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Abstract

The dorsal cochlear nucleus (DCN) is a first relay of the central auditory system as well as a site for integration of multimodal
information. Vesicular glutamate transporters VGLUT-1 and VGLUT-2 selectively package glutamate into synaptic vesicles
and are found to have different patterns of organization in the DCN. Whereas auditory nerve fibers predominantly co-label
with VGLUT-1, somatosensory inputs predominantly co-label with VGLUT-2. Here, we used retrograde and anterograde
transport of fluorescent conjugated dextran amine (DA) to demonstrate that the lateral vestibular nucleus (LVN) exhibits
ipsilateral projections to both fusiform and deep layers of the rat DCN. Stimulating the LVN induced glutamatergic synaptic
currents in fusiform cells and granule cell interneurones. We combined the dextran amine neuronal tracing method with
immunohistochemistry and showed that labeled projections from the LVN are co-labeled with VGLUT-2 by contrast to
VGLUT-1. Wistar rats were exposed to a loud single tone (15 kHz, 110 dB SPL) for 6 hours. Five days after acoustic
overexposure, the level of expression of VGLUT-1 in the DCN was decreased whereas the level of expression of VGLUT-2 in
the DCN was increased including terminals originating from the LVN. VGLUT-2 mediated projections from the LVN to the
DCN are likely to play a role in the head position in response to sound. Amplification of VGLUT-2 expression after acoustic
overexposure could be a compensatory mechanism from vestibular inputs in response to hearing loss and to a decrease of
VGLUT-1 expression from auditory nerve fibers.
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Introduction

The dorsal cochlear nucleus (DCN) in the auditory brainstem is

a major termination point of the auditory nerve and auditory

nuclei [1–6]. Principal DCN fusiform cells and granule interneu-

rons compose a circuit finely tuned to encoding spectral

components of sound [7,8] and receive direct and indirect acoustic

inputs from the auditory nerve [5], the ventral cochlear nucleus

[2–4] and olivary and peri-olivary regions of the auditory

brainstem [1,6]. The DCN also plays an important role in the

integration of non auditory inputs from sensory locations [9].

DCN granule cells and their parallel fiber axons are a site of

integration of multimodal sensory inputs such as those from the

trigeminal ganglion [10], the spinal trigeminal nucleus [11–13],

the pontine nucleus [14], the cuneate nucleus and gracile nuclei

[13,15–18] and the raphe nucleus [19] possibly encoding

proprioceptive information on the position of the ears relative to

the sound source [20] or suppressing body-generated sounds or

vocal feedback [9,21,22]. Although multisensory integration also

includes projections from primary and secondary vestibular

afferent fibers to the DCN [23,24], the nature of synaptic

projections from vestibular nuclei to the DCN remains uniden-

tified.

Synaptic projections can be specifically associated with vesicular

glutamate transporters that package glutamate into synaptic

vesicles [25–27]. Both VGLUT-1 and VGLUT-2 [25,28] but

not VGLUT-3 are expressed in terminals in the rodent cochlear

nucleus [29] although VGLUT-3 has been identified in somata in

the cochlear nucleus [30]. In the DCN, VGLUT-1 and VGLUT-2

are distinctly associated with synaptic terminals of the auditory

nerve and multisensory projections, respectively [31]. Type I

auditory nerve fiber terminals co-label with VGLUT-1 and not

VGLUT-2 [31] whereas projections originating from the spinal

trigeminal nucleus, the cuneate nucleus and the lateral reticular

nucleus co-label with VGLUT-2 and not VGLUT-1 [12,31].

The vestibular nuclear complex lies in the floor of the fourth

ventricle and consists of four major nuclei, namely the medial,

lateral, superior and inferior vestibular nuclei. The vestibular

nuclear complex controls eye movements, reflex postural head and

neck, movements and balance during stance and gait as well as

modulation and modification of autonomic function to maintain

homeostasis during changes in body posture [32]. Both VGLUT-1

and VGLUT-2 are widely expressed in all sub-nuclei of the

vestibular nucleus complex where the axon terminals are either

VGLUT-1 single labelled, VGLUT-2 single labelled or VGLUT-

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e35955



1, VGLUT-2 double labelled [33]. Here we tested whether

vestibular inputs project to the DCN and whether vestibular

projections to the DCN specifically co-label with VGLUT-1 or

VGLUT-2. Small boutons and larger irregular mossy fiber

terminals in the DCN have been found to originate from

multisensory inputs such as those from the cuneate and the spinal

trigeminal nuclei [13,31]. We studied whether LVN projections to

the DCN also terminate into boutons and mossy fiber terminals.

Vestibular projections to the DCN may well provide information

on head orientation with respect to the DCN, enabling the

encoding of spectral components of sound [21] and therefore

playing a complementary role in the orientation of the head to

locate sound.

Previous studies have shown that cochlear kanamycin injections

which produce deafness, resulted in a significant reduction of

VGLUT-1 in the regions of the ventral and dorsal cochlear

nucleus receiving auditory nerve inputs as well as an increase of

VGLUT-2 in regions receiving non auditory inputs [34]. Deafness

can also be induced by acoustic overexposure (AOE) and is

associated with degeneration of the auditory nerve axonal endings

in the cochlear nucleus [35–37]. We therefore examined whether

the differential distribution of VGLUT-1 and VGLUT-2 is

affected after exposure to loud sound and whether the expression

of VGLUTs associated to a specific vestibular projection to the

DCN is changed after AOE.

Here we characterised VGLUT-2 mediated projections from

the lateral vestibular nucleus (LVN) to the DCN by combining

dextran amine neuronal tracing method with immunohistochem-

istry. We also showed that exposure to loud sound resulted in an

increase in the number of VGLUT-2 positive terminals originating

from the LVN and discuss its role within the context of cross

modal compensation of hearing deficit.

Materials and Methods

Experiments were carried out in accordance with the UK

Animals (Scientific Procedures) Act 1986 and approved by the

Home Office and Leicester University’s Ethical Committee (PIL

80/8158, PPL 80/1660).

Dissection
Forty six Wistar and Lister Hooded rats P18 to P27 day-old

were culled by decapitation and their brains were immediately

transferred to ice-cold low sodium artificial solution containing (in

mM): 250 sucrose, 2.5 KCl, 10 glucose, 1.25 NaH2PO4, 26

NaHCO3, 0.5 ascorbic acid, 0.1 CaCl2 and 4 MgCl2 (pH 7.4

when gassed with 95% O2, 5% CO2). The brainstem was dissected

out of the brain, oriented in its coronal or its sagittal plane and

glued onto a mounting plate that was placed in a slicing chamber

of a VT1000S vibroslicer (Leica Microsystems Ltd, Milton

Keynes, UK) containing the same ice cold solution as described

above. Axonal tracing was performed on the isolated brainstem as

described below.

Axonal tracing
One millimetre thick slices were cut under binocular control

using a MZ75 stereomicroscope (Leica Microsystems Ltd). Slices

were cut from the top of the brainstem until the DCN was

reached. Injections were subsequently performed below the tissue

surface to a depth of 500 mm ensuring that subsequent sections

contain both the LVN and the DCN (32 animals used in total for

tracer injections) [38]. Extracellular medium was then changed to

an artificial cerebrospinal solution containing (in mM) 125 NaCl,

2.5 KCl, 10 glucose, 1.25 NaH2PO4, 26 NaHCO3, 2 sodium

pyruvate, 3 myo-inositol, 0.5 ascorbic acid, 2 CaCl2, and 1 MgCl2
(pH 7.4 when gassed with 95% O2 : 5% CO2). Dextran amine dye

(see below for composition) was delivered under binocular control,

using a custom made combined pressure and electroporation

system coupled to a double-barrelled glass pipette (TGC200-10,

Clark Electromedical, Harvard Apparatus Ltd, Kent, UK) as

described in Barker et al. [39] (Figure S1). Five ms square wave

pulses were applied at 100 Hz for up to 10 s with 2 pressure

ejection pulses of 10–20 psi, 10 ms occurring mid-way through the

electroporation. The total electrode diameter was about 150 mm

and allowed localised delivery of dextran amine dye within areas

up to 200 mm diameter in the DCN or the LVN. Fluorescent

dextran tetramethylrhodamine (fluoro-ruby) 10,000 MW (Invitro-

gen) was made up as a 10% stock solution in 0.4 M KCl and

further diluted at 1:10 in a solution containing (in mM): 150 NaCl,

10 HEPES, 2.5 KCl, 11 glucose, 1 MgCl2 and 2.5 CaCl2 at

pH 7.3. Axonal tracing was performed on brainstems extracted

from control animals and 5 days after initial exposure to loud

sound using age matched rats from the same litters.

Incubation and slicing
Brainstems attached to their mounting plates were then

transferred to an incubation chamber containing the artificial

cerebrospinal solution detailed above and bubbled with 95% O2:

5% CO2 at 37uC for a period of 3 to 4 hours. After the incubation

period, brainstems were either frozen down for immunohisto-

chemistry (see below) or sliced before final observation. Slicing was

performed by transferring the mounting plate with the glued

brainstem to the vibroslicer slicing chamber and 120 mm thick

slices were cut in the ice-cold low sodium artificial solution

described above. Slices were performed up to a depth of 600 mm

which contain both the DCN and the LVN. Slices were fixed in

4% paraformaldehyde for 10 minutes before being washed in 16
PBS for 10 minutes. Slices were finally mounted on slides with 1%

agarose and viewed with an Olympus Fluoview FV300 confocal

microscope (Olympus Ltd, Watford, UK) for final observation.

Serial section
Axonal tracing was performed on the isolated brainstem as

described above. Serial sections were taken in slices containing the

DCN and LVN (in both coronal and sagittal planes). Transmitted

light images were taken using a Nikon eclipse TE2000 microscope

and fluorescently labelled cells were imaged using an Olympus

Fluoview FV300 confocal microscope. Transmitted light images

were then overlaid and the outlines of the sections including the

DCN were traced over using Powerpoint. Labelled cell bodies

within the LVN were also overlaid on the reconstruction and then

represented by red dots with each dot representing a cell body.

Immunohistochemistry
Immunohistochemistry was performed on tissue extracted from

control animals (see below) and 5 days after initial exposure to loud

sound using age matched rats from the same litters. Brainstems

were rapidly frozen in Tissue Tek (Sakura) after their incubation

with dextran amine dye, using hexane and dry ice. Frozen tissue

was processed within a month and sectioned at 20 mm using a

cryostat. Slices were mounted on Polysine coated slides and fixed

in 4% paraformaldehyde for 10 minutes. Slides were washed for

365 min in 16Dullbeco’s PBS (Invitrogen) with 0.1% Triton X-

100 (PBS-T solution). After washing, sections were incubated with

1% bovine serum albumin and 1% goat serum in 16 PBS with

0.1% Triton X-100 (blocking buffer) for 1 hour at 20uC. Sections

were then incubated with anti-VGLUT antibodies (VGLUT-1

and VGLUT-2, 1:1000 and 1:2000 dilution respectively from

VGLUT2 Projections to the Dorsal Cochlear Nucleus
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Synaptic Systems, Catalogue numbers, VGLUT-1: 135–304.,

VGLUT-2: 135–402) in blocking buffer overnight at 4uC. Slides

were then washed with PBS-T for 6610 min. The secondary

antibody (goat anti-rabbit Alexa-fluor488 or goat anti-guinea pig

Alexa-fluor568 Molecular Probes, 1:1000) was applied for 2 h at

20uC. Sections were washed in PBS-T solution for 6610 min and

then mounted with Prolong Gold antifade reagent (Molecular

Probes).

Imaging and analysis
Images were obtained using an Olympus Fluoview FV300

confocal microscope (Olympus Ltd). When imaging VGLUT

immunoreactivity, confocal settings were determined using

samples from animals aged P25 and the settings remained

constant for all other imaging. To quantify VGLUT immunore-

activity sections were selected from an even distribution through-

out the cochlear nucleus (a section from each of the 25th, 50th and

75th percentile for each animal). The images were converted to 8

bit TIFF files in ImageJ (NIH software). Analysis was conducted as

described in [34]. Analysis was performed on regions that receive

primarily type 1 auditory nerve inputs (the magnocellular cellular

area of the VCN [31], the deep layer and the molecular layer of

the DCN). Analysis was also performed on regions receiving

primarily non auditory inputs that included the shell region, the

fusiform cell layer of the DCN and the deep layer of the DCN

[11]. The whole region mentioned above was selected per section

using the freehand draw tool in ImageJ with the selection areas

being identical for both VGLUT-1 and VGLUT-2. Assessment of

intensity was performed by using the measure function in ImageJ.

Size of cell bodies in the LVN and terminals in the DCN were

measured using ImageJ. To analyze puncta density, a

20 mm620 mm grid was placed over photomicrographs from each

area of the cochlear nucleus and the number of puncta counted.

For cell number comparisons, the number of whole cell bodies per

entire captured field of view (55000 mm2 using a 606 objective)

were counted for alternate coronal and sagittal sections. The

labelled terminals were classified into two different subtypes, mossy

fiber like terminals which have large irregular endings ($2 mm)

and small boutons (,2 mm) [31].

Patch clamp recording and stimulation
Experiments were conducted in P18–25 day old rats as the use

of juvenile rats allowed reliable and stable whole cell recordings.

Patch clamp recordings were performed in control animals (see

below) and 5 days after initial exposure to loud sound using age

matched rats from the same litters. The dissection of the brainstem

from 14 Wistar rats was performed as described above. Sagittal

slices (160–180 mm thick) containing the LVN and the DCN were

cut in low sodium artificial cerebrospinal solution before being

transferred to the experimental chamber containing the artificial

cerebrospinal solution (both solutions are described above). DCN

cells were visualised with differential interference contrast (DIC)

optics on an Axioskop microscope (Zeiss, UK) with a 406 N.A.

0.75 water-immersion lens. Whole-cell patch-clamp recordings

were made from fusiform and granule cells using thick-walled glass

pipettes (GC150F-7.5 Clark Electromedical, Harvard Apparatus,

Ltd Kent, UK) with a Multiclamp 700A amplifier (Axon

Instruments, Foster City, CA, USA), connected to an analogue

to digital converter (Digidata 1322A, Axon Instruments) filtered at

6 kHz (8-pole Bessel filter) and sampled at 20 kHz. Currents were

recorded with pCLAMP 9.2 software (Axon Instruments). Cells

were maintained at a holding potential of 270 mV and whole-cell

access resistances of less than 10 MV were not compensated. The

intracellular solution contained 0.1% lucifer yellow and (in mM)

97.5 K gluconate; 32.5 KCl; 5 EGTA; 10 HEPES; 1 MgCl2; 2

NaCl (pH of 7.2 with KOH). Excitatory postsynaptic currents

were elicited by stimulating the lateral vestibular nucleus with a

concentric bipolar electrode (FHC Inc, Bowdoinham, ME, USA)

consisting of a platinum iridium inner pole of 50 mm and a

stainless style outer diameter of 200 mm. Electrical pulses of 30–

80 V (0.5–2 mA) and 0.1 ms duration were provided by a

Digitimer DS2 A isolated stimulator (Digitimer Ltd, Welwyn

Garden City, UK) triggered by the pCLAMP software. Pharma-

cological blockers were bath applied using a peristaltic pump

(Gilson Minipuls 3). Excitatory post synaptic currents were

recorded in the presence of strychnine (10 mm) and gabazine

(20 mm) and were blocked by NBQX disodium salt (10 mm, 2,3-

dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)-quinoxalin) and D-AP5

(50 mm, D-2-amino-5-phosphonopentanoate). NBQX and D-AP5

were from Ascent Scientific (Weston-super-Mare, U.K.), gabazine

was from Tocris Bioscience (Bristol, U.K.). All the other drugs

used in this study came from Sigma Aldrich (Gillingham, U.K.).

Once the whole cell recording was terminated, the pipette was

gently removed from the cell by positive pressure and slices were

fixed in 4% paraformaldehyde for 4 hours before being washed in

16 PBS for 15 minutes. Slices were finally mounted onto slides

with 1% agarose with the cover-slip sealed with nail polish to

prevent dehydration. Slices were kept overnight at 4uC before final

observation with the Olympus Fluoview FV300 confocal micro-

scope.

Acoustic overexposure and auditory brainstem response
recordings

Wistar rats aged between 19 and 22 days were used (15 control

and 15 acoustic over exposure) as this represents an age where the

onset of hearing has already occurred [40]. Rats were anesthetised

with an intra-peritoneal injection of fentanyl (0.15 mg/kg),

fluanisone (5 mg/kg, VetaPharma Ltd) and Hypnovel (2.5 mg/

kg, Roche). Animals were placed in an open field sound-insulated

chamber (custom designed) containing a 600 W High Power Horn

Tweeter, frequency range 2–20 kHz (Maplin, UK), delivering a

single frequency tone (14.8 kHz) at 110 dB SPL to both ears. Two

exposures were conducted in two 3 hour sessions over a period of

2 days. Control animals were similarly anesthetized but unexposed

to sound.

Auditory brainstem response recordings were performed before

AOE and 5 days after the first day of exposure to loud sound.

Recordings were performed by inserting positive, negative and

ground electrodes subcutaneously at the vertex, the mastoid and

the back, respectively [41]. Auditory brainstem responses were

evoked by calibrated tone pips at varying frequencies of 8, 12, 16,

24 and 30 kHz (1 ms rise and fall times, 5 ms duration, 3 ms

plateau) generated in the free field at 10 Hz by a waveform

generator (TGA 1230, 30 MHz, Thurlby Thandar Instruments,

USA) and delivered via an acoustic driver (Bruel & Kjaer type

4192, Denmark). Responses were recorded by an amplifier

(Medelec Sapphire 2A, Oxford Instruments, UK), filtered between

5 and 10 kHz and averaged with 100–800 sweeps using custom

designed software (CAP, GSK). Tone pips were progressively

attenuated in either 10 or 3 dB SPL increments from an initial

intensity of 94 dB SPL using a digital attenuator (PA4, Tucker

Davis Technology, USA). The hearing threshold was defined as

the lowest intensity at which an auditory brainstem response at

peak one and two could be discerned.

Statistical analysis
Means 6 SEM were calculated using n samples which

represented either the number of fields, terminals or grids as
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indicated in the text. N represents the number of animals for each

condition. Statistical comparisons were performed by Mann-

Whitney tests when comparing VGLUT-1 and VGLUT-2

intensities within regions of the cochlear nucleus and when

comparing the effect of AOE on both VGLUT-1 and VGLUT-2

intensities in those regions. Although the test is non-parametric, it

does assume that the two distributions are similar in shape and

shape distributions were previously assessed as follows. Measure-

ments of florescent intensity were taken along each layer of the

DCN (at points approximately 25%, 50% and 75% along the

length of each layer dorsal to ventral), in the MCD and in the shell

region. Data were then compared using a one way ANOVA with

Tukeys post hoc test. For all regions there was no significant

difference in fluorescent intensity between all points. Unpaired T

tests were used when comparing the size of labelled cell bodies in

the LVN and when comparing terminal sizes under control

conditions and after AOE; the percentage of VGLUT-2 labelled

terminals originating from the LVN, the EPSC amplitude in

control and exposed conditions. Significance was assessed for

P,0.05. Data are represented as Mean 6 SEM.

Results

Projections from the lateral vestibular nucleus to the
dorsal cochlear nucleus

The cochlear nucleus is divided into the ventral and the dorsal

cochlear nucleus (DCN) [42,43]. The DCN forms a tubercle lying

below the cerebellum and consists of the molecular, the fusiform

cell and the deep layer ([44], Figures 1B). Focal injections of

dextran amine [39] in the DCN were confined to the fusiform and

the deep layers of the DCN (Figure 1A). In each case labelled

neurones were consistently observed in the ipsilateral lateral

vestibular nucleus (ipsilateral LVN) whereas no labelling was

observed in the contralateral LVN (N = 4). Figure 1A represents

the position of the LVN and the DCN relative to the spinal

trigeminal tract (sp5), spinal trigeminal nucleus (SpVe) the inferior

cerebellar peduncle (icp) and the nucleus Y (y) in a sagittal section.

Focal injection of dextran amine into the DCN resulted in labelled

cell bodies in the LVN that were observed in sagittal sections

(Figure 1C) and could also be observed in coronal sections

(Figure 2B). This demonstrates retrograde transport of dextran

amine from the DCN to the LVN as represented in Figure 3.

Other nuclei previously documented were also observed and can

be seen in representations of sagittal and coronal slices in Figure 3;

these include projections from the ventral cochlear nucleus and the

supra trigeminal nucleus [11,31,45]. The proportion of labelled

cell bodies in coronal sections was about a third of the labelled cell

bodies in sagittal sections (i.e. 31615 n = 9 somata per field of

view, N = 3 and 97626, n = 9 somata per field of view, N = 3

respectively, P,0.01 unpaired t test). However, labelled cell bodies

in the LVN were of similar diameters in sagittal sections

(Figure 1C) and in coronal sections (Figure 2C) (17.061.8 mm,

n = 263 terminals, N = 3 and 17.861.3 mm, n = 90 terminals,

N = 3 respectively, P = 0.13 unpaired T test).

When dextran amine was injected into the LVN (Figure 1B, 2B)

synaptic terminals were observed in the DCN (Figure 1D, 2D)

demonstrating anterograde transport of dextran amine from the

LVN to the DCN. Labelled terminals were found equally

distributed between the DCN deep layer and fusiform layers

(56% and 44% respectively with an average diameter of

1.760.4 mm, n = 355 terminals, N = 4) that was consistent with

terminal diameters previously reported in the DCN [31].

Functional synaptic projections from lateral vestibular
nucleus to the dorsal cochlear nucleus

To assess the presence of functional synaptic projections

between the LVN and the DCN, whole cell recordings were

performed in sagittal slices containing both nuclei. Seven fusiform

cells (N = 6) were characterised by their location in the fusiform

layer, their morphology (based on Lucifer yellow filling) and their

passive properties (capacitance = 147620 pF, membrane resistan-

ce = 113619 MV, resting potential = 25364 mV [46,47].

Twelve granule cells (N = 5) were characterised by their location

in the deep layer and by their passive properties (capacitan-

ce = 862 pF, membrane resistance = 1.460.2 GV, resting poten-

tial = 24763 mV [48]. Once the whole cell recording was

terminated, the morphologies of the cells were confirmed with

confocal microscopy. Examples of fusiform and granule cells filled

with lucifer yellow are shown in Figure 4A and B respectively.

Stimulating the LVN induced excitatory post-synaptic currents in

3 out of 12 (25%) granule cells (example trace shown in Figure 4B)

and 4 out of 15 (27%) fusiform cells (example trace shown in

Figure 3A 4A). Synaptic currents of 170620 pA in three granule

Figure 1. Sagittal brainstem slice showing a retrograde
labelling of the lateral vestibular nucleus (LVN) following
injection of dextran amine in the dorsal cochlear nucleus (DCN)
(A,C) and an anterograde labelling of the DCN following
injection of dextran amine in the LVN (B,D). (A) Overlay of a
brightfield and fluorescence photomicrograph at 3 hours post injection
of dextran amine showing the position of the LVN and the DCN relative
to the spinal vestibular nucleus (SpVe) and the nucleus Y (y). The
fluorescence in the DCN shows the injection site. (B) The LVN is labeled
as a result of retrograde transport of dextran amine. (C) Overlay of a
brightfield and fluorescence photomicrograph showing the injection
site in the LVN. (D) Labeled terminals in the DCN as a result of
anterograde transport of dextran amine. Scale bar: (A) and (B) 200 mm,
(C) and (D) 20 mm. All slices are 120 mm thick. ML: molecular layer; FL:
fusiform cell layer; DL: deep layer.
doi:10.1371/journal.pone.0035955.g001
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cells and 48614 pA in four fusiform cells were blocked by 50 mM

D-AP5 and 10 mM NBQX indicating that synaptic transmission

from the LVN to the DCN is mediated by glutamate release.

Differential expression of VGLUT-1 and VGLUT-2
VGLUT-1 intensity was strongest compared to VGLUT-2 in

the VCN magnocellular domain (MCD), the shell region and the

DCN molecular layer (p,0.001, Mann Whitney, n = 9 fields,

N = 3, Figure 5 A–C). By contrast, the intensity of VGLUT-2 was

higher in comparison to VGLUT-1 in the DCN fusiform layer and

the deep layer (p,0.001, Mann Whitney, n = 9 fields, N = 3,

Figure 5A and C). Our observations are consistent with a previous

study performed in guinea pigs showing that VGLUT-1 and

VGLUT-2 were mostly spatially segregated [31]. The puncta

density was also analyzed (Figure 5D and Figure S2). Similar to the

fluorescent intensity, VGLUT-1 puncta density was greatest in the

MCD and DCN ML (p,0.001, Mann Whitney, n = 60 grids,

N = 3, Figure 5A and D, Figure S2A and C). The density of

VGLUT-2 was greatest in the shell region, the DCN fusiform

layer and the deep layer (p,0.001, Mann Whitney, n = 60 grids,

N = 3, Figure 5D and Figure S2B, D and E). The notable

exception was in the shell region where the VGLUT-1 puncta

density was smaller compared to VGLUT-2, whereas the

fluorescent intensity was greater. This was due to larger and

brighter VGLUT-1 in the shell region compared to VGLUT-2,

therefore giving rise to a low puncta density but high fluorescent

intensity.

VGLUT-2 mediated projections from the lateral vestibular
nucleus to the dorsal cochlear nucleus

Four brainstems were injected with anterograde tracers in the

ipsilateral LVN. The immunostaining procedure of VGLUT-1

and VGLUT-2 was performed within a month period (see

methods). Labelled terminals originating from the LVN failed to

co-localize with VGLUT-1 (Figure 6A) with only 0.560.4%

(n = 267 terminals, N = 4) of the LVN terminal endings to the

DCN co-labeled with VGLUT-1. By contrast the majority of

terminals originating from the LVN co-localized with VGLUT-2

(Figure 6B, 85%63.6%, n = 209 terminals, N = 4). VGLUT-2

labelled terminals originating from the LVN were found in both

deep and fusiform layers (54.5% and 45.5% respectively) and

Figure 2. Coronal brainstem slice showing a retrograde
labelling of LVN following injection of dextran amine in the
DCN (A,C) and an anterograde labelling of the DCN following
injection of dextran amine in the LVN (B,D). (A) Overlay of a
brightfield and fluorescence photomicrograph at 3 hours post injection
of dextran amine showing the position of the DCN relatively to the
inferior cerebellar peduncle (icp) and the cerebellum. The fluorescence
in the DCN shows the injection site. (B) The LVN is labeled as a result of
retrograde transport of dextran amine. (C) Overlay of a brightfield and
fluorescence photomicrograph showing the position of the dextran
amine injection site in the LVN. (D) Labeled terminals in the DCN as a
result of anterograde transport of dextran amine. Scale bar: (A) and (B)
200 mm, (C) and (D) 20 mm. All slices are 120 mm thick.
doi:10.1371/journal.pone.0035955.g002

Figure 3. Reconstruction of retrograde cell body labelling in
the LVN following an injection of dextran amine in the DCN.
Injections were performed on coronal (left) and sagittal (right)
brainstem preparations and serial sections of 100 mm were performed.
The black area represents the injection site in the DCN and the red dots
represent labelled cell bodies including those in the LVN (grey area).
LVN: lateral vestibular nucleus; DCN: dorsal cochlear nucleus; VCN:
ventral cochlear nucleus; icp: inferior cerebellar peduncle; sp5: spinal
trigeminal tract; sp5O: spinal trigeminal nucleus; 8vn: vestibular route of
8th nerve; SpVe: spinal vestibular nucleus; LR4V: lateral recess 4th

ventricle; Cu: cuneate nucleus.
doi:10.1371/journal.pone.0035955.g003
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consisted of labelled mossy fiber terminals (diameter of

2.760.7 mm, 41.5%, n = 70 terminals in 18 fields, N = 4) and

small boutons (diameter of 1.460.4 mm, 58.5%, n = 80 terminals

in 18 fields, N = 4).VGLUT-2 labelled LVN terminals did not

show morphological or topographical differences from those that

did not co-label with VGLUT-1 or VGLUT-2.

Expression of VGLUT-2 labelled terminals from the lateral
vestibular nucleus is increased after acoustic
overexposure (AOE)

Wistar rats were subjected to a loud 15 kHz tone for 2 times

3 hours (AOE, N = 3, control, N = 3). After 5 days, this procedure

affected the auditory brainstem responses (Figure 7A) and

increased the hearing thresholds for frequencies of 16 kHz and

above (N = 3, Figure 7B). AOE decreased the levels of intensity of

VGLUT-1 in all areas studied (the MCD, the shell region as well

as the molecular, fusiform and deep layers of the DCN and the

granule cell domain, p,0.001, Mann Whitney test, n = 9 fields,

N = 3 for controls and AOE, Figure 7C–D. By contrast AOE

increased the levels of intensity of VGLUT-2 in the MCD as well

as the molecular, fusiform and deep layers of the DCN (p,0.001,

Mann Whitney test n = 9 fields, N = 3 for all subjects controls and

AOE, Figure 7C–D). No significant change of the intensity of

VGLUT-2 was observed in the shell region (p = 0.48, Mann

Whitney test, n = 9 fields, N = 3, Figure 7C–D). When animals

were previously exposed to loud sound (AOE), the number of

terminals originating from the LVN (located in the deep and

fusiform layers) and co-labeled with VGLUT-2 increased from

1.460.5 per 5000 mm2 area, (n = 18 fields, N = 3) to 4.763.2 per

5000 mm2 area (n = 19 fields, N = 3, P,0.001, unpaired t test).

The percentage of VGLUT-2 labelled terminals originating from

the LVN increased from 1.660.1% (n = 22 fields, N = 3) to

5.860.7% (n = 22 fields, N = 3) P,0.001, unpaired t test).

Examples of dextran amine labelled small boutons and mossy

fiber terminals can be seen in Figure 7E and Figure S3

Figure 4. Glutamatergic post-synaptic currents (EPSCs) elicited
in identified DCN cells by stimulating the LVN in a sagittal
slice. (A) Photomicrograph of a DCN fusiform cell filled with lucifer
yellow (top) and whole cell voltage clamp recording of this fusiform cell
while stimulating the LVN (bottom). (B) Photomicrograph of a DCN
granule cell filled with lucifer yellow (top) and whole cell voltage clamp
recording of this granule cell while stimulating the LVN (bottom). Both
cells were held at 268 mV and the LVN was stimulated at 0.3 Hz.
Glutamatergic EPSCs are represented in black and are blocked by
50 mm D-AP5 and 10 mm NBQX (traces in red). Each trace represents an
average of 10–20 single traces. The arrowhead represents the artifact of
stimulus that has been removed for clarity. Scale bar: (A) 50 mm, (B)
20 mm.
doi:10.1371/journal.pone.0035955.g004

Figure 5. Expression of VGLUT-1 and VGLUT-2 in the DCN and
the VCN. (A) Photomicrographs of VGLUT-1 and VGLUT-2 staining in
the DCN with the layers being individually labelled (ML molecular layer,
FL fusiform layer, DL deep layer). The overlay shows that VGLUT-1 is
mainly present in the ML whereas VGLUT-2 is mainly present in the DL.
(C) (B). Photomicrographs of VGLUT-1 and VGLUT-2 staining in the VCN.
The overlay shows that VGLUT-1 is mainly expressed in the VCN in
comparison to VGLUT-2. Scale bar: 200 mm. All slices are 20 mm thick.
(C) Histograms representing the fluorescence intensity of VGLUT-1 and
VGLUT-2 in the DCN layers, the MCD and the shell region. * p,0.05, ***
P,0.001, NS non significant. (D) Histograms representing the puncta
density of VGLUT-1 and VGLUT-2 labelled terminals in the DCN layers,
the MCD and the shell region, *** P,0.001. ML: molecular layer; FL:
fusiform cell layer; DL: deep layer.
doi:10.1371/journal.pone.0035955.g005
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respectively. The distribution of labelled terminals into the DCN

remained similar after AOE (46.1% in the deep layer and 53.9%

in the fusiform cell layer, n = 22 fields, N = 3) as did the proportion

of the mossy fibers and small boutons (56.5%, n = 22 fields, N = 3

and 43.5%, n = 22, N = 3 respectively). Mossy fiber terminal sizes

remained unaffected after AOE (2.860.6 mm n = 21 fields, N = 3

control and 2.760.5 mm, n = 21 fields, N = 3 AOE, P = 0.4

unpaired T test) as did the size of the small boutons

(1.460.3 mm, n = 21 fields, N = 3 control and 1.260.3 mm,

n = 22 fields, N = 3 AOE respectively, P = 0.4 unpaired T test).

We tested whether the size of EPSCs recorded in fusiform cells was

modulated after AOE. Seven days after AOE, EPSCs blocked by

D-AP5 and NBQX were elicited by LVN stimulations in 3 out of

20 fusiform cells (N = 6), with a similar amplitude (60631 pA,

n = 3 cells) to control conditions (P = 0.72, unpaired T test). This

shows that the increased expression of the LVN mediated

VGLUT-2 terminals after AOE did not affect the size of the

EPSCs.

Discussion

Description of synaptic projections from the lateral
vestibular nucleus to the dorsal cochlear nucleus

So far, reported documentation of vestibular projections to the

DCN remains scarce [23,24]. This study has been able to further

elucidate the connections between the vestibular nuclear complex

showing a connection between the LVN and the DCN.

Development of a combined focal electroporation and pressure

ejection system [39] has enabled us to focally apply neuronal

tracers precisely to brainstem nuclei and faithfully trace their

projections. Retrograde transport of DA from the DCN showed

labelling of cell bodies in the LVN, and the reciprocal anterograde

tract-tracing experiment resulted in terminals labelled in the

ispilateral DCN. It is of note that other nuclei project to the DCN

[10,16,17,49]. However many of these (such as the Raphe and

cuneate nucleus) occur prior to the injection level and have

therefore not been included in this study. Since injections in this

study were entirely contained within the boundaries of the LVN,

these anterograde projections are representative of the pathway

from the LVN to the DCN. Whilst both labelled cell bodies and

terminals were observed in both sagittal and coronal sections, the

number labelled in corresponding coronal sections was visibly

fewer. This may be due to axonal projections being cut prior to

dextran amine injection in the coronal plane as axons might

deviate around fiber tracts such as the inferior cerebellar peduncle.

Terminal endings originating from the LVN consisted of small

boutons or large and irregular mossy fibers that were previously

described as containing numerous synaptic vesicles [50]. Both

types of synaptic terminals were located in the granule cell domain

of the fusiform and the deep layer of the DCN similar to other non

auditory projections such as the cuneate and the spinal trigeminal

nucleus that are also confined to those regions [13,31]. The role of

mossy fiber terminals and small boutons in the DCN remain

poorly understood. In the hippocampus, very brief (sub millisec-

ond) presynaptic spikes at mossy fibers [51] are conferred by a

distinct set of voltage-gated ion channels to ensure the synchrony

of transmitter release at those synapses. Mossy fibers in the DCN

could probably carry fast excitatory inputs and allow temporal

precision in granule cell areas whereas small boutons could be

involved in a slower modulatory function. It is noticeable that

projections originating in the cuneate and the spinal trigeminal

nucleus and terminating in the DCN showed more small boutons

than mossy fibers [13] whereas projections originating from the

LVN showed an equal proportion of small boutons and mossy

fiber terminals. The pathway-specific relative proportion of mossy

fiber terminals and small boutons may therefore be associated with

the intrinsic synaptic properties that are unique to each sensory

pathway.

Pattern of expression of VGLUT-1 and VGLUT-2 positive
terminals

Our study shows that VGLUT-1 is strongly expressed in the

MCD, the DCN molecular layer and the shell region. The MCD

is primarily innervated by the axons of the type I spiral ganglion

neurons [52] and our results are consistent with auditory nerve

projections being associated with VGLUT-1. The fact that

VGLUT-1 is also concentrated in the molecular layer also

observed in [13,31] could sound counter-intuitive since

VGLUT-1 is associated with auditory nerve fibers which project

to the MCD and deep layers of the DCN [31]. However it has

been suggested that VGLUT-1 in the molecular layer could be

associated with parallel fiber projections in the DCN [31] as

cerebellar parallel fiber terminals also contain VGLUT-1 for

Figure 6. Projections from the LVN to the DCN do not co-label
with VGLUT-1 and co-label with VGLUT-2. (A) Dextran amine (DA)
labelled terminals are shown in the DCN deep layer (left). VGLUT-1
labelling is shown in the same area (middle). The overlay (right) shows
an absence of co-labelling between VGLUT-1 and DA labelled terminals.
(B) DA labelled terminals are shown in the DCN deep layer (left). VGLUT-
2 labelling is shown in the same area (middle). The overlay (right) shows
that the DA labelled terminals co-label with VGLUT-2. Scale bar 10 mm.
doi:10.1371/journal.pone.0035955.g006

VGLUT2 Projections to the Dorsal Cochlear Nucleus

PLoS ONE | www.plosone.org 7 May 2012 | Volume 7 | Issue 5 | e35955



Figure 7. VGLUT-2 immunoreactivity increases after acoustic overexposure (AOE) triggering hearing deficit. (A) Auditory brainstem
response (ABR) recordings are elicited by a tone pip of 24 kHz and 94 dB SPL. The top traces show ABRs obtained at day 0 in a control subject and
prior to AOE. The bottom traces show ABRs obtained at day 5 in both subjects. After AOE, the ABR is characterised by a flat trace and wave I (shown
by the dotted line) is absent. (B) Summary plot representing the ABR threshold shifts between day 0 and day 5 in response to the tone pip frequency.
* p,0.05. (C) Expression of VGLUT-1 (left) and VGLUT-2 (middle) in DCN coronal slices originating from a control subject (top) and after AOE (bottom).
The overlay of VGLUT-1 and VGLUT-2 is shown in the right panels. (D) Histograms representing the fluorescence intensity of VGLUT-1 and VGLUT-2 in
the DCN layers, the magnocellular domain of the VCN MCD and the shell region, *** P,0.001, NS non significant. ML: molecular layer; FL: fusiform cell
layer; DL: deep layer. After AOE, the VGLUT-1 immunoreactivity decreases and the VGLUT-2 immunoreactivity increases in all DCN layers and the
MCD. VGLUT-1 is decreased after AOE in the shell but VGLUT-2 expression was unaffected. (E) Examples of synaptic boutons originating from the LVN
labelled with VGLUT-2 in control condition (left) and after AOE (middle). Note the presence of multiple VGLUT-2 labelled terminals after AOE. Results
are summarised in the histogram (right). * p,0.05, Scale bar: (C) 100 mm, (E) 5 mm.
doi:10.1371/journal.pone.0035955.g007
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accumulation of glutamate into the synaptic vesicles [25,53].

VGLUT-1 in the DCN molecular layer could also be associated

with descending inputs from higher auditory centres such as the

auditory cortex with projections terminating in all three layers of

the DCN including the molecular layer [54,55]. The high density

of VGLUT-1 labelling in the shell region is more surprising as the

shell region does not receive inputs from myelinated nerve fibers

[52] labelled with VGLUT-1 [31] but from unmyelinated type II

fibers [56]. The shell region contains granule cells and a variety of

other neuronal types with different morphologies [57] and it is

possible that VGLUT-1 is expressed at specific synaptic regions.

By contrast to VGLUT-1, VGLUT-2 is most strongly expressed in

the DCN deep layer receiving both auditory and non auditory

projections [13,31]. Similarly to [31], we found that VGLUT-2

was also highly expressed in the fusiform cell layer receiving non

auditory projections [11]. In summary, despite differences in the

proportion of VGLUT-1 and VGLUT-2 reported in previous

studies, our finding is mostly consistent with auditory and multi-

sensory inputs to the DCN being associated with VGLUT-1 and

VGLUT-2, respectively [31]. Differential expression of VGLUT-1

and VGLUT-2 might result in changes in vesicle filling and

recycling [58,59] and/or differing release probabilities at the

synapse [53]. It was suggested that VGLUT-1 characterises

terminals with a low release probability present in highly plastic

synapses whereas terminals containing VGLUT-2 have a higher

release probability [53]. Therefore the complementary expression

of these two transporter proteins could help optimizing the

properties of glutamatergic synapses localised in specific regions.

Role of VGLUT-2 mediated projections from the lateral
vestibular nucleus to the dorsal cochlear nucleus

The co-localization of VGLUT2 with LVN terminals in the

DCN shown in this study confirms that the LVN pathway to the

DCN is glutamatergic and demonstrates that projections from the

LVN, like those from the spinal trigeminal nucleus and the

cuneate nucleus [11,13], use VGLUT-2 to mediate glutamate

transport at both mossy fiber and small boutons terminal endings.

Whether this translates into higher release probability synapses

compared to VGLUT-1 mediated synapses in the DCN needs to

be determined. We report that the projections from the LVN to

DCN are functional, eliciting glutamatergic EPSCs in fusiform

cells and granule interneurones. Previous reports suggested that

the somatosensory projections into the DCN convey information

regarding head, neck and ear position and assist sound localization

[18,20,31,60]. The role of the vestibular projections to the DCN

remains unclear. The vestibular system senses the movement and

position of the head in space to stabilise vision, control posture,

detect head orientation and self-motion in three-dimensional space

and modulate autonomic and limbic system activities in response

to locomotion and postural adjustments [61]. It is possible that

vestibular projections to the DCN provide information on head

orientation with respect to the DCN encoding spectral compo-

nents of sound [21]. Projections from the LVN to DCN represent

2% of the total number of VGLUT-2 labelled multisensory

projections. This could explain the small percentage of DCN

fusiform cells and granule cells that display an EPSC in response to

stimulating the LVN. However the small percentage of EPSCs

could also be due to cut axonal projections during the slicing

procedure. As the LVN integrates the information of linear

acceleration and gravity changes to control the vestibulo-spinal

reflexes and posture [62,63] its role might become apparent

during postural adjustments and head positioning at the beginning

of the locomotion [64,65]. Projections from the LVN and the

somatosensory system might therefore play complementary roles

in the orientation of head towards sound.

Expression modulation of VGLUT-2 labeled terminals
from the lateral vestibular nucleus

Acoustic over exposure (AOE) can induce cochlear damage

with resultant damage to the hair cells, spiral ganglion neurones

and the myelin sheath of the auditory nerve [66,67]. Indeed our

observations show an increase in the hearing thresholds five days

after initial AOE. Whilst previous studies have used kanamycin-

induced deafness or cochlear ablation which both cause complete

hearing loss [30,34,68], our study uses AOE as a physiological

insult to induce partial hearing deficit and monitoring the

subsequent impact on the regulation of VGLUT’s. Following

AOE, we observed a decrease in VGLUT-1 expression mainly in

the VCN and the molecular layer of the DCN. This is in

accordance with a previous study showing that VGLUT-1

expression changed in the VCN as early as 3 days following

deafness [30]. Moreover VGLUT-1 immunostaining was no

longer seen in large auditory nerve terminals but was instead

found in somata of VCN neurons [30]. VGLUT-2 levels

conversely increased across the DCN and the VCN. This concurs

with previous patterns which describe increased VGLUT-2

expression in the regions of the DCN that receive non auditory

inputs after kanamycin induced deafness [34]. Cochlear deaffer-

entation results in a reduced synaptic input from the auditory

nerve [69,70] and an enhanced somatosensory response in the

DCN after noise induced hearing loss [71].

An increase in the expression of VGLUT-2 could indicate a

compensatory mechanism whereby specific synaptic inputs to the

DCN are increased in response to the loss of synaptic activity from

the auditory nerve. The inputs from the LVN would therefore

consist of a compensatory mechanism originating from the

vestibular system. Cross modal compensation has previously been

demonstrated after deafferentation or sensory deprivation in other

modalities [72,73] although the majority of compensation has

been observed in cortical structures [74–76]. Whilst acting as a

possible compensatory mechanism, the increase in VGLUT-2

expression could also lead to an increased release in glutamate due

to larger vesicles [77] or to axonal sprouting [78]. An increase of

presynaptic release of glutamate could contribute to post synaptic

neuronal damage [79] and/or to the hyperactivity in the DCN

[71,80–82] correlating with tinnitus [81,83–85]. Whilst juvenile

rats were used in this study it is worth noting that hearing loss at an

early age can cause a much more severe impairment on neural

plasticity [86], audiogenic seizures [87] and acoustic startle reflex

[88]. However changes in activity and VGLUT-2 up-regulation

have also been reported in adult animals [34,89,90] and it is

therefore possible that VGLUT-2 up-regulation as a result of AOE

would also occur in adult animals. Although we did not observe an

increase of the size of the EPSCs after AOE, this could be to due to

the sparseness of functional connections in slices containing the

LVN and the DCN. However the release of glutamate is

dependent on an independent regulation of synaptic vesicle

protein trafficking and recycling [91], and it is possible that

glutamate release is still unaffected at those early stages after AOE.

Another possibility could be that it is only the recycling rate that is

affected. For example, VGLUT-2 mediated transmission at

hippocampal synapses depress more rapidly and recover more

slowly than VGLUT-1 mediated synaptic transmission [59].

It is of interest that vestibular conditions such as vertigo or

vestibular schwannoma can result in tinnitus [92] and successful

treatment of these vestibular conditions results in an abolishment

of tinnitus [93]. Many tinnitus sufferers are also able to modulate
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the tinnitus percepts with head or neck manipulations [94–96]. It

is possible that the projections from the LVN to the DCN

contribute to the pathophysiology of tinnitus in relation to

vestibular schwannoma and/or to the modulatory effect of tinnitus

by head and neck manipulations.

Supporting Information

Figure S1 Sagittal (top) and coronal (bottom) brainstem
slice showing the site of injection of dextran amine in the
dorsal cochlear nucleus DCN. Left, overlays of the brightfield

and fluorescence photomicrographs at 3 hours post injection of

dextran amine. Images on the right show the fluorescent

micrographs. Scale bar 100 mm.

(TIF)

Figure S2 High magnification photomicrographs show-
ing VGLUT-1 and VGLUT-2 positive puncta in the MCD
(A), the shell region (B) and the layers of the DCN (C–E).
VGLUT-1 positive puncta are most densely located in the MCD

and molecular layer of the DCN (A and C) whereas VGLUT-2

puncta show a greater density than VGLUT-1 in the shell region,

the fusiform and deep layers (B, D and E). Scale bar 2 mm.

(TIF)

Figure S3 Examples of mossy fiber terminals originat-
ing from the LVN labelled with VGLUT-2 in control
condition (left) and after AOE (middle). Note the presence

of multiple VGLUT-2 labelled mossy fiber terminals after AOE.

Scale bar 5 mm.

(TIF)
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