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Abstract

IDN2/RDM12 has been previously identified as a component of the RNA–directed DNA methylation (RdDM) machinery in
Arabidopsis thaliana, but how it functions in RdDM remains unknown. By affinity purification of IDN2, we co-purified two
IDN2 paralogs IDP1 and IDP2 (IDN2 PARALOG 1 and 2). The coiled-coil domain between the XS and XH domains of IDN2 is
essential for IDN2 homodimerization, whereas the IDN2 C-terminal XH domain but not the coiled-coil domain is required for
IDN2 interaction with IDP1 and IDP2. By introducing the wild-type IDN2 sequence and its mutated derivatives into the idn2
mutant for complementation testing, we demonstrated that the previously uncharacterized IDN2 XH domain is required for
the IDN2-IDP1/IDP2 complex formation as well as for IDN2 function. IDP1 is required for de novo DNA methylation, siRNA
accumulation, and transcriptional gene silencing, whereas IDP2 has partially overlapping roles with IDP1. Unlike IDN2, IDP1
and IDP2 are incapable of binding double-stranded RNA, suggesting that the roles of IDP1 and IDP2 are different from those
of IDN2 in the IDN2-IDP1/IDP2 complex and that IDP1 and IDP2 are essential for the functioning of the complex in RdDM.
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Introduction

DNA methylation is an important epigenetic modification in

eukaryotes including plants and animals. In Arabidopsis thaliana,

DNA methylation mainly occurs in gene-coding regions, transpo-

sons, and other DNA repeats [1–3]. DNA methylation is

maintained by DNA METHYLTRANSFERASE 1 (MET1) at

CG sites and by CHROMOMETHYLASE 3 (CMT3) at CHG (H

is A, T, or C) sites [4–6]. The SWI2/SNF2-like chromatin-

remodeling protein DIFFICIENT IN DNA METHYLATION 1

(DDM1) is involved in the maintenance of DNA methylation [7].

The histone H3K9 methyltransferase KYP/SUVH4 cooperates

with CMT3 and couples the regulation of DNA methylation and

histone H3K9 dimethylation [8,9]. Establishment of DNA

methylation in Arabidopsis depends on an RNA-directed DNA

methylation (RdDM) pathway [1,3,10–12].

In the past several years, the components of the RdDM pathway

have been identified and characterized. The DOMAIN REAR-

RANGED METHYLTRANSFERASE 2 (DRM2) catalyzes de

novo DNA methylation in the RdDM pathway [13–16]. The

DRM2 paralog DRM3 is also required for the full functioning of

DRM2 [17]. Small interfering RNA (siRNA) and long noncoding

RNA are required for the RdDM pathway [1,3,18,19]. Two

atypical plant-specific multi-subunit DNA-dependent RNA poly-

merases Pol IV and Pol V are required for biogenesis of siRNA

and long noncoding RNA, respectively [11,19–24]. Moreover, Pol

II has a residual role in the RdDM pathway [25]. NUCLEAR

RNA POLYMERASE D1 (NRPD1) is the largest subunits of Pol

IV, whereas NUCLEAR RNA POLYMERASE E1 (NRPE1) is

the largest subunit of Pol V [22]. Some subunits are present in one

specific RNA polymerase, but some others are shared by Pol IV,

Pol V, and/or Pol II [22–24]. Single-stranded RNA transcripts

produced by Pol IV are converted into double-stranded RNAs by

RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and

cleaved into 24-nt siRNAs by DICER-LIKE 3 (DCL3) [10]. 39-

terminals of siRNAs are methylated at the 29hydroxyl group and

are stabilized by HUA ENHANCER 1 (HEN1) [26]. SiRNAs are

loaded into ARGONAUTE proteins AGO4, AGO6, or AGO9,

and assembled into RNA-induced transcriptional silencing (RITS)

complexes that mediate de novo DNA methylation [27–31]. NRPE1

and KOW-CONTAINING TRANSCRIPTION FACTOR 1

(KTF1), a SPT5-like protein, contain conserved WG/GW repeats

in their C-terminal domains, which interact with ARGONAUTE

proteins and help form RITS complexes [32–34]. Pol V-

dependent RNA transcripts are bound by AGO4 and KTF1 in

vivo and act as scaffolds that recruit RITS complexes to specific

chromatin regions [19]. Recruitment of KTF1 and AGO4 to

chromatin is in parallel and independent. The interaction between

KTF1 and AGO4 on chromatin seems to create a platform that

facilitates recruitment of the de novo DNA methyltansferase DRM2

[35].

DEFECTIVE IN RNA-DIRECTED DNA METHYLATION

1 (DRD1), a chromatin-remodeling protein, DEFECTIVE IN

MERISTEM SILENCING 3 (DMS3), a protein containing a

hinge domain of structural maintenance of chromosome (SMC)

proteins, and RNA-DIRECTED DNA METHYLATION 1
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(RDM1), a methylated DNA-binding protein, form a tight protein

complex DDR (DRD1, DMS3, and RDM1) that is required for

producing Pol V-dependent RNA transcripts [36–39]. RDM1 is

also capable of binding AGO4 and DRM2, suggesting that RDM1

may be involved in recruitment of AGO4-containing RITS

complexes to DRM2 [38]. RNA-DIRECTED DNA METHYL-

ATION 4 (RDM4)/DEFECTIVE IN MERISTEM SILENCING

4 (DMS4) is a transcription factor that interacts with Pol II, Pol IV

and Pol V [40–42]. Disruption of RDM4 independently affects

accumulation of Pol V-dependent RNA transcripts and Pol II-

dependent protein-coding genes [40,41]. The RDM4 homolog

IWR1 in yeast is involved in Pol II assembly in the cytoplasm and

directs the transportation of the fully assembled Pol II into the

nucleus [24]. Based on this study, it is likely that RDM4 may

facilitate the assembly and nuclear import of Pol II, Pol IV, and

Pol V. CLASSY 1 (CLSY1), a chromatin-remodeling protein, and

SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1)/DNA-

BINDING TRANSCRIPTION FACTOR 1 (DTF1) are required

for de novo DNA methylation and accumulation of 24-nt siRNAs

[42–44]. Affinity purification of Pol IV co-purified RDR2,

CLSY1, and SHH1/DTF1, indicating that CLSY1 and SHH1

function in the upstream of the RdDM pathway and are involved

in generation of Pol IV-dependent siRNAs [42]. However, CLSY1

and SHH1 affect siRNA accumulation at a subset of RdDM

targets [42–44], suggesting CLSY1 and SHH1 probably interact

with Pol IV in a chromatin locus-specific manner.

INVOLVED IN DE NOVO 2 (IDN2)/RNA-DIRECTED

DNA METHYLATION 12 (RDM12) was independently identi-

fied as an RdDM component by two forward genetic screening

systems [45,46]. IDN2 contains an N-terminal C2H2-type zinc

finger domain, an XS domain, a coiled-coil domain, and an XH

domain [45]. In Arabidopsis, IDN2 is a member of a protein family

that contains eight other IDN2-like proteins. Additionally, IDN2 is

similar to SUPPRESSOR OF GENE SILENCING 3 (SGS3), an

important component in post-transcriptional gene silencing

pathways [47,48]. Both IDN2 and SGS3 contain zinc finger,

XS, and coiled-coil domains. The XS domains are required for

IDN2 and SGS3 to bind 59 overhanging double-stranded RNA

[45,49]. SGS3 is involved in accumulation of viral siRNAs, ta-

siRNAs, and nat-siRNAs [48,50,51]. However, disruption of

IDN2 only partially affects the accumulation of heterochromatic

siRNAs from a subset of RdDM target loci, suggesting that IDN2

may function at a downstream step of the RdDM pathway

[45,46]. The coiled-coil domain is sufficient for dimerization of

many proteins [52]. It is possible that the IDN2 coiled-coil domain

may help IDN2 to form a homodimer with itself or a heterodimer

with other members of the IDN2 family in Arabidopsis. The XH

domain is highly conserved in the IDN2 family but not in SGS3

[47], indicating that the XH domain may be required for the

functional specificity of the IDN2 protein family.

In the present study we show that IDN2 associates with two

IDN2 paralogs in the IDN2 protein family, which were named

IDP1 and IDP2 (after IDN2 PARALOG 1 and 2). IDP1 is

required for siRNA accumulation, de novo DNA methylation, and

transcriptional gene silencing, whereas IDP2 has partially over-

lapping roles with IDP1. The IDN2 coiled-coil domain is essential

for the homodimerization of IDN2 with itself but is not required

for IDN2 association with IDP1 and IDP2. The uncharacterized

XH domain of IDN2 is required for association with IDP1 and

IDP2 but not for IDN2 homodimerization. IDN2 and IDP1 or

IDP2 (IDP1/IDP2) form an IDN2-IDP1/IDP2 complex through

the IDN2 coiled-coil domain and XH domain. Unlike IDN2,

IDP1 and IDP2 are incapable of binding double-stranded RNA,

suggesting that IDP1 and IDP2 have distinct roles in the IDN2-

IDP1/IDP2 complex. The IDN2-IDP1/IDP2 complex may

facilitate the recruitment of double-stranded RNA-containing

effector complexes to specific chromatin regions at a downstream

step of the RdDM pathway.

Results

IDN2 associates with itself and two IDN2 paralogs, IDP1
and IDP2

To understand how IDN2 functions in the RdDM pathway, we

generated a construct harboring a native IDN2 promoter-driven

IDN2-6xMyc fusion transgene and transformed it into either wild-

type or ros1idn2-4 mutant plants. Previous studies had shown that

the silencing of the RD29A promoter-driven luciferase transgene

(RD29A-LUC) in ros1 was partially released by mutation of IDN2/

RDM12 in the ros1idn2 mutant [46]. Our results revealed that the

IDN2-6xMyc construct was able to restore the silencing of the

RD29A promoter-driven luciferase transgene and complement the

DNA methylation defect of AtSN1 in ros1idn2-4, demonstrating that

the IDN2-6xMyc fusion protein is functional in vivo (Figure 1A). The

IDN2-6xMyc expression in the transgenic lines was confirmed by

western blotting with the Myc antibody (Figure 1B).

The IDN2-6xMyc transgenic lines in the wild-type and ros1idn2-4

backgrounds were used for affinity purification of IDN2-6xMyc,

respectively. The co-purified proteins from both wild-type and

ros1idn2-4 backgrounds contained two major bands with one at

,110 KDa and another at ,80 KDa (Figure 1C). Mass-

spectrometric assay was carried out to identify co-purified proteins.

The ,110-KDa band was the IDN2-6xMyc fusion protein in both

wild-type and ros1idn2-4 backgrounds. The ,80-KDa band from

the wild-type background was rich in the IDN2 paralog 1 (IDP1)

AT1G15910 and to a lesser extent the IDN2 paralog 2 (IDP2)

AT4G00380 and IDN2 itself, whereas the band from the ros1idn2-

4 background was composed of the two IDN2 paralogs but not

IDN2 itself (Table 1, Table S1). The results suggest that IDN2 is

capable of interact with its paralogs IDP1 and IDP2 in vivo.

Moreover, IDN2 was detected in the ,80-KDa co-purified

proteins from the wild-type background but not from the ros1idn2-

4 mutant background, suggesting that the endogenous IDN2

protein in the wild-type background was co-purified by affinity

purification of IDN2-6xMyc. Taken together, IDN2 not only

Author Summary

In eukaryotes, transposable elements and other DNA
repeats are important parts of genomes. Suppression of
these sequences is required for genome stability and
integrity. DNA methylation is an important chromatin
modification that prevents the expression and movement
of these repeat sequences. Small interfering RNAs initiate
DNA methylation and transcriptional gene silencing of the
sequences. In the plant model organism Arabidopsis
thaliana, DNA methylation is mediated by an RNA–
directed DNA methylation (RdDM) pathway. Here we
report that the double-stranded RNA-binding protein
IDN2 and it paralogs IDP1 and IDP2 (IDN2 PARALOG 1
and 2) cooperate and form a novel complex that is
required for RNA–directed DNA methylation. Unlike IDN2,
IDP1 and IDP2 have no double-stranded RNA binding
ability. We propose that the IDN2-IDP1/2 is a complex that
functions at a downstream step of the RdDM pathway. The
findings significantly increase our understanding of the
plant RdDM pathway as well as of the RNA–mediated
chromatin changes in yeast and animals.

IDN2 Complex in DNA Methylation
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Figure 1. Characterization of the IDN2 complex. (A) The IDN2-6xMyc transgene restored the silencing of RD29A-LUC transgene in ros1idn2-4 as
well as the DNA methylation of AtSN1. The leaves were collected for luminescence imaging after treatment with 2% NaCl for 6 h. AtSN1 methylation
was tested by chop-PCR. (B) Western blot analysis of the IDN2-6xMyc transgene expression by the Myc antibody in wild type and ros1idn2-4. Ponceau
S staining of Rubisco is shown as a loading control. (C) Protein extracts from the IDN2-6xMyc transgenic plants in wild type and ros1idn2-4 were
affinity purified by the Myc antibody. Purified proteins were separated by SDS-PAGE gel and visualized by silver staining. KDa, Kilodalton. (D) Western
blot analysis of the elution profiles of IDN2-6xMyc in ros1idn2-4 by the Myc antibody. Fraction numbers and sizes of standard proteins are shown. The
elution profile of the previously characterized ,400 to 500-KDa DMS3 complex is indicated as a control for gel filtration. (E) The phylogenetic tree for
IDN2 and eight IDN2-like proteins in Arabidopsis. IDN2 and the IDN2-interacting proteins AT1G15910 (IDP1) and AT4G00380 (IDP2) are marked in
black.
doi:10.1371/journal.pgen.1002693.g001
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interacts with its two paralogs IDP1 and IDP2, but also interacts

with itself in vivo.

We further prepared the protein extracts from the IDN2-6xMyc

transgenic lines for gel filtration followed by western blotting with

the Myc antibody. The elution peak of the IDN2-6xMyc-containing

complex was at ,400 KDa, whereas no other peak was found by

western blotting (Figure 1D). The result demonstrates that all IDN2

proteins exist in a ,400-KDa protein complex, in agreement with

the tetramer size of the IDN2-IDP1/2 complex in the IDN2-6xMyc

transgenic plants. The ,400 to 500-KDa elution peak for the

previously demonstrated DMS3-containing complex is shown as a

control of the gel filtration (Figure 1D).

Beside IDN2, the IDN2 protein family contains eight IDN2-like

proteins including At3g12550, At4g01780, At1g15910,

At4g00380, At1g13790, At1g80790, At5g59390, and At4g01180.

IDN2 is most similar to At3g12550 and At4g01780, which belong

to the same clade as IDN2 according to sequence alignment and

phylogenetic analysis (Figure S1 and Figure 1E). IDP1

(AT1G15910) and IDP2 (AT4G00380) are highly similar to each

other and exist in another clade of the family (Figure S1, Figure S2

and Figure 1E). However, IDP1 and IDP2 but not At3g12550 or

At4g01780 were co-purified by affinity purification of IDN2. The

online Arabidopsis microarray database shows that all the genes in

the IDN2 family are well expressed, indicating that the IDN2

interaction specificity with IDP1 and IDP2 cannot be attributed to

the different expression of the genes in the IDN2 family.

Characterization of the IDN2-IDP1/2 interaction by yeast
two-hybrid

Yeast two-hybrid assay was carried out to further characterize

the IDN2 interaction with itself and its paralogs IDP1 and IDP2.

The results showed that IDN2 was capable of directly interacting

with itself as well as with its paralogs IDP1 and IDP2. The

interaction occured whenever IDN2 was used as a bait or prey

(Figure 2A). Interestingly, IDP1 and IDP2 were unable to dimerize

by themselves or to interact with each other (Figure 2A), indicating

that IDN2 may have some critical characteristics that are absent in

IDP1 and IDP2 and that are required for dimerization.

To identify the IDN2 domain that is responsible for IDN2

interaction, we generated a series of truncated IDN2 constructs in

bait vectors for yeast two-hybrid assay (Figure 2B). According to

this assay, all the constructs containing the IDN2 coiled-coil

domain were capable of forming a homodimer with IDN2,

whereas the constructs without the coiled-coil domain were

incapable of forming a homodimer with IDN2 (Figure 2C). This

suggests that the IDN2 coiled-coil domain is sufficient for the

homodimerization of IDN2, which is consistent with the expected

role of the conserved coiled-coil domain. Unexpectedly, the IDN2

coiled-coil domain was not required for association with IDP1 and

IDP2 (Figure 2C), although the full length of IDN2 including the

coiled-coil domain shows similarity with IDP1 and IDP2 (Figure

S1 and Figure S2). Interestingly, the previously uncharacterized

IDN2 XH domain was required for IDN2 association with IDP1

as well as with IDP2 (Figure 2C). The XH domain by itself was

sufficient for the association (Figure 2C). The results suggest that

the IDN2 paralogs IDP1 and IDP2 are unlikely to be functionally

redundant with IDN2.

Two point mutations were introduced in the IDN2 XH domain

to validate the function of the XH domain in the IDN2-IDP1/2

interaction. The conserved glutamic acid 600 and tryptophan 616

in the XH domain was mutated to glutamine and alanine

(IDN2E600Q and IDN2W616A), respectively. According to yeast

two-hybrid assay, the IDN2E600Q mutation disrupted the

Table 1. Mass-spectrometric analysis of IDN2-6xMyc affinity purification.

Accession number Protein Mascot score MW (Da)

1Matched
queries

2Matched
peptides 3Unique matches

Total IDN2-Myc purified proteins in WT

IPI00524938 AT3G48670 IDN2 2341 74778 118 45 118

IPI00523067 AT1G15910 IDP1 1480 72590 68 37 53

IPI00542085 AT4G00380 IDP2 444 73119 34 24 19

The ,80 KDa band from IDN2-Myc purified proteins in WT

IPI00523067 AT1G15910 IDP1 2092 72590 135 54 88

IPI00542085 AT4G00380 IDP2 612 73119 59 30 12

IPI00524938 AT3G48670 IDN2 528 74778 33 26 33

The ,80 KDa band from IDN2-Myc purified proteins in ros1idn2

IPI00523067 AT1G15910 IDP1 1891 72590 76 35 46

IPI00542085 AT4G00380 IDP2 606 73119 37 20 7

The ,80 KDa band from IDN2E600Q-Myc purified proteins in ros1idn2

IPI00523067 AT1G15910 IDP1 829 72590 26 21 20

IPI00542085 AT4G00380 IDP2 208 73119 10 10 4

The ,80 KDa band from IDN2W616A-Myc purified proteins in ros1idn2

IPI00523067 AT1G15910 IDP1 458 72590 25 15 19

IPI00542085 AT4G00380 IDP2 143 73119 10 8 4

The protein extracts were prepared from the IDN2-6xMyc transgenic plants in the wild-type and ros1idn2-4 mutant backgrounds and used for affinity purification of the
IDN2-6xMyc-containing complex. Either total purified proteins or the ,80-KDa band were subjected to mass-spectrometric analysis. Mascot score of each protein is
shown. 1) The number is the total number of mass spectra matched to the corresponding protein, including the redundant ones that match to the same peptides. 2)
The number is deduced from the ‘‘Matched queries’’ by removing the redundant peptides. 3) The number is calculated from ‘‘Matched queries’’ by removing the
overlapped peptide sequences among its homologous protein family.
doi:10.1371/journal.pgen.1002693.t001
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Figure 2. Identification of the IDN2 domains required for interaction with IDN2, IDP1, and IDP2 by yeast two-hybrid analysis. (A)
Interaction of IDN2, IDP1 and IDP2 by yeast two-hybrid analysis. IDN2, IDP1 and IDP2 were separately cloned into pGADT7 and pGBKT7 vectors. The
constructs were cotransformed into yeast strain PJ694a. Each transformed yeast strain was assayed on the plates with the indicated mediums.
Columns in each panel represent serial decimal dilutions. SD, synthetic dropout medium. VEC represents the empty pGADT7 or pGBKT7 vector. (B)
Diagram of the full-length IDN2 protein and its truncated versions used in yeast two-hybrid analysis. The zinc finger domain, XS domain, coiled-coil

IDN2 Complex in DNA Methylation
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interaction of IDN2 with its paralogs IDP1 and IDP2 but did not

affect the dimerization of IDN2 with itself (Figure 2D). This

confirms that the IDN2 XH domain is indeed essential for the

interaction between IDN2 and IDP1/2, which may be required

for the function of IDN2 in vivo. Additionally, the IDN2W616A

mutation did not affect IDN2 interaction (Figure 2D).

The IDN2 XH domain is required for the IDN2-IDP1/2
interaction and RdDM in vivo

To investigate the function of the IDN2 XH domain in vivo, we

introduced the IDN2E600Q and IDN2W616A mutations into the

functional wild-type IDN2-6xMyc fusion construct and transformed

them into the ros1idn2-4 double mutant for complementation

testing. Western blotting showed that the expression of both

mutated IDN2 fusion proteins was comparable to that of wild-type

IDN2-6xMyc (Figure 3A). The accumulation of DMS3, a

component of the DDR complex in RdDM, was not affected by

the idn2 mutation in ros1idn2-4 (Figure 3A). While the wild-type

IDN2-6xMyc transgenic lines complemented the silencing defect of

the RD29A-LUC transgene in the ros1idn2-4 mutant background,

the IDN2E600Q-6xMyc and IDN2W616A-6xMyc transgenic lines

were unable to restore the silencing of the RD29A-LUC transgene

(Figure 3B). Moreover, the two mutations also caused the mutated

IDN2 transgenes to fail to complement the DNA methylation

defect of idn2 at a canonical RdDM target AtSN1 (Figure 3B).

These results demonstrate that the IDN2 XH domain is essential

for the function of IDN2 in RdDM and in transcriptional gene

silencing in vivo. The IDN2E600Q mutation not only disrupted the

interaction between IDN2 and IDP1/2 (Figure 2D), but also

reduced the function of IDN2 in vivo (Figure 3B), suggesting that

the association of IDN2 with IDP1/2 through the XH domain is

required for the RdDM pathway. In contrast, the IDN2W616A

mutation affected the IDN2 function in RdDM (Figure 3B) but it

did not disrupt the IDN2-IDP1/2 interaction in yeast two-hybrid

assay (Figure 2D).

To test the potential role of the IDN2 XH domain in the

IDN2-IDP1/2 interaction in vivo, we affinity purified the IDN2-

6xMyc complex from the wild-type IDN2-6xMyc transgenic

plants, as well as from the mutated IDN2E600Q-6xMyc and

IDN2W616A-6xMyc transgenic plants in the ros1idn2-4 back-

ground. Each purified complex was run on SDS-PAGE and was

subjected to western blotting and mass-spectrometric analysis.

Western blotting showed that the IDN2-6xMyc fusion protein

was equivalently affinity purified from the wild-type and two

mutated IDN2-6xMyc transgenic plants (Figure 3C). The co-

purified ,80-KDa band was visualized from all the three

purified protein samples on the silver-staining gel. Mass-

spectrometric analysis indicated that the ,80-KDa band from

all the three samples comprised both IDP1 and IDP2 (Table 1,

Table S1). However, on the silver-staining gel, the band from

affinity purification of wild-type IDN2-6xMyc was much

stronger than that from purification of mutated IDN2E600Q-

6xMyc or IDN2W616A-6xMyc (Figure 3C), suggesting that

both IDN2E600Q and IDN2W616A mutations reduce IDN2

interaction with IDP1 and IDP2 in vivo. No DMS3 protein was

detectable in the IDN2-6xMyc purified proteins (Figure 3C),

indicating the absence of interaction between IDN2 and

DMS3.

IDP1 is required for DNA methylation and has
overlapping roles with IDP2

As IDN2 paralogs in the IDN2-IDP1/2 complex, IDP1 and

IDP2 may be required for RdDM. To investigate the potential

roles of IDP1 and IDP2 in RdDM, we used the homozygous T-

DNA insertion mutants idp1-1 (SALK_075378) and idp2-1

(SALK_066712) for analysis (Figure S3A, S3B). The gene-specific

primers flanking T-DNA insertion sites were used to detect the

RNA transcripts of IDP1 and IDP2 in their T-DNA mutant lines

by RT-PCR. The IDP1 and IDP2 RNA transcripts were

undetectable in the idp1-1 and idp2-1 T-DNA mutant lines (Figure

S3C), suggesting that the T-DNAs disrupt the function of these

genes.

The DNA methylation level was assessed in the idn2-5, idp1 and

idp2 T-DNA mutants at several well-characterized RdDM targets,

including AtSN1, IGN5, AtMU1, MEA-ISR, and Solo LTR. By

digestion with the methylation-sensitive enzyme HaeIII, followed

by PCR, we found that the DNA methylation of AtSN1 and IGN5

was reduced in idn2-5 and idp1 but not in idp2 (Figure S4A). The

reductions of DNA methylation in idn2-5 and idp1 were

comparable, but were less than that in nrpd1. Southern blotting

showed that the AtMU1 methylation was reduced in idp1 as well as

in nrpd1 but not in idp2 (Figure S4B). Bisulfite sequencing showed

that the DNA methylation levels of AtSN1 and MEA-ISR were

reduced in nrpd1, idn2-5 and idp1, particularly at CHG and CHH

sites (Figure 4A, 4B and Figures S5, S6). The effect of idn2-5 and

idp1 on the DNA methylation of AtSN1 and MEA-ISR was less than

that of nrpd1. The DNA methylation level of Solo LTR was

markedly reduced in nrpd1 and partially reduced in idn2-5, but did

not change in idp1 (Figure 4C and Figure S7).

To confirm that IDP1 is the right gene required for RdDM, we

produced a construct harboring the wild-type IDP1 genomic

sequence fused in frame with a 3xFlag encoding sequence (IDP1-

3xFlag) and transformed it into idp1 for a complementation assay.

The western blotting result showed that the IDP1-3xFlag transgene

was properly expressed in the idp1 mutant (Figure S8A). The DNA

methylation analysis result indicated that IDP1-3xFlag transgene

complemented the DNA methlyation defect of idp1 at the

canonical RdDM target AtSN1 (Figure S8B). As an IDN2 paralog,

IDP1 is also required for DNA methylation.

The idp2 mutation had no significant effect on DNA methyl-

ation at all tested RdDM target loci (Figure 4 and Figure S4).

However, in the idp1idp2 double mutant, the DNA methylation

levels of AtSN1 and IGN5 were highly reduced compared to the

idp1 single mutants (Figure S9), suggesting that IDP1 and IDP2

had overlapping roles in regulation of DNA methylation.

IDP1 is required for the silencing of RdDM targets and
the accumulation of 24-nt siRNAs

We tested whether the reduction of DNA methylation in idp1

results in elevated transcript level at RdDM target loci by

semiqantitative RT-PCR. The results showed that the transcripts

of AtSN1 and Solo LTR were enhanced in nrpd1 and to a lesser

extent in idn2-5 and idp1 (Figure 5A). As expected, idp2 had no

effect on the transcripts of the RdDM target loci (Figure 5A). The

results suggest that the reduction of DNA methylation caused by

idp1 leads to the release of transcriptional gene silencing.

Interestingly, although the Solo LTR DNA methylation level was

domain, and XH domain are indicated. (C) Interaction between truncated IDN2 proteins and IDN2, IDP1 or IDP2 in yeast two-hybrid analysis. The
truncated IDN2 sequences were separately cloned into the pGBKT7 vector and cotransformed with pGADT7 constructs harboring IDN2, IDP1 or IDP2.
The transformed strains were used for yeast two-hybrid analysis as above. BD-VEC represents the empty pGBKT7 vector. (D) Interaction between the
mutated full-length IDN2 and the wild-type IDN2, IDP1 or IDP2 in yeast two-hybrid analysis. The mutations are located in the IDN2 XH domain.
doi:10.1371/journal.pgen.1002693.g002
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Figure 3. Effect of the mutations in the IDN2 XH domains on
the IDN2 complex in Arabidopsis. (A) Western blotting of IDN2-
6xMyc and DMS3 proteins in the wild-type IDN2-6xMyc and mutated
IDN2E600Q-6xMyc and IDN2W616A-6xMyc transgenic plants in ros1idn2-
4. The Ponceau S-stained Rubisco is shown as a loading control. (B) The
IDN2E600Q-6xMyc and IDN2W616A-6xMyc transgenes in ros1idn2-4 fail
to restore the RD29A-LUC transgene silencing and complement the
DNA methylation defects at AtSN1. (C) The effect of the IDN2E600Q and
IDN2W616A mutations on the interaction between IDN2 and IDP1 or
IDP2 was determined by pull-down assay. Affinity purification with the
Myc antibody was applied for the protein extracts from the wild-type
IDN2-6xMyc, mutated IDN2E600Q-6xMyc and mutated IDN2W616A-
6xMyc transgenic plants in ros1idn2-4. Co-purified proteins were tested
by western blotting using the Myc antibody and endogenous DMS3
antibody. The purified proteins were also separated on SDS-PAGE and
visualized by silver staining. The ,80-KDa bands are shown.
doi:10.1371/journal.pgen.1002693.g003

Figure 4. Effect of idp1 and idp2 on DNA methylation. (A–C) Effect
of idp1 and idp2 on the DNA methylation of AtSN1, MEA-ISR, and Solo LTR
was determined by bisulfite sequencing. The percentage of methylated
cytosine in different cytosine contexts is shown. The DNA methylation in
each genotype is shown by different colored bar as indicated.
doi:10.1371/journal.pgen.1002693.g004
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not changed in idp1, its RNA transcript was markedly increased.

Solo LTR was previously characterized as a specific RdDM target

that is regulated by RdDM in DNA methylation-dependent and –

independent manners [44]. Like the previously identified SHH1/

DTF1 [42,44], IDP1 is required for the silencing of Solo LTR in a

DNA methylation-independent manner. Previous studies demon-

strated that the ROS1 RNA transcript level was reduced by the

disruption of MET1, DDM1 and the RdDM machinery that

affected genomic DNA methylation [40,53,54]. Our results show

that the ROS1 transcript level is reduced in idp1, idn2-5, and nrpd1

but not in idp2, supporting the idea that IDP1 is an RdDM

component that associates with IDN2 (Figure 5A).

We carried out small RNA blot analysis to determine whether

the idp1 mutation affected the accumulation of 24-nt siRNAs from

RdDM target loci. The results revealed that idp1 partially reduced

the accumulation of AtSN1 siRNA, siRNA1003, and Solo LTR

siRNA, whereas it had no effect on the other tested siRNAs

including AtMU1 siRNA, AtGP1 siRNA, and siRNA02 (Figure 5B,

5C). The accumulation level of ta-siRNA255 and miRNA171 was

not affected by idp1 and nrpd1. As expected, the idp2 mutation did

not significantly affect the accumulation of 24-nt siRNAs at

RdDM targets (Figure 5B, 5C). The results suggest that as an

IDN2-interacting paralog, IDP1 specifically affects the accumula-

tion of 24-nt siRNAs at a subset of RdDM targets including AtSN1

siRNA, siRNA1003, and Solo LTR siRNA.

Previous studies demonstrated that the accumulation of AtSN1

siRNA, siRNA1003, and Solo LTR siRNA are dependent on both

Pol IV and Pol V, whereas AtMU1 siRNA, siRNA02, and AtGP1

siRNA are Pol IV-dependent but Pol V-independent [33,40,44].

Our small RNA northern blotting results indicated that the idp1

mutation had no effect on the siRNAs that are Pol IV-dependent

but Pol V-independent, whereas it partially reduced the siRNAs

that are dependent on both Pol IV and Pol V. The results support

that IDP1 does not directly initiate siRNA generation but affect

siRNA accumulation in the same manner with Pol V and several

other downstream components of RdDM. IDP1 probably acts at a

downstream step in the RdDM pathway, which is consistent with

the possible role of IDN2 in the RdDM pathway [45].

Figure 5. Effect of idp1 and idp2 on transcriptional gene silencing and small RNA accumulation at endogenous RdDM target loci. (A)
Effect of idp1 and idp2 on transcriptional gene silencing of endogenous RdDM targets was determined by semiquantitative RT-PCR. ACT7 was used as
an internal control. No RT amplification shows the absence of DNA contamination in RNA samples. (B, C) Effect of idp1 and idp2 on small RNA
accumulation was determined by small RNA northern blotting. 24-nt siRNAs, 21-nt ta-siRNA255, and miRNA171 were detected. The ethidium
bromide-stained small RNA gel was imaged as a loading control.
doi:10.1371/journal.pgen.1002693.g005
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Figure 6. IDN2, but not IDP1 or IDP2, binds double-stranded RNA. (A) The bacterially expressed, full-length and truncated IDN2 proteins and
full-length IDP1 and IDP2 proteins were purified and subjected to SDS-PAGE. The gel was stained with Coomassie. The bottom panel shows the
diagram of the truncated IDN2 proteins. (B) The diagrams of different probes (1–6) used in this study are shown. The sizes of two 59 overhangs of the
59 overhanging double-stranded RNA are 2 nt. The single-stranded DNA and RNA probes are RD29A-DNA-F and RD29A-RNA-F (Table S4),
respectively. The full-length IDN2 protein binds to 35-nt double-stranded RNA (corresponding to the RD29A promoter) with or without 59 overhangs
in EMSA. (C) IDN2-a, but not IDN2-b or IDN2-c, binds to double-stranded RNA. (D) Neither IDP1 nor IDP2 binds to double-stranded RNA or to the
other types of nucleic acids. (E) EMSA was carried out when an increasing amount of indicated proteins (0.1, 0.4, 1.6, 3.2, 6.4 mg) was added in the
RNA-binding system. 59 overhanging double-stranded RNA and blunt-end double-stranded RNA were used in the binding assay, respectively.
doi:10.1371/journal.pgen.1002693.g006
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IDN2, but not IDP1 and IDP2, binds double-stranded RNA
IDN2 had been demonstrated to be an RNA-binding protein

that specifically binds 59 overhanging double-stranded RNA [45].

The truncated IDN2 proteins including the XS domain and

coiled-coil domain are sufficient for the RNA-binding ability of

IDN2 (Figure 6A) [45]. Because of the sequence similarity between

IDN2 and its paralogs IDP1 and IDP2, it is reasonable to predict

that IDP1 and IDP2 may also be capable of binding double-

stranded RNA. For electrophoretic mobility shift assay (EMSA),

the full-length IDN2, IDP1 and IDP2 proteins, and three

truncated IDN2 proteins were expressed and purified from

bacteria (Figure 6A). In our EMSA experiments, six different

nucleic acid species were used as probes (Figure 6B). These probes

were well labeled and purified (Figure S10). Our EMSA results

indicated that the full-length IDN2 not only bound 59 overhanging

double-stranded RNA but also bound the double-stranded RNA

with blunt ends (Figure 6B). The truncated IDN2 protein

including both XS and coiled-coil domains was sufficient for

binding to the two forms of double-stranded RNAs, whereas the

zinc finger and XH domains were not required for the RNA-

binding ability (Figure 6C). These results are different from those

described in a previous study in which IDN2 could specifically

bind 59 overhanging double-stranded RNA but not the double-

stranded RNA with blunt ends [45].

The bacterially purified IDP1 and IDP2 was incapable of

binding double-stranded RNA and any other form of nucleic acids

(Figure 6D). The binding of IDN2, IDP1, and IDP2 with double-

stranded RNA was further tested when an increasing amount of

each full-length protein was added to the RNA-binding reaction

system. The results showed that IDN2 but not IDP1 and IDP2 was

able to specifically bind both 59 overhanging double-stranded

RNA and blunt-end double-stranded RNA (Figure 6E), suggesting

that IDP1 and IDP2 may have roles other than the nucleic acid-

binding ability in the IDN2-IDP1/2 complex.

Discussion

IDN2 has been previously identified by two independent

forward genetic screens and has been demonstrated to be an

important component that may function at a downstream step in

the RdDM pathway [45,46]. Our results suggest that IDN2 and its

paralogs, IDP1 or IDP2 form a complex required for RdDM. The

DDR complex is another important component that acts at a

downstream step in the RdDM pathway [39]. Our results show,

however, that IDN2 does not associate with DMS3, a component

of the DDR complex, suggesting a different role for IDN2 at the

downstream of RdDM. To further characterize the IDN2-IDP1/

IDP2 complex, we generated IDP1-3xFlag transgenic plants and

carried out affinity purification of IDP1-3xFlag. Mass-spectromet-

ric analysis showed that the IDP1-3xFlag co-purified proteins

included IDN2 as well as IDP2 (Figure S11 and Table S2),

suggesting that IDP1 and IDP2 can exist in the same IDN2-

containing complex. Furthermore, because the idp2 single mutant

has no clear DNA methylation defect compared to idp1 (Figure 4

and Figure S4), we propose that that IDP1 and IDN2 may also

form a functional complex without IDP2.

IDN2 is a member of a protein family that contains nine

proteins. As indicated by phylogenetic analysis (Figure 1E), IDN2

and two other proteins, AT4G01780 and AT3G12550 are highly

similar and classified into the same clade. The proteins

AT1G15910 and AT4G00380 have low similarity with IDN2

and belong to another clade. In this study, we show that IDP1

(AT1G15910) and IDP2 (AT4G00380) interact with IDN2 and

form a complex required for RdDM. IDN2 can form a

homodimer by itself, but it is unable to associate with its most

similar homologs AT4G01780 and AT3G12550 as indicated by

affinity purification. Our result suggests that IDN2 interaction

with IDP1 and IDP2 does not rely on the sequence similarity

between IDN2 and IDP1 or IDP2. It follows that interaction with

IDN2 evidently requires some sequence specificities that are

present in IDP1 and IDP2 but are absent in the IDN2 homologs

AT4G01780 and AT3G12550.

The coiled-coil domain has been demonstrated to be required

for dimerization of many proteins [52]. Our yeast two-hybrid

results show that IDN2 depends on its coiled-coil domain in order

to form a homodimer, whereas the XH domain but not the coiled-

coil domain is required for the association of IDN2 with its

paralogs IDP1 and IDP2 (Figure 2B, 2C). The results reveal that

IDN2 associates with itself and its paralogs through the coiled-coil

domain and the XH domain, respectively. Both interaction

domains seem to be required for the formation of a functional

IDN2-IDP1/2 complex in RdDM in vivo. According to gel

filtration, the IDN2 fusion protein-containing complex is

,400 KDa, corresponding to a tetramer of IDN2 and its paralogs

IDP1 and IDP2 (Figure 1D). We propose that in the IDN2-

containing tetramer, two IDN2 proteins form a homodimer

through their coiled-coil domains in parallel, whereas two IDN2

paralogs IDP1 and/or IDP2 separately associate with the two C-

terminal XH domains of the IDN2 dimer. Because the yeast two-

hybrid assay detected no interaction between the IDP1/2 proteins,

the two IDP1/2 proteins in the tetramer are unlikely to directly

interact with each other.

The IDN2 XH domain has been demonstrated to be sufficient

for IDN2 interaction with IDP1/2 by yeast two-hybrid assay

(Figure 2B, 2C). The IDN2E600Q mutation in XH domain

reduced the IDN2-IDP1/2 interaction in yeast two-hybrid assay as

well as in the IDN2-6xMyc pull-down assay (Figure 2D and

Figure 3C), demonstrating the important role of the IDN2 XH

domain in the IDN2-IDP1/2 interaction. However, the

IDN2W616A mutation had no effect on the IDN2-IDP1/2

interaction in yeast two-hybrid, whereas it reduced the IDN2

association with IDP1/2 in the IDN2-6xMyc pull-down assay

(Figure 2D and Figure 3C). The results suggest that the interaction

between the IDN2 XH domain and the IDP1/2 proteins is

insufficient for the formation of the IDN2-IDP1/IDP2 complex in

vivo. It is possible that IDN2W616 in the XH domain is required

for proper assembly of the IDN2-IDP1/IDP2 complex, whereas

IDN2E600 is a site that directly interacts with IDP1 or IDP2.

Our EMSA result shows that IDN2 can bind both 59

overhanging double-stranded RNA and blunt-end double-strand-

ed RNA (Figure 6B, 6E), which is inconsistent with a previous

report that IDN2 can bind 59 overhanging double-stranded RNA

but not any other types of nucleic acids [45]. The inconsistent

results may be due to the different double-stranded RNA probes

used in EMSA. The previous study used blunt-end double-

stranded RNA with 21-base pairs [45], which may be too short for

IDN2 binding. Alternatively, the double-stranded RNA-binding

ability of IDN2 may depend on RNA-sequence specificities. Our

results show that both the full-length IDN2 and the truncated

IDN2 containing the XS and coiled-coil domains are capable of

binding two types of double-stranded RNAs (Figure 6A–6C),

suggesting that the 59 overhangs of double-stranded RNA are not

required for IDN2 binding by EMSA. However, the RNA

substrates that are bound by IDN2 in vivo require further

investigation.

Unlike IDN2, the IDN2 paralogs IDP1 and IDP2 had no

double-stranded RNA binding ability in our EMSA experiment

(Figure 6D, 6E), although the sequences of IDP1 and IDP2 are
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similar to those of IDN2. We propose that in the IDN2-IDP1/2

complex, IDN2 is responsible for binding double-stranded RNA

substrates, whereas its paralogs IDP1 and IDP2 play different

roles. Our results show that both IDP1 and IDP2 are required for

DNA methylation (Figure 4, Figure S4 and Figure S9), suggesting

that the IDN2-IDP1/2 complex is required for RdDM in vivo.

IDN2 and IDP1 or IDP2 cooperate in the IDN2-IDP1/2 complex

and regulate the RdDM pathway together. Although further

research is required to explore the exact function of IDN2 and

IDP1/2 in vivo, this study has clearly demonstrated that the newly

characterized IDN2-IDP1/2 complex is essential for RdDM.

During this manuscript was under review, Xie et al. reported

that two IDN2-like proteins, FACTOR OF DNA METHYLA-

TION 1 (FDM1) and FDM2 are functionally redundant with

IDN2 in RdDM [55]. FDM1 and FDM2 are synonymous with

IDP1 and IDP2, respectively. The identification of the same two

proteins, IDP1/FDM1 and IDP2/FDM2 as the most important

IDN2 homologs in RdDM by two independent studies further

underlies the importance of IDP1/FDM1 and IDP2/FDM2 in the

RdDM pathway. More importantly, in our study, we character-

ized an IDN2-IDP1/IDP2 complex required for the RdDM

pathway. IDP1 and IDP2 belong to a different subfamily from

IDN2 and its close homologs (AT3G12550 and AT4G01780)

(Figure 1E). IDN2 interacts with itself via the coiled-coil domain,

whereas it interacts with IDP1 and IDP2 via the XH domain

(Figure 2B–2D). Moreover, unlike IDN2, IDP1 and IDP2 are

incapable of binding double-stranded RNA (Figure 6D, 6E). These

results suggest that IDN2 and IDP1 or IDP2 have different

biochemical functions in the IDN2-IDP1/IDP2 complex.

In the case that the IDN2 close homolog, AT1G12550 (FDM3)

acts a role in RdDM [55], FDM3 is likely to have redundant

biochemical functions with IDN2. Disruption of the IDN2-IDP1/

IDP2 complex by the idn2 mutation may be partially rescued by

the potential FDM3-IDP1/IDP2 complex. However, when both

IDN2 and IDP1 or IDP2 were knocked out in the double mutants,

idn2idp1 and idn2idp2, the function of the IDN2-IDP1/IDP2

complex was undoubtedly much more difficult to be rescued by

their homologs. Therefore, it is reasonable that the double

mutants, idn2idp1/idn2fdm1 and idn2idp2/idn2fdm2 cause strong

reduction in DNA methylation and siRNA accumulation than

each of single mutants as indicated by Xie et al. [55]. Taken

together, our biochemical results are consistent with the reverse

genetic analysis results reported by Xie et al. [55] and provide

further insights into the functioning mechanism of IDN2 and its

paralogs IDP1 and IDP2.

Materials and Methods

Plant materials, constructs, and Arabidopsis transgenic
lines

Arabidopsis plant materials were grown on MS plates under long-

day conditions at 22uC. When adult plants or flowers were needed,

the plants were transplanted from MS plates into soil and grown in

a growth room under long-day conditions. The plants used in this

study included the wild-type Col-0, nrpd1-3 (SALK_128428), idn2-

5/rdm12-2 (FLAG_550B05), idp1-1 (SALK_075378), idp2-1

(SALK_066712), idp1-1idp2-1, and the wild-type C24, ros1-1,

and ros1-1rdm12-1/ros1-1idn2-4 that contain an RD29A promoter-

driven luciferase reporter transgene.

The full-length IDN2 genomic sequence was amplified and

cloned into the binary pCAMBIA1300 vector with its C-terminal

tagged by 6xMyc (Figure S12A, S12C). The full-length IDP1

genomic sequence was cloned into the vector modified from

pCAMBIA1305, in which the 35S promoter-driven GUS reporter

gene was replaced by 3xFlag (Figure S12B, S12D). Site-directed

mutagenesis was carried out to generate the mutated IDN2

sequences. The mutated IDN2 sequence was cloned into the same

vector with the wild-type IDN2 sequence. The constructs were

transformed into wild type and ros1idn2-4 by agrobacteria

infection. The T1 transgenic plants were grown on MS medium

supplemented with 20 mg/ml hygromycin, and the resistant

positive seedlings were grown for further analysis.

Affinity purification, mass spectrometry, and gel filtration
Three grams of flowers or seedlings from IDN2-Myc or IDP1-

3xFlag transgenic plants as well as from wild type were harvested

and ground in liquid nitrogen. The ground materials were

homogenized in 15 ml of lysis buffer (50 mM Tris [pH 7.6],

150 mM NaCl, 5 mM MgCl2, 10% glycerol, 0.1% NP-40,

0.5 mM DTT, 1 mM PMSF, and 1 protease inhibitor cocktail

tablet/50 ml [Roche]). Following centrifugation, each supernatant

was incubated with 100 ml of Anti-c-Myc Agarose (Sigma, A 7470)

or Anti-Flag M1 Agarose (Sigma, A 4596) at 4uC for 2.5 h. The

resins were washed twice for 5 min with 10 ml of lysis buffer and

then five times for 5 min with 1 ml of lysis buffer. The Myc beads-

bound proteins were eluted with 0.1 M ammonium hydroxide at

pH 11.5, whereas the Flag beads-bound proteins were eluted with

3xFlag peptide (Sigma, F 4799).

The eluted fraction was run on a 12% SDS-PAGE gel, followed

by silver staining with the ProteoSilver Silver Stain Kit (Sigma,

PROT-SIL1). Either whole proteins or individual bands were cut

from the gel and purified. The purified peptides were eluted on an

analytical capillary column (50 mm610 cm) packed with 5-mm

spherical C18 reversed-phase material (YMC, Kyoyo, Japan). The

eluted peptides were sprayed into a LTQ mass spectrometer

(Thermo Fisher Scientific) equipped with a nano-ESI ion source.

Database searches were performed on the Mascot server (Matrix

Science Ltd., London, UK) against the IPI (International Protein

Index) Arabidopsis protein database. Mapped peptides were

calculated and shown.

For gel filtration, 0.4 g of plant material was ground in liquid

nitrogen and suspended in 2.4 ml of lysis buffer and centrifuged at

13200 rpm for 10 min at 4uC. The supernatants were then passed

through a 0.22-mm filter, and 250 ml was loaded onto a Superose 6

10/300 GL column (GE Healthcare, 17-5172-01); 500-ml fractions

were collected. A 10-ml volume of every fraction was run on 10%

SDS-PAGE for western blot assay of IDN2-Myc and DMS3. The

column was calibrated with the standard proteins.

Yeast two-hybrid assay
For yeast two-hybrid analysis, the full-length cDNAs of IDN2

and its paralogs IDP1 and IDP2 were cloned into pGADT7 and

pGBKT7 vectors, respectively. The yeast strain PJ694a was co-

transformed with corresponding pGADT7 and pGBKT7 con-

structs, and grown on the synthetic dropout medium SD-trp-leu

for selection. The positive strains were incubated in SD-trp-leu

liquid medium at 28uC, and serial decimal dilutions were used for

spot assay on SD-trp-leu-his plates supplemented with 5 mM to

20 mM 3-AT. The addition of 3-AT to the medium increases the

stringency of selection. The interaction between GAL4-AD fusion

proteins and GAL4-BD fusion proteins activates the expression of

the reporter gene HIS, which promotes the growth of the strain on

SD-trp-leu-his plates supplemented with 3-AT. To identify the

IDN2 domain that is required for dimerization, we cloned the

truncated and mutated IDN2 cDNAs into the pGBKT7 vector and

co-transformed them with pGADT7-IDN2, pGADT7-IDP1, or

pGADT7-IDP2. The positive strains were incubated in SD-trp-leu
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liquid medium and were used for spot assay on SD-trp-leu-his

medium supplemented with 3-AT.

DNA methylation assay
Chop-PCR, southern blotting, and bisulfite sequencing were

conducted to test DNA methylation. For chop-PCR, genomic

DNA was digested with the DNA methylation-sensitive restriction

enzyme HaeIII, followed by amplification of target DNA

sequences. For southern blotting, genomic DNA was digested

with HaeIII, and 20 mg of the digested DNA was run on a 1.0%

agarose gel at 40 V overnight followed by southern blotting. For

bisulfite sequencing, 2 mg of genomic DNA was treated with

sodium bisulfite, which converts unmethylated cytosines to uracils.

The converted genomic DNA was purified with the EpiTect

Bisulfite Kit (Qiagene), followed by amplification and cloning. The

cloned sequences were analyzed online by CyMATE (http://

www.gmi.oeaw.ac.at/research-groups/cymate) [56]. At least 15

individual clones were collected for sequencing for each sample. A

summary of the bisulfite sequencing results is shown in Table S3.

The primers used for DNA methylation assay are described in

Table S4.

Detection of RNA transcripts and small RNAs
For semiquantitative RT-PCR, RNA was isolated from 2-week-

old seedlings on MS plates as described previously [57]. The

isolated RNA was treated with DNase to remove DNA

contamination and used for RT-PCR. For RT-PCR of transpos-

able elements, sequence-specific primers were used as reverse

primers to generate the first-stranded cDNAs. For RT-PCR of

protein-encoding genes, oligo-dT was used as a reverse primer.

The constitutively expressed gene ACT7 or TUB4 was amplified

as internal controls. Amplification of RNA samples without reverse

transcription (No RT) was carried out to test whether the RNA

samples were contaminated with DNA. For small RNA blotting,

small RNAs were extracted as described previously [57] and run

on a 15% polyacrylamide gel at 200 V for 3–4 h. The small RNA

gel was ethidium bromide-stained for imaging and electrotrans-

ferred to Hybond-N+ membranes (Amersham) for small RNA

hybridization. Small RNA probes were [c-32P]ATP-labeled DNA

oligonucleotides or [a-32P]dCTP-labeled PCR products. Small

RNA hybridization was carried out in PerfectHyb buffer (Sigma)

overnight at 38uC. The DNA oligonucleotides that were used are

described in Table S4.

Electrophoretic mobility shift assay
The following were cloned into the pET28a or pET30 vector:

full-length IDN2 cDNA; truncated IDN2 cDNAs IDN2-a, IDN2-b,

and IDN2-c; and full-length IDP1 and IDP2 cDNAs. Each

construct was transformed into E. coli BL21 for expression of

His fusion proteins. His fusion proteins were purified by Ni-NTA

His Bind Resin (Novagen) and used for electrophoretic mobility

shift assay (EMSA). EMSA assays were performed as previously

described [33]. For the binding assay, RNA and DNA oligonu-

cleotides were synthesized and end labeled with T4 polynucleotide

kinase and [c-32P]ATP. The labeled oligonucleotides were

purified with G-25 columns (GE Healthcare) and used as probes

in the binding assay. The binding reaction included 4 ml of labeled

RNA or DNA probes, 2 mg of His fusion protein, 25 mM HEPES

(pH 7.6), 50 mM KCl, 0.1 mM EDTA (pH 8.0), 12.5 mM

MgCl2, 1 mM DTT, 0.5% (w/v) BSA, and 5% (w/v) glycerol.

The reaction mixtures were incubated at room temperature for

30 min and run on 4% nondenaturing polyacrylamide gels at

200 V for 2 h. Gels were exposed to X-ray film for analysis.

Supporting Information

Figure S1 Sequence alignment of IDN2 and eight IDN2-like

proteins in the IDN2 family in Arabidopsis.

(PDF)

Figure S2 Sequence alignment of IDN2 and the two IDN2-

interacting paralogs IDP1 and IDP2.

(TIF)

Figure S3 Genotyping and confirmation of the idp1 and idp2

mutants. (A) Diagram of IDP1 and IDP2 genes and their mutants.

The T-DNA insertions in idp1-1 (Salk_075378) and idp2-1

(Salk_066712) are shown. Exons (boxes), introns (line), and open

reading frame (solid boxes) are indicated. (B) Genotyping of the

idp1-1 and idp1-2 mutants. The gene-specific primers flanking T-

DNAs were used for amplification of IDP1 and IDP2. No

amplification indicates that the materials are homozygous. (C)

The RNA transcript levels of IDP1 and IDP2 were detected by

semiquantitative RT-PCR in the idp1-1 and idp2-1 mutants.

Amplification of TUB4 was used as an internal control.

(TIF)

Figure S4 Effect of idp1 and idp2 on DNA methylation. (A)

Effect of idp1 and idp2 on the DNA methylation level of AtSN1

and IGN5 was determined by chop-PCR. Genomic DNA was

digested by the DNA methylation-sensitive restriction enzyme

HaeIII, followed by amplification. (B) Effect of idp1 and idp2 on

AtMU1 DNA methylation was tested by southern blotting.

Genomic DNA was digested by HaeIII followed by southern

hybridization.

(TIF)

Figure S5 Diagram of the bisulfite sequencing results of AtSN1.

The bisulfite sequencing results were analyzed by CyMATE. (A)

The positions of all cytosines in the tested AtSN1 sequence. (B)

The methylation status of all cytosines for each clone in WT,

nrpd1, idn2-5, idp1, and idp2 is shown. The cytosine methylation in

different contexts (CG, CHG, and CHH) is diagramed as

indicated. Each line represents the cytosine methylation status

for each clone. Class 1, Class 2, and Class 3 represent the

cytosines at CG, CHG, and CHH sites, respectively. ‘‘H’’ is A, T,

or C.

(TIF)

Figure S6 Diagram of the bisulfite sequencing results of MEA-

ISR.

(TIF)

Figure S7 Diagram of the bisulfite sequencing results of Solo LTR.

(TIF)

Figure S8 The IDP1-3xFlag transgene is functional in vivo. (A)

The expression of the IDP1-3xFlag transgene in wild type and idp1

was tested by the Flag antibody. Ponceau S staining of Rubisco is

shown as a loading control. (B) The IDP1-3xFlag transgene

complements the DNA methylation defect of AtSN1. AtSN1

methylation was tested by chop-PCR.

(TIF)

Figure S9 Detection of DNA methylation in the idp1idp2 double

mutant. The DNA methylation level of AtSN1 and IGN5 was

determined by chop-PCR. Genomic DNA from each indicated

genotype was digested by the DNA methylation-sensitive restric-

tion enzyme HaeIII, followed by amplification.

(TIF)

Figure S10 Each labeled nucleic acid was run on native gel

when no protein was added. The result indicated that all nucleic
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acids were well labeled and purified. The identifications of probes

(1–6) were shown in Figure 6B.

(TIF)

Figure S11 Co-purified proteins by IDP1-3xFlag pull down.

Protein extracts were isolated from the IDP1-3xFlag transgenic

plants as well as from the wild-type control. The extracts were

subjected to affinity purification of IDP1-3xFlag by the Flag

antibody. Total purified proteins were visualized by silver staining

on SDS-PAGE gel.

(TIF)

Figure S12 Diagram of the IDN2-6xMyc and IDP1-3xFlag

constructs. (A, B) The backbones of the IDN2-6xMyc and IDP1-

3xFlag constructs are pCAMBIA1300 and pCAMBIA1305,

respectively. (C) Diagram of the IDN2-6xMyc construct. A 6xMyc

encoding DNA sequence and a NOS terminator were inserted

between XbaI and HindIII restriction sites. The native promoter-

driven IDN2 genomic sequence was cloned in frame with the

6xMyc. (D) Diagram of the IDP1-3xFlag construct. The 35S

promoter-driven GUS reporter was replaced by a 3xFlag encoding

sequence between HindIII and BstEII restriction sites. The native

promoter-driven IDP1 genomic sequence was cloned in frame with

the 3xFlag between EcoRI and SalI sites.

(TIF)

Table S1 List of all identified peptides from mass-spectrometric

analysis. All listed peptides are significant matches (p,0.05) and

considered unambiguous. 1) Numbers of matches for each peptide.

2) Unique peptides are labelled with ‘‘U’’. Numbers of total and

unique peptide matches for corresponding proteins are shown in

parentheses.

(XLS)

Table S2 Mass-spectrometric analysis of IDP1-3xFlag affinity

purification. Total protein extracts were isolated from the IDP1-

3xFlag transgenic plants in the wild-type background and

subjected to affinity purification of IDP1-3xFlag. The co-purified

proteins were purified and used for mass-spectrometric analysis.

Mascot score of each protein is shown. 1) The number is the total

number of mass spectra matched to the corresponding protein,

including the redundant ones that match to the same peptides. 2)

The number is deduced from the ‘‘Matched queries’’ by removing

the redundant peptides. 3) The number is calculated from

‘‘Matched queries’’ by removing the overlapped peptide sequences

among its homologous protein family.

(DOC)

Table S3 Summary of bisulfite sequencing results. The bisulfite

sequencing results for AtSN1, MEA-ISR, and Solo LTR is

summarized. The number of analyzed clones for each genotype

and the number of each type of cytosine contexts are shown. The

percentage of methylated cytosines for each cytosine context is

indicated for each genotype. The numbers of methylated cytosines

and total cytosines for each type of cytosine contexts are shown as

‘‘methylated cytosines/total cytosines’’ in parentheses.

(DOC)

Table S4 List of DNA and RNA oligonucleotides used in this

study.

(XLS)
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