 0.03, corresponding to
5% FDR, and the peaks again tended to localize near TSS, as shown in Figure 6. The
corresponding genes also have ~4 fold lower expression than the genes that have H3K4me3
peaks (Wilcoxon test p-value = 1.3 × 10−25). This analysis demonstrates the global effect of
over-scaling the Input channel on suppressing potentially true signals.

Our method of signal extraction scaling is motivated by the theory of order statistics.
Consider the following observation for normally distributed random variables: let Y1, Y2,
…,Yn be independent identically distributed normal random variables with mean μ and
variance σ2, and let Y(1), Y(2), …, Y(n) be their order statistics, i.e. the rearrangements of Yi
such that Y(1) ≤ Y(2) ≤ ··· ≤ Y(n). If we partition the reference genome into n equal-sized
bins, then for sufficiently large μ, Poisson count data are approximately normal, and we can
think of Yi as counting reads in the i-th bin. By binning in ~1–2 kb windows, we found that
a typical ChIP-seq nowadays yields 10–20 reads per bin on average, sufficient for a normal
approximation. For example, our H3K4me3 Input data has 46 million uniquely mapped
reads, and ~70% of 1kb bins have more than 5 reads, with a mean count of 17.5 reads per
1kb bin. In reality, adjacent bins are correlated, and different regions in the genome may
have different Poisson mean μ. However, our analysis below shows that ChIP-seq data can
be reliably modeled as continuous mixtures of Poisson distributions, with extra zero counts
in unmappable regions. In our experience with numerous ChIP-seq data, the discussion
below also holds for such distributions. In particular, low-count regions will affect only the
left tail of the ratio of partial sums of order statistics. Our scaling factor, however, is based
on the asymptotic behavior of the ratio as ordered genomic bins are added and is obtained by
computing the rank of order statistics where the peaks in IP channel begin to accumulate
significantly greater number of reads than the Input channel. Our estimation is thus robust
against extra zero counts. Although we cannot prove it analytically, we empirically observed
that continuous mixtures of Poisson, such as ChIP-seq data, also have a linear regime for the
ratio of partial sums of order statistics, to be described below.

Define the partial mean Sj/n as

Because the order statistics are ranked in an increasing order, it can be seen that the partial
mean is an increasing function of j. In fact, in the limit of large sample size n, the partial
mean is almost a linear function of j with a positive slope. More precisely, for large n,

where f is the probability density of Yi, β = j/n, and γβ is the β-th quantile of the standard
normal distribution (Burrows, 1971). Expanding this asymptotic form around β = 1/2, one
can show that the partial sum satisfies
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which is almost linear in β and can be fitted with linear regression with R2 > 0.99.

Similarly, consider a set of bivariate normal random variables Zi = (Yi, Xi), where Yi are
defined as above, and X1, X2, …, Xn are independent identically distributed normal random
variables that are uncorrelated with Yi. We can think of Yi as binned immunoprecipitated
DNA counts and Xi as binned Input DNA counts. Then, we define the i-th order statistic Z(i)
to be the pair (Yt, Xt), such that Yt corresponds to the i-th order statistic Y(i); i.e., the order
statistics are obtained by sorting Zt with respect to the first entry. Because we have assumed

that X and Y are uncorrelated,  is an unbiased estimate of the expectation E[X],

and for sufficiently large j, the ratio  of partial sums thus

approaches , which is proportional to the partial mean .
Consequently, for large n, the above analysis shows that Rj/n can be approximated by a
linear function of β = j/n. Importantly, our simulation study shows that this linearity also
holds for weakly correlated X and Y. The correlation between nonzero IP and Input bins is
typically ~0.3, and our simulation of bivariate normal (X, Y) with 0.4 correlation showed an
excellent linear fit that was virtually identical to the case of independent X and Y.

In a more realistic situation, the distribution of the IP channel data Yi can be modeled as a
mixture of two Poisson distributions, e.g. one component representing the basal level of
background noise and the second component representing the enrichment of actual
immunoprecipitated DNA. For sufficiently large mean, Poisson distributions approach
normal distributions, and the above analysis still holds; but, the ratio Rβ in this case begins
to diverge from linearity at β roughly equal to the mixing probability. By computing this
critical value of β = k/n as described above, we can thus approximate the proportion of
background noise in the IP channel data Y1, Y2, …, Yn.

The statistical significance of a particular choice of cutoff k can be assessed by interpreting
the corresponding percentages pk and qk as the probabilities of Bernoulli trials. For each k,
we have a partition of the genome into two disjoint subsets: high count signal bins and low
count background bins. We can test the null hypothesis that the IP and Input channels
identically allocate their reads across these two subsets against the alternative hypothesis
that the allocation of tags in the IP differs from that of Input. Under this interpretation, our
method maximizes the difference between the IP and Input binary probability distributions
and is therefore an instance of statistical inference in the sense of Shannon (Shannon, 1948,
Jaynes, 1957). Distances between distributions in this context are typically measured in
terms of a divergence metric such as the Jenson-Shannon divergence. In fact, the Jenson-
Shannon divergence or any other distance metric can be used as an alternative to the above
absolute value in determining the optimal cutoff k. The statistical significance of nonzero
Jenson-Shannon divergence can be computed via a divergence test which tests the
hypothesis that the divergence is zero to linear order (Trapnell et al., 2010). This
methodology has been also applied in the popular software Cufflinks to detect statistically
significant changes in the distributions of reads amongst isoforms in RNA-seq data
(Trapnell et al., 2010).
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3 Testing the Poisson Assumption
Many ChIP-seq peak callers are model based, assessing the statistical significance of
enrichment in the IP channel at a given genomic locus by assuming a null distribution with
mean estimated from Input. Since sequencing yields count data, it is natural to approximate
the null distribution as Binomial, Poisson or a generalization of Poisson. In this section, we
systematically analyze a large ensemble of ChIP-seq data to rigorously determine when and
to what extent the Poisson distribution and its generalizations are appropriate. We begin by
recapitulating the distributional assumptions used by a few of the current peak callers:
PeakSeq, BayesPeak, MACS, and MOSAiCS. PeakSeq (Rozowsky et al., 2009) scores
target sites relative to control under the null hypothesis of a binomial distribution of tags
with a mean estimated from the number of tags in the Input sample at the same site. The
binomial distribution can be approximated by the Poisson distribution in the usual
asymptotic limit. As we will demonstrate below, the Poisson model is subject to false
discoveries induced by overdispersion and zero-inflation.

MACS also uses a variable rate Poisson model, where the model mean is determined from
Input by taking the maximum of average read counts computed on 1kb, 5kb, 10kb, and
genome-wide intervals (Zhang et al., 2008). Although MACS does perform a library swap
procedure, reversing the roles of IP and Input, in order to estimate false discovery rate
(FDR), this is still problematic for two reasons. Firstly, while controlling for false discovery
by thresholding peaks based on an estimated FDR does eliminate some false positives, it
does not eliminate false negatives and the Poisson null hypothesis’ sensitivity to scaling
induces false negatives, as evidenced by the SP110 false negative example in section 2 as
well as the mathematical analysis presented below. Secondly, during the library swap
procedure, IP and Input are reversed and control peaks are called under the Poisson null
hypothesis; as a consequence, the same scaling issues which induce false discoveries will
persist in the library swap in an unknown way. BayesPeak (Spyrou et al., 2009) uses a
negative binomial regression model, formulated as a Poisson-Gamma mixture, with
parameters estimated from the Input channel via Monte Carlo Markov chain methods.
Although a negative binomial model will in principle be more flexible with regards to
overdispersion, it may not accommodate the zero-inflation we demonstrate to be present in
the data. Moreover, the BayesPeak model parameters are estimated as a response to the raw
Input and IP tag counts alone and do not compensate for sequence dependent biases.

Another software which uses a negative binomial regression model and which does attempt
to compensate for sequence properties is MOSAiCS (Kuan et al., 2009). This approach is
perhaps the closest to our approach, with some key differences. Here a negative binomial
mixture model of the IP is regressed on GC content, mapability, and a monomial in Input tag
count. The model mean is defined piecewise. For bins with tag count less than a tuning
parameter s, the mean μ is modeled as a function of mapability, a univariate spline of GC
content, and Xd where X is the Input tag count and d is a heuristically chosen parameter. For
bins of size larger than s, the Input tag count monomial Xd alone is used. This formulation is
problematic for several reasons. Firstly, the parameters s and d are tuning parameters that
have to be arbitrarily chosen by the user, and no method is given for choosing them in
general. They were chosen by trial and error in their test case, and it is unclear how different
choices will affect enrichment estimates for arbitrary datasets. Secondly, replacing GC
content values with a univariate spline results in loss of information, since the graph of μ as
a function of the three covariates of GC, mapability, and Xd is a subset of ℝ4, and the
univariate spline construction amounts to projecting this graph into the μ-GC plane. An
alternative formulation of this approach, which was perhaps undertaken to reduce
computational complexity, would be predicated on a multivariate spline of all predictors
(Chui, 1987). We have indeed found regression modeling on typical ChIP-seq datasets to be
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computationally cumbersome on single to quad-core processors and have opted for
implementations utilizing GPU computing (Sarkar et al., 2010). Lastly, like BayesPeak, it is
unclear whether MOSAiCS will accommodate zero-inflation in two-sample analysis.
However, as we now show there is roughly a 1 in 4 chance that a randomly chosen bin in a
typical ChIP-seq data set contains a zero count. We now examine how and why real ChIP-
seq data exhibit several features which violate the Poisson assumption.

Consider the Poisson null model , with mean μ estimated from the Input
channel. This model’s variance σ2 = μ is often unable to accommodate the drastic
oscillations in read density observed in ChIP-seq data. The p-value associated with

observing y or more tags in the IP channel with respect to the Poisson model is . If
we scale the IP and Input channel simultaneously by a factor of t, then the associated p-value

is . This formula is dominated by the behavior of the exponential term, and as a
result, the p-value is a decreasing function of t. This type of scaling occurs implicitly when
normalizing by SDS and also in biased loci that artificially accumulate a large number of
reads. To illustrate this phenomenon, we called peaks on the H3K4me3 ChIP-seq data in
NSC using MACS (Zhang et al., 2008). MACS uses a variable rate Poisson model where the
model mean is determined from Input by taking the maximum of average read counts
computed on 1kb, 5kb, 10kb, and genome-wide intervals (Zhang et al., 2008). We first
called H3K4me3 peaks on chromosome 1 by using default parameters. We then scaled the
IP and Input alignment densities by factors of 10 and 100, and generated alignments by re-
sampling from the scaled distribution. The number of called peaks at a fixed p-value cutoff
of 10−5 increased approximately 500% after scaling by a factor of 10 and almost 4450%
after a scaling of 100. These scaling factors are obviously higher than would be used in
practice, but nonetheless demonstrate how scaling can artificially induce false positives. Our
simulation study shows that the FDR computed by MACS 1.4.1 is also affected by the IP
sequencing depth, as would be expected for most algorithms. For example, upon randomly
removing 25% of reads from H3K4me3 IP data, 2.8% of the peaks that were originally
called at a 5% FDR cutoff in the full dataset had FDR greater than 5% in the trimmed
dataset. When 50% of reads were removed from IP, 4.2% of the peaks that were originally
called at a 5% FDR cutoff in the full dataset had FDR greater than 5% in the trimmed
dataset. Similarly, scaling up both IP and Input by a factor of 5 to 10-fold increased the
number of peaks called by MACS 1.4.1 at 1% FDR by roughly 20%.

Furthermore, ChIP-seq data are often zero-inflated and over-dispersed. That is, the number
of zero count bins is typically in excess of what is expected under a Poisson model, and the
variance σ2 in count far exceeds the mean count μ. These phenomena can introduce a
significant bias in Poisson models, generating both false positives and false negatives in
peak detection. To study these artifacts, we examined 62 ChIP-seq Input data sets from the
UCSC ENCODE Yale transcription factor binding sites repository (Kent et al., 2002, Birney
and al., 2007) consisting of two replicates from each of 31 cell lines. We binned uniquely
mapped alignments into non-overlaping 1kb windows and examined the distribution of
counts. The ENCODE data demonstrate typical characteristics that deviate from Poisson
modeling assumptions. Table 1 summarizes the distribution of counts in the ENCODE data.
Approximately 23% of the windows have a zero count, suggesting potential zero inflation.
Regression models have been previously used to study over-dispersion and bias in RNA-seq
analysis (Hansen et al., 2010, Anders and Huber, 2010, Robinson and Smyth, 2007, Li et al.,
2010). We apply a similar methodology here. In order to rigorously study zero inflation and
over-dispersion in ChIP-seq data, we fitted each of the ENCODE data sets with regression
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models representing a progressive relaxation of the Poisson assumptions. Since ChIP-seq
read density has been shown to be biased with respect to GC content and mappability (Aird
et al., 2011, Li et al., 2010), we chose GC content and mappability as predictors in four
regression models: 1. a variable rate Poisson model (P), 2. a variable rate negative binomial
model (NB), 3. a zero-inflated Poisson model (ZIP), and 4. a zero-inflated negative binomial
model (ZINB). While the Poisson models assume that the model mean μ is equal to the
variance σ2, the negative binomial models relax the condition with a quadratic model of
variance σ2 = μ + φμ2, where φ is a constant dispersion parameter estimated from the data
(Hilbe, 2011). Poisson models are special cases of NB models with φ = 0. We will use this
property to assess the validity of the Poisson variance assumption in ENCODE data by
testing the significance of nonzero φ. The model definitions for P and NB are:

(1)

(2)

The NB model can be viewed as a Poisson-Gamma mixture (Hilbe, 2011), and P can be thus
viewed as a restricted NB model. ZIP and ZINB generalize P and NB respectively to
mixture models with two components. The first component is one of the above probability
masses and the second component, in both cases, is a point mass concentrated at zero with
probability δ. δ is modeled as a logistic function of a given set of regressors. In all four
models the mean μ is taken to be log linear in the regressors. Model parameters were
estimated via maximum likelihood estimation. The details of the model, how the regressors
were aggregated, and the methods used to estimate the model parameters are described in
detail in the methods section. Tables 2 and 3 describe the results of this analysis.

The dispersion parameter φ, as well as all other parameters, are estimated by maximum
likelihood. Any nonzero value of φ indicates a departure from the Poisson assumption,
which was clearly the case here. Dean’s test and a likelihood ratio test were used to assess
the NB model relative to the Poisson model. The likelihood test compares the ratio of model
posterior probabilities. Dean’s test tests the sensitivity of the NB model with respect to the
dispersion parameter φ (Dean, 1992). Small p-values indicate over-dispersion with respect to
the Poisson model and imply the need for a more flexible model of variance. As zero-
inflation often masquerades as over-dispersion, we also tested the observed number of zeros
against the number of zeros expected under each model. Table 3 compares the observed
number of zeros to the number of zeros expected under each of the four regression models.
In every dataset, the Poisson model underestimates the number of zeros. Both the ordinary
negative binomial and the zero-inflated models capture the number of zeros more accurately,
with a modest improvement realized in the zero-inflated models. This analysis implies that
the Poisson model is inadequate to capture the biases present in ChIP-seq data.

Our study also revealed that the pattern of variance in count appeared to be consistent
between technical replicates, but differed across different cell lines. This was evidenced by
an inter-replicate spectral analysis of Input data, presented in the next section, which showed
a strong correlation between the frequency responses of technical replicates at all
frequencies (Pearson correlation coefficients 0.7–0.99). In contrast, an inter-cell line spectral
analysis of Input data (data not shown) demonstrated a wide range of correlations (Pearson
correlation coefficients 0.08–0.99) at different frequencies. This observation suggests that a
model of cell line-specific biases in tag density can be constructed. In the next section, we
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describe how spectral analysis can extract reproducible trends in tag density. We will then
improve our regression models by accounting for such cell line-specific biases.

4 Model-based Bias Correction
4.1 Spectral analysis

In this section we employ a technique from signal processing known as spectral analysis.
This method decomposes a function into components with given characteristic length scales
known as the function’s spectrum. Wavelets provide one of the most powerful tools for
spectral analysis (Daubechies, 1992). Wavelets allow us to decompose the alignment density
into its component peaks of various amplitudes and fluctuation scales. We can then
determine what percentage of the enrichment profile is composed of peaks of a given size,
and we can correlate this information across datasets to formulate models of cell line-
specific bias. Toward this end, we decomposed the Input alignment densities from
ENCODE Yale TF ChIP-seq by using Coiflet wavelets (Daubechies, 1992) of order 1. We
used a 15 level decomposition. Level 1 captures changes in alignment density occurring
over length scales of 1.25 kb. Each subsequent level increases this scale by a factor of 2.
Thus, a level 15 decomposition will allow us to classify changes in alignment density
ranging over a spectrum of 1.25 kb to 40.96 Mb. We refer the reader to the appendix for a
brief overview of wavelets and additional details of our decomposition methods.

We analyzed the Pearson correlation between the wavelet coefficients of decomposed
replicate data. We compared these correlations to the distribution of spectral energy.
Formally the spectral energy is the sum of the squares (Euclidean length squared or L2-norm
squared) of the wavelet coefficients at a particular level. Consequently, the spectral energy
gives a measure of the magnitude of the component of the alignment density oscillating with
a given period. The purpose of this analysis is to determine the frequencies which
simultaneously capture the predominant trend in an individual dataset (high spectral energy)
and are reproducible across datasets (high correlation). Figure 7 A summarizes the
correlation between technical replicates as a function of characteristic length scale described
by level. Each correlation value is the average over all datasets, at that level, and Figure 7 B
is a heat map showing the individual correlations between replicates by level. The
correlation between replicates is generally strong with a mean of 0.89. Replicate Input data
demonstrate a stratified correlation profile with weak correlation at high frequency
(corresponding to changes in enrichment occuring over a 1.25–10 kb interval), and increased
correlation in mid to low frequencies (length scales of 20 kb to 40.96 Mb). In contrast,
Figure 7 C shows that spectral energy is almost completely concentrated in high frequencies,
consistent with Input data being dominated by small scale noise. Interestingly, the frequency
band corresponding to a 20 kb period is simultaneously high energy and highly correlated.
We interpret this band as containing cell line-specific sonication bias. ChIP-seq Input
datasets derived from the same cell line thus exhibit scale-dependent correlation in both
spacial and frequency domains. This analysis suggests that wavelet decompositions can be
used to formulate models of cell line-specific biases by designing filters targeting
frequencies correlated amongst Input datasets from the same cell type. We describe this
approach in the next subsection.

4.2 Bias correction
We will use the H3K4me3 ChIP-seq dataset in NSC to illustrate the use of nonlinear
regression to generate null models of alignment density (reads/kb). We combine the above
spectral analysis with insights gained from studying over-dispersion and zero-inflation to
formulate the following zero-inflated negative binomial regression model of the SES
normalized Input channel, designed to account for the functional dependence of read density
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on GC content, mappability, and sonication bias. This model is a mixture of a point mass
concentrated at zero with probability δ and a negative binomial probability function, NB(y|
μ, φ), where μ is the mean and φ a genome-wide estimate of dispersion. The variance of the
NB component is given by μ + φμ2. Zero counts can be produced by either the point mass or
by the negative binomial component. Under this mixture model, the probability of observing
a zero count is P(k = 0) = δ + (1 − δ)NB(0|μ, φ), while the probability of a nonzero count y
is P(k = y) = (1 − δ)NB(y|μ, φ). The model mean μ is chosen to be log linear in the
regressors. The point mass probability δ is modeled as logistic in the regressors. We fit the
model using the SES normalized Input channel alignment density as a response to
mappability, GC content, and a truncated wavelet expansion of Input data as regressors
using maximum likelihood estimation. The details of the model, how the regressors were
aggregated, and how the wavelet expansion was constructed are found in the appendix.

As a point of comparison we use a MACS style variable rate Poisson model, with SDS and
model mean μ = max(μgw, μ1kbp, μ5kbp, μ10kbp), where μgw is the genome-wide average tag
count in the SDS normalized Input, and μ*kbp is an average Input tag count over a given
interval width. For the remainder of this subsection we will simply refer to this as the
Poisson model.

To compare the ZINB and Poisson models of the Input channel, we first assessed model fit.
As in the ENCODE dataset, the ZINB regression model shows significant improvement both
in its ability to handle over-dispersion and zero inflation when compared to the Poisson
model. Since the MACS Poisson model is not obtained via maximization of a likelihood
function and since it is not a special case of the ZINB, as is the case for P vs. NB, we cannot
use Dean’s test or the likelihood ratio test to formulate a comparison. However, as in
(Cameron, C. A., Tricedi, 1998), we can estimate dispersion by an ordinary least squares fit

α of , where the regression coefficient α gives a type of coefficient of variation and
estimates genome-wide dispersion, μi the Poisson model mean estimates for the i-th bin
computed as above, and yi the Input alignment density counts. 0 ≤ α ≤ 1 indicates mild over-
dispersion and anything over 1 indicates significant over-dispersion. For the H3K4me3
dataset, this dispersion estimate is on the order of 104, which is significant. Even after
removing possible outliers of yi > 1000, the dispersion estimate drops to 19.73, but is still
highly over-dispersed. Due to the nature of the Poisson model, μ is never less than the
global average (≈ 10); and, as a consequence, the model vastly underestimates the number
of zero counts. In fact, the expected number of zeros under the Poisson model is < 10−7%.
The observed number of zeros is actually 10.52%, much closer to the ZINB prediction of
11.62%.

In addition to accessing model fit, we also compared false discovery rates (FDRs) between
the ZINB and Poisson models when used to assess H3K4me3 enrichment in NSC. We
computed the statistical significance of the observed IP alignment density with respect to
both null models for each nucleotide on chromosome 1. The observed count was given by
the IP alignment density based on a 1 kb window centered at each nucleotide. Likewise the
GC content, mappability, and sonication (wavelet approximation) predictor values were
averaged in the same window when computing the probabilities with respect to the ZINB
model. This generated approximately 1.9 × 108 hypothesis tests for which each model
assigned a p-value. The probability density governing the p-values p of large ensembles of
multiple hypothesis tests has been well studied in the context of microarray analysis (Dudoit
et al., 2003) and is typically modeled as a two component mixture density f(p) = π0fn(p) +
π1fa(p), such that π0 + π1 = 1, with fn(p) = 1 and fa(p) governing the null and alternate
hypotheses, respectively (Storey, 2003). By Bayes theorem the probability of a true null
hypothesis (non-enriched locus) given a positive test (observed p-value less than a given
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cutoff p*) is , where F(p) is the cumulative density function of f(p). Following (Pounds
and Morris, 2003), we estimate the density under the alternate hypothesis of H3K4me3
enrichment as a beta distribution apa−1 on observed p-values p ∈ [0,1]. The parameter a ∈
[0,1], as well as the proportion π0 of true null hypotheses, were computed via maximum
likelihood estimation using the BUM class of the ClassComparison library in the OOMPA R
language library suite (oompa, 2010). FDRs were also computed via the same package

which estimates false discovery rate at a given p-value cutoff p* as , where π̂0 is an
upper bound on π0 obtained via a confidence interval (Pounds and Morris, 2003, Casella
and Berger, 1990). Figure 8 shows that the ZINB model demonstrates a lower FDR at a
given p-value cutoff than the Poisson model.

4.3 Comparison with other methods
To further validate our approach, we analyzed the ENCODE c-Myc and RNA polymerase II
(Pol II) ChIP-seq data in the leukemia cell line K562. A recent study shows that c-Myc plays
a critical role in releasing Pol II from promoter-proximal pausing and that the majority of c-
Myc-bound genes undergo active transcriptional elongation (Rahl et al., 2010). We thus
expect functional c-Myc ChIP-seq peaks to co-localize with Pol II peaks. We called peaks
using the default parameters at 1% FDR using MACS, CCAT, and PeakSeq and compared
the results to our ZINB model with SES at 1% FDR (Storey, 2003). The results of this
comparison are shown in Table 4.

We found considerable overlap with other methods for Pol II-bound c-Myc peaks. Note that
our method and CCAT which both employ a normalization scheme based on low order bins
produce the greatest enrichment of Pol II for c-Myc peaks of 77% and 80%, respectively.
We also tried MOSAiCS (Kuan et al., 2009), but the software could not complete analysis
on chromsomes 20, 21, 22, X and Y for c-Myc and on chromosomes X and Y for Pol II. At
1% FDR, MOSAiCS found only 1963 c-Myc peaks on chromsomes 1–19 and 11505 Pol II
peaks on chromosomes 1–22, and 99% of the MOSAiCS peaks were found by our method.
This analysis suggests that MOSAiCS may have many false negatives, at least for the
dataset that we have analyzed. In addition, we analyzed the mappability and GC content of
the peaks that did not overlap between our method and others. We found that peaks unique
to ZINB were significantly lower in GC content than those unique to all other methods for
both Pol II and c-Myc, as shown in Figure 9. Mappability was also lower for our method’s
unique peaks with respect to MACS and CCAT on the c-Myc dataset and was comparable
on the Pol II dataset. The peaks called only by PeakSeq had an extremely low mappability,
consistent with the fact that the algorithm also adjusts for mappability. We ascribe this
difference in GC content and mappability in differential peaks to the adjustment made by
our regression model to compensate for GC content and mappability bias. For example, read
count is correlated with both GC content and mappability (Aird et al., 2011, Li et al., 2010),
so that regions of higher GC content and mappability tend to have higher read counts in both
IP and input channels. Consequently, the fact that peaks unique to other methods have
higher GC content is consistent with their use of a Poisson (MACS) or binomial (CCAT/
PeakSeq) null model, since we have shown that a simultaneous scaling of the IP and Input
read densities causes the Poisson p-values to drop artificially. Conversely, our method seems
to be more sensitive in detecting peaks where lower GC content and poor mappability may
allow only modest IP enrichment.

5 Conclusions
The proposed signal extraction scaling provides an effective approach to normalizing paired
sequencing data in background genomic regions that give rise to non-specific DNA not
directly targeted by antibodies. The statistical significance of the enrichment of IP over
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Input post normalization can be then assessed, relative to a null hypothesis of no enrichment,
via a divergence test. A high divergence test p-value can rapidly identify a failed ChIP-seq
experiment, and the proposed approach thus provides a powerful quality control method. It
should be noted that the resulting scaling factor is in practice quite aggressive and should be
implemented in the context of additional bias corrections and a null distribution with a
flexible variance model, as described here. The Poisson distribution, for example, is highly
sensitive to scaling due to the fact that its variance is equal to its mean (as opposed to a
negative binomial model where the variance is quadratic in the mean). Consequently, SES
must be complemented with an accurate estimation of the Poisson rate in order to control for
false discovery. We have shown that regression models provide a framework for modeling
the biases inherent to ChIP-seq data. As more control data become available, the accuracy of
the regression will greatly increase in the future.
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6 List of abbreviations

NGS Next-generation DNA Sequencing

TF transcription factor

ChIP-seq chromatin immunoprecipitated DNA sequencing

MeDIP-seq Methylated-DNA immunoprecipitation sequencing

SDS sequencing depth scaling

SES signal extraction scaling

NCS neural stem cells

P Poisson

NB negative binomial

ZIP zero-inflated Poisson

ZINB zero-inflated negative binomial

FDR false discovery rate
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7 Appendix

7.1 Wavelet decomposition
An excellent introduction to wavelets is (Daubechies, 1992). In section 4.1, the raw
alignment counts were binned into 1kb non-overlapping windows. We then performed a
level 15 Coiflet-1 wavelet decomposition by using the MATLAB command wdencmp. The
first 4 components corresponding to high-frequency noise (< 20 kbp) were removed in the
regression models.

7.2 Regression models
In this paper we consider 4 regression models: 1. a variable rate Poisson model (P), 2. a
variable rate negative binomial model (NB), 3. a zero-inflated Poisson model (ZIP), and 4. a
zero-inflated negative binomial model (ZINB). While the Poisson models assume that the
model mean μ is equal to the variance σ2, the negative binomial models relax the condition
with a quadratic model of variance σ2 = μ + φμ2, where φ is a constant dispersion parameter
estimated from the data (Hilbe, 2011). The model definitions for P and NB are:

(3)

(4)

ZIP and ZINB generalize P and NB respectively to mixture models with two components.
The first component is one of the above probability masses and the second component, in
both cases, is a point mass concentrated at zero with probability δ. Given x ∈ ℝn×r, a model
matrix of n observations of the tag count at each of the r chosen regressors we model δ as a
logistic function . The model mean μ is chosen to be log linear in the regressors, i.e.,
log (μ) = xβ. β, γ ∈ ℝr×1 and φ ∈ ℝ are constants determined via maximum likelihood
estimation (MLE) as implemented in the the R language packages glm (Davies, 1992), used
to fit the Poisson, and pscl (Jackman, 2010), used to fit NB, ZINB, and ZIP models.

We fit the models using the Input channel alignment count as a response to mappability and
GC content in our analysis of the Poisson assumption in section 3. We added a truncated
wavelet expansion of Input data as a regressor in section 4.2. We choose not to add this
regressor in section 3 since our purpose was to study zero-inflation and over-dispersion in
the raw data and provide motivation for adding the wavelet regressor as a form of bias
correction in section 4.2. The mappability was obtained from the UCSC 36-mer CRG
Alignability track (Kent et al., 2002) which measures how uniquely 36-mer sequences align.
The GC content regressor was determined as the percentage of G and C bases in 5-base
windows. The count, mapability, and GC content were measured in non-overlapping 1kb
windows. The wavelet regressor was determined in several steps as follows. As in our
spectral analysis, genome-wide alignment counts in the Input channel were binned into 1kb
non-overlapping windows, a first order Coiflet wavelet decomposition of the alignment
density was performed using MATLAB and components with characteristic length scales
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less than 20 kbp were then dropped. This has the effect of removing the component of the
alignment density profile corresponding to high frequency noise and leaving only the
component corresponding to bias that is highly correlated across replicate data, as shown in
section 4.1. The log fold-change of the wavelet regression with respect to the genome-wide
mean tag count in the Input channel was then used as the regressor. The log scale was
chosen since the model mean is log linear in the regressors. Consequently, in the absence of
GC content and mappability bias, the model mean will be proportional to the wavelet
approximation.
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Figure 1. ChIP-seq and MeDIP-seq
Chromatin is randomly sheared with high frequency sound waves (sonication) or digested
with micrococcal nuclease (MNase). The desired Protein:DNA complex is then isolated with
an antibody (yellow Y). The ends of purified DNA are then sequenced (ChIP-seq).
Similarly, MeDIP-seq uses an antibody against methyl cytosine, followed by deep
sequencing. Mapping the resulting short reads to the reference human genome then provides
information about which genomic loci were modified or bound by a TF.
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Figure 2. Comparison of scaling methods
(a) Scaling IP (top row) and Input (bottom row) samples to equalize the read counts only in
the background (enclosed by parentheses) preserves the statistical significance of the IP
peak shown. (b) On the other hand, forcing the total number of reads to be equal between IP
and Input would artificially redistribute the counts that accumulated within the IP peak to
background regions, thus inflating the noise level in Input. Some true peaks can be lost in
this process.
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Figure 3. Signal extraction scaling algorithm
We maximize the difference between the cumulative percentage tag allocation in Input (red)
and IP (blue), over all partitions of the genome ordered by the IP read density. The
maximizing index divides the genome into two sets of loci: high tag count bins for which, on
average, percentage IP tag density will exceed percentage Input tag density, and low tag
count background bins for which the opposite is true.
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Figure 4. SES recovers SDS false negatives
sp100 is expressed at 2.4 fold above the median expression level of all genes in NSC. Yet,
under SDS the promoter region shows no statistically significant enrichment of H3K4me3
IP over Input, despite it being an epigenetic mark of active transcription. Under SES, the
sp110 promoter region is detected as methylated. Note that p-values were not computed at
positions where Input density exceeds IP density.
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Figure 5. SES preserves subtle H3K4me3 peaks
The majority of the H3K4me3 peaks detected by our method, but missed by PeakSeq, are
found near transcription start sites (TSS) of known genes. The corresponding genes also
show significantly higher expression levels compared to the genes that do not have any
H3K4me3 peak (Wilcoxon test p-value = 2.0 × 10−81).
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Figure 6. SES preserves subtle H3K27me3 peaks
The majority of the H3K27me3 peaks detected by our method, but missed by PeakSeq, are
found near transcription start sites (TSS) of known genes. The corresponding genes also
show significantly lower expression levels compared to the genes that have H3K4me3 peaks
(Wilcoxon test p-value = 1.3 × 10−25).
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Figure 7. Frequency correlation and spectral energy for ChIP-seq replicates
Level 15 Coiflet wavelet decompositions were performed on the alignment densities for
each replicate experiment pair in the ENCODE Yale TF Input dataset. At each level we
computed the Pearson correlations of the detail coefficients, as well as their spectral energy.
(A) The average correlation over all datasets, at a given wavelet level. Over all datasets,
over all levels, the mean correlation was 0.89 with a standard deviation of 0.19. (B)
Correlation between replicates at a given wavelet decomposition level. (C) Percentage
energy allocated to a given level, averaged over all experiments. Each box summarizes the
distribution of spectral energies across datasets, at a given level.
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Figure 8. FDRs for the Poisson and ZINB models
FDR as a function of p-value cutoff was estimated from the distribution of p-values
produced by both the Poisson and ZINB models using a beta-uniform mixture model. The
ZINB model exhibits a lower FDR than the Poisson model at a given p-value cutoff.

Diaz et al. Page 24

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2012 May 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9. Comparison of the distributions of (A) GC content and (B) mappability in peaks
unique to individual algorithm
Peaks unique to our method generally show lower GC content and mappability. The
statistical significance of the difference in distribution was assessed by the Wilcoxan rank
sum test.
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Table 1

The distribution of the alignment count per 1kb window for a pool of 62 ChIP-seq Input channel datasets.

Distribution of read counts c.

Range Percentage of 1 kb bins

c = 0 22.905%

1 ≤ c < 5 55.225%

5 ≤ c < 10 17.922%

10 ≤ c < 25 3.8136%

25 ≤ c < 50 0.1126%

50 ≤ c < 100 0.0142%

100 ≤ c < 1000 0.0067%

c ≥ 1000 0.0006%
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Table 2

Two estimates of dispersion and two statistical tests were used to assess dispersion in chip-seq data. All
datasets examined demonstrate considerable over-dispersion.

Dispersion test statistics.

Cell line NB φ ZINB φ Dean’s score (p-value) Likelihood ratio (p-value)

Gm10847InputIggrab 2.1126 2.7791 39491 (≤ 2.2e-16) 2890196 (≤2.2e-16)

Gm10847MusiggMusigg 2.14083 2.8056 33662 (≤2.2e-16) 2806455 (≤2.2e-16)

Gm12878InputIggrab 1.89733 3.3883 63821 (≤2.2e-16) 7362938 (≤2.2e-16)

Gm12878MusiggMusigg 2.26196 2.8738 34888 (≤2.2e-16) 1987654 (≤2.2e-16)

Gm12891InputIggrab 1.061948 1.1758 537964 (≤2.2e-16) 9907326 (≤2.2e-16)

Gm12891MusiggMusigg 2.0107 2.5456 34253 (≤2.2e-16) 2809971 (≤2.2e-16)

Gm12892InputIggrab 1.48523 1.6718 65456 (≤2.2e-16) 3952893 (≤2.2e-16)

Gm12892MusiggMusigg 1.19205 1.2857 37652 (≤2.2e-16) 4650547 (≤2.2e-16)

Gm15510InputIggrab 2.11635 2.7549 36472 (≤2.2e-16) 2722262 (≤2.2e-16)

Gm15510MusiggMusigg 1.46499 1.817 52124 (≤2.2e-16) 6385709 (≤2.2e-16)

Gm18505InputIggrab 2.11635 2.7549 36472 (≤2.2e-16) 27222261 (≤2.2e-16)

Gm18505MusiggMusigg 1.75816 1.9236 942055 (≤2.2e-16) 3943887 (≤2.2e-16)

Gm18526InputIggrab 2.37477 3.1339 29622 (≤2.2e-16) 2167641 (≤2.2e-16)

Gm18526MusiggMusigg 1.56948 1.7764 38400 (≤2.2e-16) 3821897 (≤2.2e-16)

Gm19099InputIggrab 2.50625 3.683 21514 (≤2.2e-16) 2163575 (≤2.2e-16)

Gm19099MusiggMusigg 1.63685 2.2079 48046 (≤2.2e-16) 5631237 (≤2.2e-16)

Gm19193InputIggrab 1.91547 2.4246 39662 (≤2.2e-16) 2962330 (≤2.2e-16)

Gm19193MusiggMusigg 1.93517 2.6687 20847 (≤2.2e-16) 3184818 (≤2.2e-16)

Helas3LargeFragment 1.70227 2.6181 33941 (≤2.2e-16) 5147206 (≤2.2e-16)

Helas3MnaseV2 1.33332 1.5637 59031 (≤2.2e-16) 8096157 (≤2.2e-16)

Helas3MouseiggV2 1.72362 1.5637 32414 (≤2.2e-16) 8342183 (≤2.2e-16)

Helas3Nakeddna 1.91147 3.0919 31069 (≤2.2e-16) 5932107 (≤2.2e-16)

Hepg2ControlForskln 1.15222 1.2729 120398 (≤2.2e-16) 5122610 (≤2.2e-16)

Hepg2ControlInskln .632829 .6485 38852 (≤2.2e-16) 6410233 (≤2.2e-16)

Hepg2InputV2 1.05644 1.1843 12938 (≤2.2e-16) 1727295 (≤2.2e-16)

HuvecInputStd 1.75729 2.9294 161597 (≤2.2e-16) 15952170 (≤2.2e-16)

K562InputV3 1.35451 1.8738 516901 (≤2.2e-16) 19144353 (≤2.2e-16)

K562MusiggMusigg 1.48218 2.2728 54932 (≤2.2e-16) 12902485 (≤2.2e-16)

Mcf7Input 1.32286 1.5971 63674 (≤2.2e-16) 12890295 (≤2.2e-16)

Nt2d1InputV2 2.2687 3.7535 55442 (≤2.2e-16) 4433772 (≤2.2e-16)
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Table 4

A comparison of Pol II and c-Myc peaks called by MACS, CCAT, Peak-Seq, and the ZINB model. A.
Number of peaks called by each method and the percentage of c-Myc peaks overlapping with Pol II. B. The
percentages of peaks called by other methods overlapping with ZINB peaks. C. The percentage of ZINB peaks
that overlap with peaks detected by other methods.

A. Number of peaks

MACS CCAT PeakSeq ZINB

c-Myc 25676 13022 15749 13550

Pol II 18688 41979 21631 33138

Pol II-bound c-Myc 50% 80% 65% 77%

B. Peaks from other methods found by ZINB

MACS CCAT PeakSeq

c-Myc 45% 76% 68%

Pol II 99% 92% 98%

Pol II-bound c-Myc 67% 81% 78%

C. Peaks from ZINB found by other methods

MACS CCAT PeakSeq

c-Myc 82% 67% 73%

Pol II 48% 68% 47%

Pol II-bound c-Myc 79% 75% 72%
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