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Abstract

The ribonucleoprotein (RNP) complex is the essential transcription-replication machinery of the influenza virus. It is
composed of the trimeric polymerase (PA, PB1 and PB2), nucleoprotein (NP) and RNA. Elucidating the molecular
mechanisms of RNP assembly is central to our understanding of the control of viral transcription and replication and the
dependence of these processes on the host cell. In this report, we show, by RNP reconstitution assays and co-
immunoprecipitation, that the interaction between NP and polymerase is crucial for the function of the RNP. The functional
association of NP and polymerase involves the C-terminal ‘627’ domain of PB2 and it requires NP arginine-150 and either
lysine-627 or arginine-630 of PB2. Using surface plasmon resonance, we demonstrate that the interaction between NP and
PB2 takes place without the involvement of RNA. At 33, 37 and 41uC in mammalian cells, more positive charges at aa. 627
and 630 of PB2 lead to stronger NP-polymerase interaction, which directly correlates with the higher RNP activity. In
conclusion, our study provides new information on the NP-PB2 interaction and shows that the strength of NP-polymerase
interaction and the resulting RNP activity are promoted by the positive charges at aa. 627 and 630 of PB2.
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Introduction

Influenza is a contagious respiratory illness causing annual

epidemics and occasional pandemics. Influenza epidemics cause

between 250,000 and 500,000 deaths worldwide each year.

Pandemics can be highly lethal; for instance, the Hong Kong

Flu in 1968 killed approximately 1 million people worldwide [1].

The relatively mild and recently ended 2009 H1N1 pandemic

resulted in over 18,449 deaths [2]. The 1997 influenza A H5N1

outbreak resulted in 6 deaths among 18 cases, with a high

mortality rate of 33% [3]. Starting from 2003, the poultry-to-

human transmission of this virus has been reported in many

countries in Asia and Africa. There have been a total of 601

laboratory-confirmed human cases, of which 354 were fatal [4]. In

view of influenza virus having the ability to cause epidemics and

pandemics, a better understanding of how influenza virus

functions at the molecular level is essential.

Influenza A virus is a negative-sense RNA virus. Its genome

comprises eight segments of viral RNA (vRNA) encoding eleven or

twelve proteins, including surface glycoproteins haemagglutinin

(HA) and neuraminidase (NA), matrix protein M1, ion channel

M2, non-structural proteins NS1, NS2 and the newly identified

N40, nucleoprotein (NP), pro-apoptotic protein PB1-F2 and RNA-

dependent RNA polymerase proteins PA, PB1 and PB2 (reviewed

in ref. [5]). The ribonucleoprotein (RNP) complex is composed of

the trimeric polymerase, NP and vRNA. The RNP complex is the

essential element for transcription and replication of the viral

genome [6]. During transcription, the cap-binding domain of PB2

first binds the 59 7-methylguanosine cap of the host pre-mRNA

[7,8]. The endonuclease domain of PA then cleaves it 9–15

nucleotides downstream of the cap [9,10]. Then, PB1 uses this

short piece of capped RNA as primer for initializing the

transcription of mRNA [11,12]. The vRNA is replicated via a

complementary RNA (cRNA) intermediate in a primer-indepen-

dent process. The role of NP is to provide a structural framework

for vRNA and cRNA and it is also thought to be involved in

regulating viral transcription and replication and act as an

elongation factor (reviewed in ref. [13]).

RNPs are organized in a unique ‘7+1’ pattern in the virus [14]

and appear as supercoiled structures under electron microscopy

(EM) [15,16]. The structure of a recombinant mini-RNP that

contains a circular ring of nine NP molecules, a 248 nt-long RNA

and the trimeric polymerase, has been studied extensively by

single-particle imaging using EM. The first reconstruction reached

a resolution of 27 Å at the NP ring and 36 Å at the polymerase

[17]. The resolution of the polymerase was soon improved to
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23 Å, with the domain positions of the polymerase subunits

proposed [18]. Using cryo-EM, the resolutions at the NP ring and

the polymerase were further raised to 12 and 18 Å respectively,

which allowed the fitting of the recently determined crystal

structures of NP and the partial PA-PB1 complex into the three-

dimensional (3D) reconstruction [19]. The structure also suggested

specific interactions of the PB1 and PB2 polymerase subunits with

two molecules of NP adjacent to the polymerase. A number of

advancements have been made in the x-ray and NMR structure

determination of the different components of RNP since 2006.

The atomic structures resolved now cover more than half of the

sequence of the trimeric polymerase (reviewed in ref. [20]). In

particular, we and others have determined the full protein

structure of NP [21,22]. NP was crystallized as a trimer and is

organized into a head domain, a body domain and a tail loop. The

structure of the PB2 ‘627’ domain, which contains the host-

determining residue K/E627, has also been resolved [23,24].

The phenotypic differences between human and avian influenza

viruses have been extensively studied throughout the decades.

Human influenza viruses replicate more efficiently in mammalian

cells than avian cells, and the same is true for avian viruses in avian

cells compared to mammalian cells [25]. This host range

restriction is conferred in part by PB2 [26–28], in which seventeen

host-determining residues have been identified [29]. The best

characterized residue, at position 627, is predominantly a lysine in

human influenza viruses and a glutamate in avian influenza

viruses. Avian polymerase with E627 was shown to be selectively

restricted in human cells [30,31]. Avian viruses with an E627K

mutation have shown improved growth in human cells and

enhanced virulence in mice. PB2 with K627 was also shown to

replicate more efficiently at 33uC (i.e. upper respiratory tract in

human) than PB2 with E627 [32–34].

Before the EM 3D reconstruction of the RNP suggesting specific

polymerase-NP interaction, there was already biochemical evi-

dence for such interaction. NP was found to interact with PB1 and

PB2 but not PA, in both a recombinant system and in virus-

infected cells [35,36]. Three regions of NP (aa. 1–161, 255–340

and 340–465) were found to interact independently with PB2,

while the C-terminus of NP (aa. 465–498) was found to inhibit NP-

PB2 binding [35]. Later, two PB2 fragments (N-terminal aa. 1–

269 and C-terminal aa. 580–683) were also identified as being

responsible for NP-binding [37]. There are, however, considerable

overlaps of the NP- and PB1- binding sites on PB2. Two recent

functional studies have suggested that the E627K mutation can

strengthen the NP-polymerase interaction in avian influenza virus

RNPs in human cells [38,39]. In the present report, we identify

residues in NP and PB2 that mediate NP-polymerase interaction

and show how the strength of the interaction is related to the RNP

activity.

Results

A single point mutation R150A in NP abolishes RNP
activity in an H5 polymerase background, but not an H1
background

The resolution of the NP crystal structure [21,22] has enabled

the dissection of its functional domains. We have previously

identified, by surface plasmon resonance (SPR), three regions in

NP (G1 [R74, R75, R174, R175, R221], G2 [R150, R152, R156,

R162] and a flexible basic loop [aa. 74–88]) which are involved in

RNA binding [21]. During the investigation, we have identified an

NP mutant (NP-R150A) which had normal RNA binding affinity

(Fig. 1A) and NP-NP interaction (Fig. 1B), but displayed different

RNP activities when analysed with polymerases from different

influenza virus subtypes.

The R150A H5 NP mutant plasmid was co-transfected with

plasmids expressing polymerase proteins [either from A/Hon-

gKong/156/97(H5N1) or A/WSN/33(H1N1)] and a reporter

plasmid expressing NA vRNA into 293T cells. The amounts of NP

plasmids were adjusted to give similar protein expression levels. A

plasmid expressing wild-type H5 NP was used as the positive

control, while an empty plasmid was the negative control. At 48 h

post-transfection, total RNA was extracted, and the vRNA, cRNA

and mRNA levels of the reporter gene were quantified by a primer

extension assay, followed by polyacrylamide gel electrophoresis

and autoradiography (Fig. 1C and 1D). The various RNA levels

were normalized to the internal 5 S rRNA control and compared

with those of the wild-type NP.

In an H5 polymerase background, the R150A mutation in NP

has led to a total loss in its RNP activity (Fig. 1C). In an H1

polymerase background, the R150A mutation could however

retain about half of its activity compared to wild-type (Fig. 1D).

This suggests that the defective phenotype of the NP R150A

mutation is strain-specific.

NP R150A associates with the polymerase complex and
forms an active RNP in the presence of WSN(H1) PB2, but
not H5 PB2

Next, we investigated why the defective NP R150A phenotype

was strain-specific. We swapped the polymerase subunits between

H5 and WSN(H1) and performed RNP reconstitution assays with

either wild-type NP or the R150A mutant (Fig. 2A). All

combinations of polymerases with wild-type NP gave detectable

RNP activity, although some were less active than others (Fig. 2A,

odd numbered lanes). The variation of RNP activities may be due

to differences in the compatibility of the polymerase subunits from

H1 and H5 subtypes. On the other hand, in the presence of NP

R150A, active RNP activity was obtained when PB2 was from

WSN(H1) (lanes 2, 8, 10) but not from the H5 subtype (lanes 4, 6,

12). PB2 is therefore the determining factor responsible for the

differential phenotypes of the NP R150A mutant in WSN(H1) and

H5 polymerase backgrounds.

Why does the NP R150A form an active RNP with WSN(H1)

PB2 but not H5 PB2? We hypothesized that this may be related to

the interaction between NP and the polymerase complex. To test

this, NP wild-type or the NP R150A mutant were co-expressed

with the NA vRNA, H5 PB1, WSN(H1) or H5 PB2 and myc-

tagged H5 PA in 293T cells. Co-immunoprecipitation was

performed at 48 h post-transfection with anti-myc antibody,

followed by detection of NP and the myc-tagged PA by western

blotting (Fig. 2B). Wild-type NP was co-immunoprecipitated in the

presence of myc-tagged polymerase complex containing either H5

or WSN(H1) PB2. However, mutation of NP R150A significantly

reduced its interaction with the polymerase complex containing

H5 PB2, but not WSN(H1) PB2. Similar results were obtained in

the absence of NA vRNA (Fig. S1).

Replacing the C-terminus of H5 PB2 with that of WSN(H1)
PB2 restores the RNP activity and NP-polymerase
interaction of the NP R150A mutant

Alignment of the WSN(H1) and H5 PB2 amino acid sequences

revealed an identity of 94% (results not shown). We set out to

investigate which region in the WSN(H1) PB2 was responsible for

the interaction with NP by creating a series of chimeric WSN(H1)

and H5 PB2 proteins (Fig. 3A). A luciferase reporter assay [40] was

used to measure the overall RNP activity. A plasmid encoding a

NP-Polymerase Interaction and Activity
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vRNA-like luciferase gene was co-transfected into 293T cells with

either wild-type or R150A NP, PA, PB1 and the various PB2

constructs. A plasmid encoding green fluorescent protein (GFP)

was also co-transfected as a control. The RNP activity was

reported as the ratio of luciferase activity to GFP level.

Transfection of all six chimeric PB2 mutants with wild-type NP

resulted in detectable RNP activity, indicating that they were

functional (Fig. 3B). As observed before, RNP with wild-type H5

PB2 and NP R150A mutation did not give significant activity

(Fig. 3C, H5-PB2). Replacing the N-terminal region of H5 PB2

with aa. 1–279 of WSN(H1) PB2 did not increase the RNP activity

(Fig. 3C, H1[1–279]H5[280–759]-PB2). This indicates that the N-

terminus of WSN(H1) PB2 could not rescue the defective

phenotype of the NP R150A. On the other hand, replacing aa.

551–759 of H5 PB2 by the corresponding C-terminal region of

WSN(H1) PB2 rendered the RNP active (Fig. 3C, H5[1–

550]H1[551–759]-PB2).

Co-immunoprecipitation of wild-type or R150A NP with the

H5[1–550]H1[551–759]-PB2 chimeric protein was then per-

formed. It was found that H5[1–550]H1[551–759]-PB2 could

restore the NP-polymerase interaction with the NP R150A mutant

(Fig. 3D). Taken together, these experiments showed that the C-

terminus of WSN(H1) PB2 can overcome the inhibitory effect of

NP R150A mutation in the background of an H5 polymerase.

Residues 627 and 630 in PB2 are crucial for the
NP-polymerase interaction in mammalian cells

Sequence alignment of the C-terminus of PB2 of the two strains

was performed to identify the particular residues in the C-terminus

of PB2 (aa. 551–759) which caused the differential phenotypes in

the presence of the NP R150A mutant. 13 polymorphic amino

acid residues were found between the two strains (Fig. 4A). We

constructed nine single-point and two double-point H5 PB2

mutants with polymorphic amino acid residues from WSN(H1)

PB2. The expression levels of these PB2 mutants were normalized

and the RNP activities of the mutants were measured using a

luciferase reporter assay with wild-type NP (Fig. 4B, bars 1–12) or

NP R150A (Fig. 4C, bars 1–12).

All eleven H5 PB2 mutants could form active RNPs with wild-

type NP (Fig. 4B, bars 1–12). However, only one double-point

mutant ([E627K,R630G]-H5-PB2) could recover the RNP activity

in the presence of the NP R150A mutant (Fig. 4C,

[E627K,R630G]-H5-PB2). To test whether K627 or G630 of

WSN(H1) PB2 was the key residue, we constructed two additional

point mutants (E627K-H5-PB2 and R630G-H5-PB2). It was

found that the E627K mutation in H5 PB2 gave normal RNP

activity with wild-type NP and could compensate for the NP

R150A mutation (Fig. 4B and 4C, bar 14). A co-immunoprecip-

itation experiment also demonstrated that the E627K-H5-PB2

restored the NP-polymerase interaction of NP R150A mutant

(Fig. 4D, lanes 5–8).

Surprisingly, the other mutant R630G-H5-PB2, which contains

E627, could not produce significantly active RNP even with wild-

type NP (Fig. 4B, bar 15), although the mutant was expressed to

similar level as the wild-type PB2 in 293T cells (data not shown).

We also changed K627 to E in WSN(H1) PB2, which has already

got G630 (K627E-H1-PB2). RNP activity with wild-type NP was

found to be greatly reduced (Fig. 4B, bar 16). Co-immunoprecip-

itation experiments also showed that both mutants (R630G-H5-

PB2 and K627E-H1-PB2) lost nearly all NP-polymerase interac-

tion with wild-type NP (Fig. 4D, lanes 9–16).

From the above observations (summarized in Table 1), we can

make the following conclusion. Residues at positions 627 and 630,

but not the origin of PB2, determine the NP-polymerase affinity

and RNP activity (rows 1–8). With the WSN(H1) PB2 genotype

(K627 and G630), both wild-type NP and R150A NP could form a

functional RNP with similar polymerase activity (rows 1–4). With

the H5 PB2 genotype (E627 and R630), only the wild-type NP but

not the R150A NP could form a functional RNP (rows 9–10). This

showed that a positively charged residue, either at position 627 or

630, is required to form a functional RNP. Without a positively

charged amino acid residue at either of these positions, PB2 is

inactive in producing functional RNP and NP-polymerase

interactions (rows 5–8). In addition, it is crucial to have an

arginine residue at position 150 in NP if there is a positively

charged residue at position 630, but not at position 627 of PB2

(rows 1–2, 9–10). This suggests that polymerase with K627-

containing PB2 does not require R150 in NP for the interaction

with NP.

To find the interaction of polymerase with NP and the RNP

activities at different temperatures, co-immunoprecipitation of NP

and luciferase assays on PB2 with E627/R630 (wild-type H5),

E627/G630, K627/R630, K627/G630 were performed at 33, 37

and 41uC in mammalian cells (Fig. 5). Similar levels of the

different PB2 variants were co-immunoprecipitated by myc-tagged

PA at all tested temperatures (Fig. 5A). In the absence of positive

charges at positions 627 and 630, the affinity to NP and the RNP

activity were found to be low at all tested temperatures (Fig. 5A,

lane 7; Fig. 5B, R630G-H5). On the other hand, polymerase

carrying wild-type H5 PB2, which has E627 and R630, showed

low affinity to NP and low RNP activity at 33uC, but increased

significantly at 37 and 41uC (Fig. 5A, lane 1; Fig. 5B, WT-H5).

Both the wild-type H5 PB2 and [E627K,R630G]-H5 PB2 carry

one positive charge at the concerned region, the former with R630

while the latter with K627. K627 led to more efficient interaction

with NP and higher RNP activity than R630 (Fig. 5A, lanes 1 and

3; Fig. 5B, WT-H5 and [E627K,R630G]-H5). Compared to the

polymerase carrying wild-type H5 PB2, more positive charges at

aa. 627 and 630 gave a higher affinity with NP and a higher RNP

activity at all tested temperatures (Fig. 5A, lanes 1 and 5; Fig. 5B,

WT-H5 and E627K-H5).

The ‘627-domain’ of PB2 directly interacts with NP,
without the involvement of RNA

After the identification of the crucial residues in PB2 (K627 and

R630) and NP (R150) required for NP-polymerase interaction, we

then investigated how NP and PB2 interact. The NP-PB2

interaction could be either direct or indirect, or even involving

RNA, as both NP and PB2 have been shown to possess RNA

binding activities [21,24]. To understand the mode of interaction,

Figure 1. The R150A NP mutant shows different activities in H5 and WSN(H1) polymerase backgrounds. (A) SPR of different
concentrations of NP R150A mutant against immobilized RNA. (B) Co-immunoprecipitation of flag-tagged NP mutants with their myc-tagged
counterparts. ‘+’ refers to the presence of the anti-myc antibodies while ‘2’ indicates their absence. (C) The wild-type and R150A mutant NP were
subjected to RNP reconstitution assay in an H5 background and viral RNA (NA) levels were quantified by primer extension. A representative result of
three independent experiments is shown. RNA levels of the NP R150A mutant were compared to those of wild-type NP, which was set to 100%. 5S
rRNA was used to normalize the m-, c- and v-RNA levels. The quantitation represents the mean percentage 6 standard deviations from three
experiments. (D) RNP reconstitution assay of wild-type and R150A mutant NP in an WSN(H1) background (*, P,0.05; **, P,0.005).
doi:10.1371/journal.pone.0036415.g001
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we employed in vitro pull-down assays and SPR with BIAcore

3000. We expressed NP and the PB2 ‘627-domain’ (aa. 538–693)

in E. coli and purified the protein to high homogeneity using

established protocols [21,23]. The purified PB2 ‘627-domain’ was

covalently immobilized on an NHS-column. The column was then

incubated with purified NP. After extensive washing, the bound

protein, if any, was eluted with a high salt buffer. It was found that

the PB2 ‘627-domain’ interacts with NP (Fig. 6A). An empty

column was also incubated with purified NP as a negative control,

with no NP being eluted (data not shown).

Figure 2. The R150A NP mutant forms a functional association with polymerases containing WSN(H1) PB2. (A) RNP reconstitution assay
with gene-swapped polymerases and wild-type or R150A mutant NP. RNA levels were compared to those with wild-type NP in H5 polymerase
background, which was set to 100% (Lane 3). A representative result of three independent experiments is shown. P-values are calculated versus wild-
type NP for each set of polymerase combination (*, P,0.05; **, P,0.005). (B) Co-immunoprecipitation of wild-type and R150A mutant NP with Myc-
tagged polymerase carrying either H5 or WSN(H1) PB2.
doi:10.1371/journal.pone.0036415.g002
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The purified PB2 ‘627-domain’ was also immobilized on a CM5

chip by amine coupling. Purified NP was allowed to pass through

the chip in a concentration series (Fig. 6B). The kinetic parameters

were measured, the binding curves were fitted and the affinity of

the interaction was calculated. The best-fitted model is the ‘1:1

Langmuir model’’, which is consistent with the phenomenon that

one RNP contains one copy of PB2. Wild-type NP bound wild-

type H5 PB2 ‘627-domain’ through direct protein-protein

interaction, with an affinity of 252 nM (Table 2). To determine

if RNA played a role in the interaction, a 24-nt 29-O-methylated

Figure 3. Polymerase activity assay and co-immunoprecipitation of domain-swapped PB2 mutants. (A) Construct design of domain-
swapped PB2 mutants. (B and C) RNP reconstitution assay of domain-swapped PB2 with (B) wild-type and (C) R150A mutant NP. A plasmid encoding
GFP was co-transfected for data normalization purposes. The RNP activity was reported as the ratio of luciferase activity to the GFP level. The RNP
activities of the domain-swapped PB2 proteins were compared to that of WSN(H1)-PB2. The bar chart represents the mean ratio 6 standard
deviations from three independent experiments (*, P,0.05). (D) Co-immunoprecipitation of wild-type and R150A mutant NP with Myc-tagged
polymerase carrying either H5 or H5[1–550]H1[551–759] PB2.
doi:10.1371/journal.pone.0036415.g003
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RNA, which confers RNase resistance, was mixed with NP in

different molar ratios. The NP/RNA mixture was allowed to pass

through the chip and it was found that the NP-PB2 ‘627-domain’

interaction decreased with increasing amount of RNA (Fig. 6C).

Thus, the presence of RNA caused an inhibitory effect suggesting

that RNA is not involved in the interaction.

To test if the crucial residues (PB2 K627, R630 and NP R150) for

NP-polymerase binding and RNP activities are related to this direct

NP-PB2 ‘627-domain’ interaction, we cloned the [E627K,R630G]

and R630G mutations separately into H5 PB2 ‘627-domain’ for

bacterial protein expression and purification. The [E627K,R630G]

mutant mimics the genotype of WSN(H1) PB2. The binding

affinities of these H5 PB2 ‘627-domain’ mutants with NP were

analyzed (Table 2). It was found that the NP R150A variant bound

12.9 fold weaker than wild-type NP to the wild-type H5 PB2 ‘627-

domain’ (Fig. 6D, Table 2). This correlates with the defective

phenotype of NP R150A mutant with H5 PB2 (Fig. 2A and 2B).

When the H5 PB2 ‘627-domain’ [E627K,R630G] variant was

immobilized on the sensor chip, both wild-type and mutant R150A

NP showed high binding affinities (Fig. 6E, Table 2). This again

correlates with the RNP activity and NP-polymerase interaction of

NP R150A mutant with [E627K,R630G]-H5-PB2 (Fig. 4C and

4D). On the other hand, neither wild-type nor the R150A NP

mutant interacted with immobilized H5 PB2 R630G (Fig. 6F). This

also agrees with the lack of RNP activity and NP-polymerase

interaction of R630G-H5-PB2 (Fig. 4B, 4C and 4D). Therefore, we

conclude that the direct protein-protein interaction of NP and PB2

‘627-domain’ plays a crucial role in the NP-polymerase interaction

as well as the activity of the RNP complex.

Discussion

In this report, the amino acid residues K627 and R630 in the

’627-domain’ of PB2 were found to be important for mediating the

interaction between NP and polymerase. In addition, a region of

NP involving the conserved amino acid residue 150 was also found

to be important in mediating such interaction. These results

facilitate our understanding of the molecular mechanisms of RNP

assembly of influenza A viruses.

Using H5 and WSN strains as models, our data indicate that

either K627 or R630 in PB2 can mediate a functional NP-

polymerase interaction. Results from virus replication assays also

support this conclusion. Avian influenza virus isolates HK156 and

MZ237, which contain E627 and R630, were shown to form

plaques and possess transcription-replication activities at 37uC in

293T cells [38]. A reassortant WSN virus containing polymerase

and NP genes from the avian isolate MZ reached similar viral

titers as a reassortant WSN virus with polymerase and NP genes

from the human isolate P908 at 48 hpi on MDCK cells, although

it exhibited slower growth during the first 30 hpi [39]. These

studies showed that viruses containing R630, but not K627, in

PB2 could replicate efficiently in mammalian cells. The WSN virus

with PB2 containing K627 and G630, was also found to produce

high virus titer at 37uC in MDCK cells. This virus also had high

polymerase activity in 293T and Cos7 cells [30]. However, when

both K627 and R630 were absent, the virus could hardly replicate

in mammalian cells. The WSN virus with PB2 K627E mutation

and G630 gave low polymerase activity and formed very few

plaques in MDCK cells [30]. Interestingly, when PB2 with E627

and G630 was co-expressed with NP, an interaction was observed

[30]. However, it was shown previously that the N-terminal 1–269

amino acids of PB2 can also interact with NP [37] and we

speculate that the observed interaction could have been mediated

primarily by the N-terminal region of PB2. When the whole RNP

complex is expressed, the interaction between the polymerase

carrying PB2 K627E mutation and NP in mammalian cells is

weak, as observed by us (Fig. 4B) and other [30].

The PB2 ‘627-domain’ construct used in the SPR experiment

lacks the N-terminal region of PB2, which was shown to bind NP

[37]. Yet the PB2 ‘627-domain’ is independently folded and

residue 627 at the domain was shown to affect the NP-polymerase

interaction [38]. According to the atomic structure of the PB2

‘627-domain’ [23,24], aa. 627 and 630 are on a flexible loop, and

the conformation is likely to change upon interaction with NP.

How exactly these residues contribute to the interaction would

need the elucidation of the structure of the PB2-NP complex.

Concerning the involvement of RNA, we showed by SPR

experiments that RNA in fact inhibits the NP-PB2 ‘627-domain’

interaction, suggesting that RNA is not involved in the interaction

between PB2 and NP in RNP.

There are more than 10,000 PB2 sequences from various

influenza strains in the NCBI database. Avian viruses and the

2009 H1N1 pandemic strain have the combination of E627 and

R630 (61.0% of all PB2 sequences). Human viruses typically have

the combination of K627 and R630 (38.2% of all PB2 sequences),

with the exception of the 2009 H1N1 pandemic. It is noted that

the combination of K627 and G630 is confined to the WSN strain.

Avian influenza viruses carrying PB2 E627 do not replicate

efficiently at 33uC in mammalian cells [32–34]. We have found

that polymerase from human H5N1 isolate with PB2 E627 has

lower RNP activity at 33uC than those with PB2 mutated to K627

(Fig. 5). With PB2 E627K mutation, the avian viruses have

improved growth in mammalian cells and enhanced virulence in

mice and possibly humans [32–34]. The phenotypic differences of

K/E627 are likely brought by either an inhibitory co-factor on

E627 or an adaptive co-factor on K627 in human cells [30,31].

We observe at all tested temperatures that stronger the

interaction between NP and polymerase, better their RNP

activities (Fig. 5). At temperatures in both the mammalian

respiratory tract (33uC) and the avian intestinal tract (41uC),

polymerase with more positive charges at PB2 aa. 627 and 630

interacts better with NP and confers higher RNP activity (Fig. 5).

This coincides with the previous findings that (1) more NP was co-

purified by strep-PB2 tagged human-like polymerase than avian-

like polymerase [39]; and (2) E627K mutation in an avian PB2

strengthened the NP-polymerase interaction in human cells [38].

To conclude, this work contributes to our understanding of how

NP interacts with PB2 and polymerase in influenza virus RNP. A

region of NP involving amino acid residue 150 was found to

interact with K627 or R630 of PB2. The direct correlation of the

strength of NP-polymerase interaction and the RNP activity at

different physiological temperatures was established. These

provide new information of the requirements of the replication

machinery of the influenza viruses.

Figure 4. K627 and R630 are crucial for the RNP activity and NP-PB2 interaction. (A) Sequence alignment of H5 and WSN(H1) PB2
C-terminal region (aa. 551–759). The arrows denote the differences. (B and C) RNP reconstitution assay of PB2 point mutants with (B) wild-type or (C)
R150A mutant NP. The mean RNP activities from three independent experiments of the PB2 mutants were compared to those of wild-type H5-PB2 (*,
P,0.05). (D) Co-immunoprecipitation of wild-type and R150A mutant NP with Myc-tagged polymerase variants in 293T cells at 37uC.
doi:10.1371/journal.pone.0036415.g004
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Materials and Methods

Biological Materials
The 293T cell line (ATCC, Manassas, VA, USA) was cultivated

in minimal essential medium (MEM) (Invitrogen, Carlsbad, CA,

USA) with 10% fetal calf serum (Invitrogen). Anti-NP and anti-

PB2 sera were prepared by immunizing rabbits with purified NP

and the N-terminus of PB2. Anti-myc antibody (Cell Signaling,

Danvers, MA, USA), anti-beta-actin antibody (GenScript, Piscat-

away, NJ, USA) were purchased commercially. Plasmids pcDNA-

PB1, pcDNA-PB2, pcDNA-PA, pcDNA-NP and pPOLI-NA-RT

have been described previously [41,42]. pEGFP and pPolI-Luc-

RT are gifts from L.L.M. Poon and have been described [40]. NP

and PB2 mutants were cloned into pcDNA3 (Invitrogen) for the

expression of untagged NP and PB2 variants in 293T cells. H5 PA

was cloned into pcDNA3.1/myc-His (Invitrogen) for the expres-

sion of myc-tagged PA in 293T cells.

RNA analysis by primer-extension assay
Human kidney 293T cells were used to reconstitute RNP

complexes. 1 mg of each of the pcDNA-PB1, pcDNA-PB2,

pcDNA-PA, pcDNA-NP, and pPOLI-NA-RT plasmids were

diluted to a total volume of 250 ml in OptiMEM (Invitrogen)

and subsequently added to a mix of 7.5 ml of Lipofectamine 2000

(Invitrogen) in 250 ml OptiMEM. The transfection mixture was

incubated for 30 minutes before adding to 1.5 ml (about 106 cells)

293T cells in suspension in minimal essential medium (MEM)

containing 10% fetal calf serum in 35-mm dishes. Cells were

incubated at 37uC, harvested 48 hours post-transfection, and total

RNA was extracted by TRIzol reagent (Invitrogen).

Primer extension assays were performed as described previously

[42,43]. Briefly, an excess of DNA primer (about 105 cpm),

labeled at its 59 end with 32P, was mixed with 5 mg of total RNA in

5 ml of water, and denatured at 95uC for 3 minutes. The mixture

was cooled on ice and subsequently incubated at 45uC for 1 hour

with the addition of 50 U SuperScript II RNase H2 reverse

transcriptase (Invitrogen) in First Strand Buffer (Invitrogen). Two

NA gene-specific primers and one 5 S ribosomal RNA primer

(used as an internal control) were used in the same reverse

transcription reaction: 59-GGACTAGTGGGAGCATCAT-39 (to

detect vRNA), 59-TCCAGTATGGTTTTGATTTCCG-39 (to

detect mRNA and cRNA) and 59-TCCCAGGCGGTCTCC-

CATCC-39 (to detect 5 S rRNA). Reactions were stopped by the

addition of 8 ml 90% formamide and heating at 95uC for

3 minutes. Transcription products were analyzed on 6% poly-

acrylamide gels containing 7 M urea in TBE buffer and detected

by autoradiography. Phosphorimage analysis by ImageQuant TL

(GE Healthcare, Waukesha, WI, USA) was used for quantification.

An unpaired Student’s t-test was used for analysis of significance.

Polymerase activity analysis by luciferase assay
0.125 mg of each of the pcDNA-PB1, pcDNA-PB2, pcDNA-PA,

pcDNA-NP, and pPOLI-Luc-RT plasmids and 0.0625 mg of

pEGFP plasmid were diluted to a total volume of 12.5 ml in

OptiMEM (Invitrogen) and subsequently added to a mix of 1.05 ml

of Lipofectamine 2000 (Invitrogen) in 12.5 ml OptiMEM. The

transfection mixture was incubated for 30 minutes in the 96-well

plate before 75 ml (about 105 cells) 293T cells in minimal essential

medium (MEM) containing 10% fetal calf serum was added into the

well. GFP fluorescent signal was first measured 48 h post-

transfection by Victor 2 Multilabel plate reader (Perkin Elmer,

Waltham, MA, USA). Afterwards, cells were lysed by Steady-Glo

assay reagent (Promega, Madison, WI, USA) for 5 minutes, and the

luminescence signal was measured. The polymerase activity was

reported as the ratio of GFP signal to luminescence signal. An

unpaired Student’s t-test was used for analysis of significance.

Co-immunoprecipitation of NP-polymerase and NP-NP
1 ug each of Myc-tagged PA, untagged PB1, PB2 and NP and

pPol-NA-RT plasmids were transfected into 106 human kidney

293T cells in suspension. Co-immunoprecipitation was performed

48-hours post-transfection. Cells were resuspended in 50 mM

Tris-HCl (pH 7.6), 150 mM NaCl, 1 mM EDTA, 1% Triton X-

100 (co-IP buffer) and lysed by sonication. The lysate was

centrifuged at 16000 g for 10 minutes at 4uC. The supernatant

was incubated at 4uC overnight with or without anti-myc

antibody. The mixture was then incubated with protein-A beads

for 1.5 hours at 4uC with shaking. The beads were centrifuged and

washed with co-IP buffer four times before being boiled in SDS-

loading dye and analyzed by western blotting. Experiment to study

NP homo-oligomerization was performed as described [44]. 1 ug

each of untagged and myc-tagged NP plasmids were transfected

Table 1. Summary of the key findings.

PB2 NP Phenotype

No. Variants aa. 627 aa. 630 Variants aa. 150
Polymerase activity
(Luciferase Assay)

NP-polymerase
interaction (Co-IP)

NP-PB2 ‘627-domain’
interaction (SPR)

1 [E627K, R630G] -H5 PB2 K G WT R Active Yes Yes

2 R150A A Active Yes Yes

3 WT-H1 PB2 K G WT R Active Yes n/a

4 R150A A Active Yes n/a

5 R630G-H5 PB2 E G WT R Inactive No No

6 R150A A Inactive No No

7 K627E-H1 PB2 E G WT R Inactive Very weak n/a

8 R150A A Inactive No n/a

9 WT-H5 PB2 E R WT R Active Yes Yes

10 R150A A Inactive Very weak Largely weakened

Note:
‘n/a’ refers to not available.
doi:10.1371/journal.pone.0036415.t001
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into the 293T cells. 150 U RNaseA (Sigma) was added to the

supernatant after centrifugation.

Expression and purification of NP
Maltose binding protein (MBP)-tagged NP was expressed in

Escherichia coli BL21(DE3)pLysS. The cells were lysed by

sonication, and the lysate was passed through an amylose column

(New England Biolabs, Ipswich, MA, USA). Bound protein was

eluted with a 0–20 mM maltose gradient in 20 mM sodium

phosphate (pH 6.5) and 150 mM NaCl. The eluate was incubated

with thrombin (100 U) (Sigma) and RNase A (100 U) (Sigma) at

4uC overnight to remove MBP from NP and then passed through

a heparin HP column (GE Healthcare). NP was eluted with a 0–

1.5 M NaCl gradient in the same buffer. Gel filtration was

performed with Superdex 200 (GE Healthcare). RNase A was

removed after passing through heparin HP column and gel

filtration. NP R150A mutant was generated by site-directed

mutagenesis of the wild-type pRSETMBP-NP plasmid [21]

following a standard protocol, and was purified as described for

the wild-type protein.

Figure 5. Temperature-dependent NP-PB2 interaction and polymerase activity. (A) Co-immunoprecipitation of wild-type NP by Myc-
tagged polymerase carrying different PB2 at 33uC, 37uC and 41uC. (B) RNP reconstitution assay of PB2 point mutants at 33uC, 37uC and 41uC.
doi:10.1371/journal.pone.0036415.g005
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Figure 6. Biophysical characterization of the NP-PB2 ‘627-domain’ interactions. (A) Pull down assay to analyze NP-PB2 interaction. Purified
PB2 ‘627-domain’ was covalently immobilized onto an NHS column. Purified NP was then applied and eluted after extensive washing. (B) SPR analysis
of NP-PB2 interaction. Wild-type PB2 ’627-domain’ was immobilized on a CM5 chip. NP in increased concentration was applied to the chip surface.
The response differences of experimental and control flow cells are reported (individual diamonds). Solid lines are the fitted curves. (C) Wild-type NP
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Expression and purification of the PB2 ‘627-domain’
The method has been described previously [23]. Briefly, His-

tagged PB2 ‘627-domain’ was expressed in Escherichia coli

BL21(DE3). The cells were lysed by sonication in lysis buffer

(30 mM Tris-HCl, 200 mM NaCl, pH 7.0). The lysate was then

passed through a His column (GE Healthcare). Bound protein was

washed with lysis buffer, followed by sequential washes with 1 M

NaCl, 50 mM imidazole and 75 mM imidazole in lysis buffer to

reduce non-specific binding. His-tagged PB2 ‘627-domain’ was

eluted with 500 mM imidazole in lysis buffer. Gel filtration was

then performed with Superdex 75 (GE Healthcare) in lysis buffer

or in phosphate buffered saline (PBS).

In vitro pull down assay
Purified wild-type PB2 ‘627-domain’ was covalently immobilized

on an NHS column, according to the manufacturer’s instructions

(GE Healthcare). Wild-type NP in PBS was then applied to the

column and incubated for 1 h at room temperature. The column

was washed with at least 20 column volumes of PBS. Bound protein

was eluted with 1.5 M NaCl in PBS and analyzed by SDS-PAGE.

SPR analysis of NP-PB2 ‘627-domain’ and NP-RNA
interaction

Purified wild-type, [E627K,R630G] and R630G H5 PB2 ‘627-

domain’ variants were individually immobilized on a CM5 sensor

chip (GE Healthcare) using an amine coupling kit until the surface

density reached 700–800 response units (RU). A blank flow cell

was used as a control. Wild-type and R150A NP variant in a series

of concentrations were allowed to flow through the flow cells. A 29-

O-methylated RNA oligonucleotide with the sequence 59 UUU

GUU ACA CAC ACA CAC GCU GUG 39 was mixed with the

protein variants in some experiments to assess the effect of RNA

on the NP-PB2 ‘627-domain’ interaction. SPR measurements

were carried out with BIAcore 3000 at 25uC. The response in the

control flow cell was subtracted from that of the experimental flow

cells and the data were analyzed with BIAevaluation v. 4.1 using

the model of ‘1:1 Langmuir binding’, for the calculations of

association constant, dissociation constant and the affinity of the

interaction. No mass transfer effect was observed. For NP-RNA

interaction study, biotinylated 29-O-methylated RNA oligonucle-

otide with the above sequence was immobilized on an SA sensor

chip (GE Healthcare) until the surface density reached 30–35 RU.

NP variants in different concentrations were allowed to pass

through the chip surface.

Supporting Information

Figure S1 Co-immunoprecipitation of wild-type and
R150A mutant NP with Myc-tagged polymerase carrying
either H5 or WSN(H1) PB2, in the absence of vRNA.
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