We believe that the first question to ask is whether the experimental paradigm is related to movement or force. The key is to disambiguate synergies of neural origin from potential confounds. If the experimental task primarily involved movement, then a biomechanical model must be proposed that relates musculotendon length changes to muscle activation. This model can then be used to predict whether the observed muscle synergies are feedback-related, and thus not neural in origin. If the experimental task primarily involved force, it is necessary to ask if the force set was only in all directions, or covered all possible directions and magnitudes. If only all force directions were covered at a fixed magnitude, then a biomechanical model must be proposed to predict endpoint force from muscle activation. It can then be determined if the observed muscle synergies are feedforward-related because the possible muscle coordination patterns occupy a low-dimensional space. Finally, if the experimental force set covered all directions and magnitudes (the entire feasible force set), and muscle synergies are observed, these synergies can be attributed to the nervous system without a biomechanical model. This is because the possible muscle coordination patterns become the entire full-dimensional muscle space once every possible endpoint force output has been visited.