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Abstract

Most cancer cells accumulate genomic abnormalities at a remarkably rapid rate, as they are unable to maintain their
chromosome structure and number. Excessively short telomeres, a known source of chromosome instability, are observed in
early human-cancer lesions. Besides telomere dysfunction, it has been suggested that a transient phase of polyploidization,
in most cases tetraploidization, has a causative role in cancer. Proliferation of tetraploids can gradually generate
subtetraploid lineages of unstable cells that might fire the carcinogenic process by promoting further aneuploidy and
genomic instability. Given the significance of telomere dysfunction and tetraploidy in the early stages of carcinogenesis, we
investigated whether there is a connection between these two important promoters of chromosomal instability. We report
that human mammary epithelial cells exhibiting progressive telomere dysfunction, in a pRb deficient and wild-type p53
background, fail to complete the cytoplasmatic cell division due to the persistence of chromatin bridges in the midzone.
Flow cytometry together with fluorescence in situ hybridization demonstrated an accumulation of binucleated polyploid
cells upon serial passaging cells. Restoration of telomere function through hTERT transduction, which lessens the formation
of anaphase bridges by recapping the chromosome ends, rescued the polyploid phenotype. Live-cell imaging revealed that
these polyploid cells emerged after abortive cytokinesis due to the persistence of anaphase bridges with large intervening
chromatin in the cleavage plane. In agreement with a primary role of anaphase bridge intermediates in the polyploidization
process, treatment of HMEC-hTERT cells with bleomycin, which produces chromatin bridges through illegimitate repair,
resulted in tetraploid binucleated cells. Taken together, we demonstrate that human epithelial cells exhibiting physiological
telomere dysfunction engender tetraploid cells through interference of anaphase bridges with the completion of
cytokinesis. These observations shed light on the mechanisms operating during the initial stages of human carcinogenesis,
as they provide a link between progressive telomere dysfunction and tetraploidy.
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Introduction

Most cancer cells are genetically unstable [1] and accumulate

unbalanced chromosome rearrangements, entire chromosome aneu-

ploidies and increased numbers of chromosome sets (Mitelman

Database: http://cgap.nci.nih.gov/Chromosomes/Mitelman). Cell

populations with chromosome contents from 42 to 95 are often found

in prostate, pancreas, ovary, large intestine, liver and breast

adenocarcinomas, as well as in squamous cell carcinomas of the skin

[2]. Moreover, tetraploidy is usually observed in the early stages of

cervical carcinogenesis [3] and in a pre-malignant condition called

Barrett’s esophagus, in which tetraploid cells have been correlated

with the loss of p53 and detected before gross aneuploidy occurs [4,5].

A long-standing hypothesis on tumourigenesis suggests that

unstable tetraploid cells (4N) can act as intermediates that catalyze

the generation of aneuploid cells [6–8]. This assumption is based

on several studies that show that tetraploidy leads to increased

chromosome instability in eukaryotic cells [9–11]. When cells

become tetraploid, they acquire extra centrosomes that can

potentially lead to chaotic multipolar mitosis, in which sister

chromatids are frequently missegregated between daughter cells

(reviewed by [12,13]). Tumourigenesis via this tetraploid interme-

diate could explain why polyploid cells are observed in early

neoplastic stages, and why cancer cells frequently contain

supernumerary centrosomes and a high rate of whole chromosome

missegregation. The most direct evidence for the high tumourigenic

potential of tetraploid cells comes from the observation that 4N p53-

null mammary epithelial mouse cells can initiate tumours in

immunocompromised mice, whereas isogenic diploids cannot [10].

This evidence supports the idea that tetraploidy is an intermediate

for chromosome instability (CIN) and tumourigenesis.

Besides bearing near-tetraploid genomes, another feature of

human tumour cells is the presence of very short telomeres [14].

Telomeres are nucleoprotein complexes that form a loop structure

at the end of chromosomes protecting them from end-to-end

fusion. Excessive telomere shortening due to continuous cell

proliferation in an environment with checkpoint deficiencies

promotes the appearance of uncapped chromosome ends that
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may initiate repeated breakage-fusion-bridge cycles. This leads to

massive CIN visualized as complex types of genomic abnormalities,

including loss of heterozigosity, gene amplification, chromosome

reorganizations and whole-chromosome missegregation, which are

characteristic of most human tumour cells. It is currently believed

that telomere-attrition-induced genomic instability contributes to

the onset of epithelial carcinogenesis. Indeed, short dysfunctional

telomeres in mouse models proved to have a founder effect in CIN

and tumourigenesis [15]. In humans, telomere dysfunction occurs

during normal ageing, and critically short telomeres have been

reported as a common early alteration in many epithelial cancers

[16,17], the prevalent tumour type in the elderly.

Given the coexistence of both telomere dysfunction and

tetraploidy in early human-cancer lesions, we investigated the

possible connection between these two important promoters of

CIN. For this purpose, we used human epithelial cells (HMECs)

derived from normal mammary gland. In these cells, spontaneous

P16INK4A promoter hypermethylation overrides the pRB pathway

and allows cells with critically short telomeres to proliferate [18].

When this occurs, uncapped chromosome ends may gradually be

repaired in the form of end-to-end chromosome fusions. These

chromosome configurations tend to bridge at anaphase if a twist in

their intercentromeric region occurs. We have already shown that

these chromatin bridges can break and give rise to structural

chromosome rearrangements and amplification events [19,20], or

alternatively, a small portion of unbroken chromatin bridges can

segregate erroneously during mitosis between daughter HMECs,

causing whole-chromosome aneuploidy [21]. In this current article,

we demonstrate that progressive telomere attrition, in a context of

functional p53, can also result in the generation of polyploid

binucleated cells when long-lasting unbroken DNA bridges span the

cleavage site and interfere with the completion of cytokinesis.

Results

Telomere dysfunction causes the accumulation of extra
chromosome sets in primary HMECs

HMECs cultured in vitro in a serum-free medium exhibit

eroding telomeric sequences and ultimately enter a telomere-based

crisis, generating the types of chromosomal abnormalities seen in

the earliest lesions of breast cancer. Early studies using the HMEC

model revealed the presence of structural [18–20] and numerical

chromosome aberrations [21], as well as certain levels of

polyploidy [18]. In order to further investigate the emergence of

polyploid subpopulations of HMECs, we examined their DNA

content throughout the cell culture by univariate flow cytometry.

We focused this analysis on cells derived from breast specimens

from two different donors (219-7 and 830), in order to take

interindividual variations into account. Figure 1A, upper panels,

shows the results of the cytometric analysis for donor 219-7. A

marked increase in the 4N fraction was observed in late-passage

HMECs compared with their early counterparts (from 24% to

31%). The cytometric analysis of HMECs derived from the second

donor also demonstrated a significant accumulation of 4N cells

with population doublings (PDs) (Figure S1). To check whether the

increase in cells in the 4N fraction actually reflected an increase in

tetraploid cells in G1 and not in diploid cells with replicated DNA,

we performed a flow-cytometry bivariate analysis of both the DNA

content and cyclin D1 protein, which is only expressed during the

G1 cell-cycle phase [22]. This approach showed that a portion of

cells in the 4N window were positive for cyclin D1 in both donors;

they therefore exhibited bona fide traits of real tetraploidy (Figure 1A

lower panels and Figure S1). In agreement with an increase of

extra chromosome sets with cell culture, the cell-cycle analysis also

revealed a small fraction of 8N cells that increased in both donors

at late PDs. To reinforce these results, we also checked for ploidy

levels on a cell-per-cell basis. By scoring centromeric signals of two

different chromosomes in donor 219-7 (Figure 1B), we confirmed

that there was a polyploid cell subpopulation that increased

progressively throughout the culture (Figure 1C). The frequency of

tetraploid cells increased from a basal level of 7.97% at an early

PD to 27.13% at PD55 (Kruskal Wallis, post-hoc Dunnett’s test,

p,0.001). Collectively, our results show that there is an

accumulation of tetraploid cells throughout the HMEC culture.

And remarkably, this 4N population is viable and able to

proliferate because an octoploid population of cells emerges at

the later stages of the culture.

In addition to the increasing frequencies of polyploidy, HMECs

also display an increasing grade of telomere dysfunction with

continuous proliferation [19,21]. To ascertain whether there is a

correlation between these two parameters, we scored the

frequency of chromosome ends with undetectable PNA-FISH

telomeric signals and ploidy levels in metaphase spreads from

HMECs at different PDs. The lowest levels of telomere

dysfunction were observed at the earliest PDs, coincident with

the lowest tetraploidy rate in the two donors. At late PDs, telomere

dysfunction affected a greater number of chromosome arms

(Figure S2A), and tetraploidization events also increased. The

Spearman statistical test showed a significant correlation between

tetraploidy and telomere dysfunction (r2 = 0.895; p,0.05; Figure

S2B). These results suggest that the emergence of polyploid cell

populations is probably linked to the natural telomere erosion that

HMECs undergo as they proliferate.

To better establish a relationship between telomere dysfunction

and the generation of polyploid cells, we transduced HMECs with

the catalytic subunit of telomerase (hTERT), as introduction of

hTERT leads to the elongation of telomeric DNA ends and cell

immortalization [23]. Finite lifespan HMECs 219-7 at early PDs

were exposed to lentiviral particles containing an hTERT

construct. Expression of telomerase activity in hTERT-transduced

cells was verified by TRAP assay (data not shown) and the

restoration of telomere length was assessed by analyzing free-

telomere chromosome ends after PNA-FISH (Figure S2C). The

evolution of ploidy levels of non-transduced HMECs and hTERT-

Author Summary

Chromosome instability leads to the accumulation of
chromosome number and structure aberrations that have
been suggested as necessary for neoplastic transformation.
Telomeres, specialized DNA–protein complexes localized at
the physical ends of linear chromosomes, are crucial for
maintaining chromosome stability. Massive chromosomal
instability may occur when cells continuously proliferate in
the absence of specific telomere elongation mechanisms.
Besides telomere dysfunction, it has been suggested that a
transient phase of tetraploidization has a causative role in
cancer. This study provides a link between dysfunctional
telomeres and the generation of tetraploids. Using a human
mammary epithelial cell model, we show that diploid cells
exhibiting progressive telomere dysfunction, in a p53
proficient background, engender tetraploid cells through
cytokinesis failure. Our studies give new insights into the
mechanisms that may facilitate the evolution of malignant
phenotypes: telomere-dependent chromosome instability
would engender tetraploid intermediates that, on division,
would promote further cellular genome remodelling, which
is needed at the early stages of tumour development in
order for cells to become neoplasic.

Gradual Telomere Dysfunction Leads to Tetraploidy
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transduced cells (HMEC-hTERT) was followed by flow cytometry

(Figure 2). Whereas extra chromosome sets in non-transduced

HMECs increased significantly throughout the cell culture, the

reactivation of telomerase was accompanied by a significant

decrease in the frequency of polyploid cells (Student’s T test;

p,0.05; Figure 2). Restoration of telomerase in HMECs from two

additional donors also resulted in a notable reduction of the

polyploid levels (data not shown). Together, these results

evidenced the connection between telomere dysfunction and

polyploidization, as telomerase re-introduction rescued the

polyploid phenotype of the epithelial cells.

Polyploid HMEC subpopulations arise due to incomplete
cytokinesis

The above results prompted us to focus on how telomere

shortening might promote the formation of tetraploid cells. In

Drosophila, unprotected telomeres trigger the spindle assembly

checkpoint that prevents cells from progressing into anaphase [24].

Moreover, deprotection of chromosome ends in TRF2-deficient

mouse hepatocytes impedes the onset of anaphase without

affecting DNA replication [25]. Similarly, persistent telomere

deprotection due to deletion of the telomeric DNA-binding protein

POT1a/b in p53-defective mouse embryonic fibroblasts leads to

cell tetraploidization [26] through endoreduplication [27]. It has

also been suggested that this latter mechanism underlies whole-

genome duplications in faulty p53 colon cancer human cell lines

where telomerase activity was abrogated [28]. In all these cases,

cells skip or exit mitosis without undergoing anaphase or

cytokinesis and give rise to tetraploid cells with a single nucleus.

Nevertheless, polyploidy can also appear due to cytokinesis failure

after karyokinesis has been completed, thus giving rise to polyploid

binucleated cells. Specifically, telomere dysfunction could be

envisaged as a factor potentially capable of interfering with the

completion of cytokinesis through anaphase bridges resulting from

end-to-end chromosome fusions. This possibility is based on the

observation that the presence of bulk chromatin occluding the

cleavage plane is known to induce furrow regression [29–31].

To determine the mechanism by which polyploidy emerges in

an environment where progressive telomere dysfunction occurs,

we scored for the presence of binucleated and mononucleated cells

throughout the HMEC culture. Antibodies against alpha and

beta-tubulin allowed the cell boundaries to be delineated and

DNA content was determined by dual-color centromeric FISH

(Figure 3A). Most tetraploid and octoploid cells contained two

nuclei in a single cytoplasm, which is incompatible with an

endoreduplication or mitotic slippage origin but consistent with

cytokinesis abortion (Figure 3B). However, a fraction of mononu-

cleated polyploid cells was also observed (Figure 3B). These cells

did not exhibit signs of endoreduplication cycles, as FISH signals

were randomly distributed within the interphase cell nucleus

(Figure 3A). In addition, most metaphase spreads of HMECs

exhibit two chromatids per chromosome (Figure S2D); only a very

low frequency (,0.75%; 8 out of 1057) of endoreduplicated

karyotypes, in which chromosomes were present as diplochromo-

somes (Figure S2E), were observed. Thus, 4N mononucleated

HMECs probably emerged from the division of an existing

Figure 1. Replicative dependent polyploidization in HMECs. (A) Flow cytometry analysis of DNA content of 219-7 HMECs stained with
propidium iodide, at early and late culture PDs (upper panels). The percentage of cells with 4N and 8N DNA content is given. Bivariate analysis of DNA
content and expression of cyclin D1 protein (lower panels), in which cyclin D1 positive cells are grouped depending on their ploidy level. Negative
control, shown in the bottom right corner, was performed without the primary antibody. (B) FISH analysis of a polyploid cell nucleus showing four
centromere signals corresponding to chromosome 4 (in blue) and four signals corresponding to chromosome18 (in green). DNA is counterstained
with DAPI. (C) Graph illustrating ploidy evolution of 219-7 HMECs throughout the culture based on a cell per cell basis scoring of the number of
centromeric signals. Average percentages from two independent experiments with standard deviations are shown.
doi:10.1371/journal.pgen.1002679.g001
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Figure 2. Polyploidization is reverted by hTERT immortalization. DNA content evolution of non-transduced and hTERT-transduced HMECs at
different PDs by univariate and bivariate flow cytometry. At an early PD, non-transduced 219-7 HMECs were analyzed for the presence of tetraploidy
(left panels). Cells were then divided into two groups. Proliferation of non-transduced HMECs resulted in the accumulation of a 4N subpopulation
(upper right panels). In contrast, proliferation of HMEC-hTERT cells revealed a sharp reduction of the 4N subpopulation (lower right panels). Figure
shows plot with negative control.
doi:10.1371/journal.pgen.1002679.g002

Figure 3. Polyploid HMECs arise through incomplete cytokinesis. (A) Immunofluorescence of alpha and beta-tubulin and DAPI staining
allows binucleated (white asterisks) to be distinguished from mononucleated HMECs (left image). ImmunoFISH combining alpha and beta tubulin
together with centromeric specific DNA probes for chromosome 4 (in blue) and 18 (in green) revealed two tetraploid cells each with a single 4N
nucleus (top right), and a tetraploid cell containing two 2N nuclei within the same cytoplasm (down right). (B) Averaged percentage of
mononucleated, binucleated and multinucleated polyploid HMECs throughout the cell culture from two different experiments.
doi:10.1371/journal.pgen.1002679.g003
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binucleated polyploid cell, as it is already known that binu-

cleated cells form a single metaphase plate in the following mitosis

[32].

To further test the idea that the polyploidization associated with

progressive telomere dysfunction is due to cytokinesis failure, we

investigated whether restoration of telomerase influenced the

spontaneous formation of binucleates. For this purpose, mono-

and binucleated cells were scored in non-transduced HMECs and

along a short follow up after hTERT transduction. The number of

nuclei in each cell was recorded after applying phalloidin-texas red

to detect the cell cortex and DAPI staining to counterstain DNA

(Figure 4A). The analyses showed a gradual decrease in the

frequency of spontaneous binucleated cells after telomerase

restoration (Figure 4B upper bars). Of particular noteworthiness,

a significant reduction of spontaneous binucleates was observed in

HMEC-hTERT cells as early as 6 PDs after transduction, when

compared to non-transduced HMECs (Kruskal-Wallis, post-hoc

Dunnett’s test p,0.001). Together, these results demonstrate that

restoration of telomerase had a strong effect in reducing the

spontaneous formation of binucleated cells and suggest that short

dysfunctional telomeres in HMECs may promote the formation of

polyploid cells by interfering with the completion of cytokinesis.

The presence of bridged chromatin per se, and not
telomere dysfunction, induces cell tetraploidization

Telomere shortening below a critical length results in uncapped

chromosomes prone to fuse with each other, which may

potentially interfere with proper cytokinesis if they form a bridge

during mitosis. If this were the case, increasing levels of telomere-

dysfunction would be expected to correlate with higher probabil-

ities of anaphase bridges and cytokinesis failure, whereas

elongation of critically short telomeres by telomerase would be

expected to attenuate binucleate formation by recapping chromo-

some ends. In accordance with these assumptions, we observed

that restoration of telomerase in HMECs was quickly translated

into a sharp decrease of anaphase bridges during the firsts PDs

immediately after transduction (Kruskal-Wallis, post-hoc Dunnett’s

test, p,0.001; Figure 4B lower bars), which in turn was paralleled

with the reported decrease in the frequency of spontaneous

binucleated cells (Figure 4B upper bars). Interestingly, immortal-

ization of HMECs with hTERT did not completely abrogate CIN.

Indeed, cells passaged for more than 20PDs, after hTERT

transduction, presented a low basal frequency of anaphase bridges

that again correlated well with a residual level of binucleates

(Figure 4C). Together these results strongly suggest a connection

between the presence of anaphase bridges and the emergence of

binucleated cells.

To obtain additional insight into the effect of bridged chromatin

in the generation of polyploid subpopulations, we treated HMEC-

hTERT cells with the DNA-damaging agent bleomycin in order

to obtain anaphase bridges unrelated to telomere dysfunction. An

appropriate concentration of the drug was added to the culture

medium over one hour to induce DNA breaks. Treated cells were

analyzed at 0 h, 6 h, 24 h, 48 h and 72 h after drug washout

(WO); a control group of untreated cells was also analyzed at 0 h

and 72 h (Figure 5A). After DNA damage is inflicted, broken DNA

ends can join illegitimately, producing chromosome rearrange-

ments such as dicentric chromosomes that, similarly to end-to-end

fusions, may bridge during anaphase. Therefore, an accumulation

of dicentric chromosomes is expected to occur in the first mitoses

after damage, and chromatin bridges are expected to raise the

population of binucleated cells at the next interphase. Accordingly,

24 h after drug release, a significant increase in the number of cells

showing anaphase bridges was observed (Kruskal-Wallis, post-hoc

Dunnett’s test, p,0.001; Figure 5B and 5C lower bars). This

frequency significantly rose at 48 h post WO and declined after

72 h, in accordance with the preferential breakage fate of

chromatin bridges during cell division [33,34]. But more

importantly, a significant rise in the frequency of binucleates was

observed at 48 h and 72 h post WO (Kruskal-Wallis, post-hoc

Dunnett’s test, p,0.001; Figure 5B and 5C upper bars), which was

consistent with anaphase bridges impeding proper cytokinesis.

In order to better connect the formation of anaphase bridges

with the observed increase in ploidy levels, bleomycin treated and

untreated HMEC-hTERT cells were monitored for DNA content

by univariate cytometric analysis at different time intervals.

Treatment of cells with bleomycin resulted in an accumulation

of 4N cells over time, which is compatible with aborted cytokinesis

(Figure 5D). Strikingly, when analyzing the cells’ 4N gate, a

proportion of cells with a larger size was observed to increase with

time after treatment (Figure 5E). This subpopulation of bigger cells

was not observed in any of the control groups (0 h and 72 h), nor

in bleomycin-treated cells at initial times post WO. As a whole,

these results prompted us to determine whether the gain in cell

Figure 4. Quantification of anaphase bridges and binucleates in non-transduced and hTERT-transduced HMECs. (A) Texas Red-X
phalloidin labelling of actin filaments and DNA counterstaining with DAPI of non-transduced HMECs. White asterisks highlight those binucleated
cells. (B) Analysis for the presence of binucleated cells (BN; upper bars) and anaphase bridges (AB; lower bars) in non-transduced HMECs and at
different PDs immediately after transducing cells with hTERT. Two independent cell transduction experiments were performed (transduction at PD36,
in blue and at PD40, in green). (C) The same analysis was performed after HMEC-hTERT cells were passaged more than 8 PDs after transduction.
Again, two independent transduction experiments were performed (transduction at PD26, in blue and at PD36, in green).
doi:10.1371/journal.pgen.1002679.g004
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Figure 5. Artificially induced anaphase bridges engender binucleated polyploid HMEC-hTERT cells. (A) Immortalized HMECs were
treated for one hour with the DNA damage-inducing agent bleomycin (HMEC-hTERT_BLEO) to induce double strand breaks. After drug washout, cells
were collected at different timepoints (6, 24, 48 and 72 h after treatment). Non-treated cells (HMEC-hTERT_Control) were also collected in parallel at 0
and 72 hours. Then DNA content was analyzed by flow cytometry and the presence of binucleated cells and anaphase bridges was scored after Texas
Red-X phalloidin and DAPI staining. (B) Image showing a binucleated cell (white asterisk) and two nuclei connected by a chromatin bridge (open

Gradual Telomere Dysfunction Leads to Tetraploidy
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volume was associated with the presence of binucleated cells. To

this end, we treated HMEC-hTERT cells with the mycotoxin

cytochalasin B (Cyt-B) to artificially induce binucleated cells, as it

inhibits cytoplasmic division by blocking the contractile actomy-

osin ring. The cytometric analysis of Cyt-B treated HMEC-

hTERT cells revealed an accumulation of 4N cells, but even more

important, a significant rise in the proportion of enlarged cells was

observed (Student’s T test; p,0.001; Figure 5F). The microscopic

analysis of this fraction of cells after sorting confirmed an

enrichment for binucleates in the Cyt-B treated vs the untreated

control cells (94% vs 17%). Altogether, these data suggest that

DNA bridges, either due to progressive telomere dysfunction or to

illegitimate DSB repair, lead to cell polyploidization through the

interference of chromatin with the completion of cytokinesis.

Persistent trapped chromatin causes furrow regression
and tetraploidy

Cytokinesis, the final step in cell division, is a highly ordered

process divided into four stages, which include specification of the

cleavage plane, ingression of the cleavage furrow, formation of the

midbody, and abscission. For successful cell division a proper

execution of the different coordinated steps is required, and

interference with any of these may result in cytokinesis failure and

the emergence of tetraploid cells. In order to investigate how bridged

chromatin may obstruct cytokinesis, we examined cell divisions of

HMECs transiently expressing the histone H2B-GFP fusion protein

by time-lapse microscopy. We followed 56 H2B-GFP-HMECs with

and without chromatin bridges during a maximum recording period

of 3 h. The average time required to complete furrow ingression

after anaphase onset in cells without bridges (n = 28) was found to be

13.162.3 min. This time period was not significantly different from

that needed by cells displaying chromatin bridges (Mann-Whitney,

p = 0.9670). Therefore, the presence of bridged chromatin in cells

did not appear to interfere with either cleavage plane specification or

cleavage furrow ingression.

Live cell imaging also provided information on the fate of cells

with anaphase bridges. In most cells (18 out of 28) bridge breakage

occurred and cells eventually completed division. Cells with

unbroken bridges had two different outcomes: 70% (7 of 10 cells

with unbroken bridge/s) did not complete abscission but resulted in

two daughter cells connected with an ultra-fine DNA string that

persisted during the whole recording period (Figure 6A upper

panels). The remaining 30% (3 of 10 cells with unbroken bridge/s)

resulted in a binucleated cell at the end of mitosis (Figure 6A lower

panels), thus clearly evidencing that polyploidization is mediated by

unbroken chromatin bridges interfering with cytokinesis completion.

The rapid emergence of binucleated cells (at 34.368.1 min

after anaphase onset, not different from the 30.464 min needed

by normal segregating cells to become completely attached to the

surface; Mann-Whitney, p = 0.421), was quite unexpected because

it has been reported that DNA fibers occluding the cleavage plane

delay abscission to prevent tetraploidization [35]. Therefore, with

the aim of elucidating whether nuclear strings that persist for more

than 3 h may give rise to binucleated cells later on in G1, we again

tracked HMECs but for a longer period (22 h). This long-term

live-cell imaging was performed using bleomycin-treated H2B-

GFP-HMEC-hTERT cells (n = 14), in order to increase the

formation of anaphase bridges. Again, cells showing chromatin

bridges exhibited different fates: completed division after bridge

breakage (n = 5), originated binucleated cells (n = 3) or resulted in

incompletely abscised cells in which the two nuclei were connected

by a nuclear string (n = 4). Cell binucleation occurred over a broad

period, ranging from 4.6 h to 12.0 h after anaphase onset, and

arose when persistent chromatin bridges in the intercellular canal

induced furrow regression (Video S1). Of relevance, persistent

nuclear strings connecting the two chromatin complements,

presumably responsible for binucleation, were still evidenced

21.3 h after anaphase onset (Figure 6B).

Overall, these results demonstrate that p53 competent HMECs

exhibiting telomere-dependent or DSBs-induced chromatin bridg-

white arrow). (C) The graph shows the evolution of the percentage of BN and AB on HMEC-hTERT_BLEO (non-patterned bars) and HMEC-
hTERT_Control (stripped bars). (D) The table resumes the DNA content values (averaged from three different experiments) resulting from flow
cytometry analyses. Standard deviation is shown. (E) Plots resulting from the analysis of the DNA content (Y axes) and the forward light scatter (FLS)
(X axes), which allows for the identification of larger cells. Of note, upon drug treatment, a cell subpopulation with a larger area appears (blue dots).
An averaged value from three independent experiments is shown. (F) HMEC-hTERT cells were treated with cytochalasin B (HMEC-hTERT_CytB), during
24 hrs before FACS sorting, to artificially obtain binucleated cells. The dot plot shows that the fraction of cells falling in the right gate (in blue)
increases upon Cyt-B treatment. Averaged data and standard deviation from three independent experiments is shown.
doi:10.1371/journal.pgen.1002679.g005

Figure 6. Unbroken anaphase bridges interfere with abscission
in HMECs and HMEC-hTERT cells. Non-transduced and hTERT-
transduced HMECs were transfected with a H2B-GPF plasmid. (A) Time-
lapse micrographies of non-transduced HMECs transiently expressing
H2B-GFP. Time 0 was set as the last time point before anaphase onset.
Upper images show progressively strengthened unbroken anaphase
bridges that remain undisrupted connecting the two nuclei (see inset).
Lower images show the formation of a binucleated cell where this
process is coupled to the presence of an unbroken chromatin bridge.
The scale bar represents 10 mm. (B) Three examples of HMEC-
hTERT_BLEO expressing H2B-GFP with over strengthened chromatin
bridges long time after anaphase onset. Scale bar represents 10 mm.
doi:10.1371/journal.pgen.1002679.g006
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es engender whole-genome duplication through incomplete

cytokinesis. In these cells, ultra-fine DNA bridges connecting the

two chromosome complements trapped below the cleavage plane

might delay abscission completion until chromatin is removed

from midzone. Nevertheless, the persistence of unresolved DNA

bridges can eventually induce furrow regression and generate

binucleated polyploid cells, even a long time after anaphase onset.

Discussion

The study described here clearly links progressive telomere

dysfunction in human cells with epithelial cell polyploidization for

the first time. Additionally, it provides a basis for the appearance of

highly unstable genomes that show both structural and numerical

CIN, as well as the large-scale changes in chromosome numbers that

characterize epithelial cell transformation. Different mechanisms are

behind the genesis of polyploid cells, but in the context of telomere

dysfunction, endoreduplication cycles have been proposed as a

general mechanism for the induction of tetraploidy in early stages of

tumourigenesis. Mouse embryonic fibroblasts deficient in p53 and

depleted of POT1a/b show an extended G2 phase and eventually

bypass mitosis, which resulted in whole-genome reduplication [27].

In this genetic background, deprotection of all chromosome ends in

the presence of TRF2 protein represses repair activities at uncapped

telomeres and as a consequence a persistent DNA damage signal

is exhibited [26]. However, age-dependent telomere erosion in

humans under physiological conditions, rather than leading to an

overwhelming accumulation of uncapped telomeres, might instead

lead to the gradual appearance of unprotected chromosome ends

that are continuously repaired by fusing with each other. In contrast

to unprotected telomeres impeding the onset of anaphase [27], our

findings in the HMEC model are consistent with the idea that

progressive telomere shortening engenders tetraploidy, mainly

through interference of end-to-end chromosome fusions with

cytokinesis. Failure to conclude the cytoplasmic cell division is

perceived by the accumulation of binucleated cells and it arises when

trapped chromatin under the cleavage plane eventually induces

furrow regression.

In humans, incomplete DNA segregation spanning the

intercellular canal delays abscission completion until chromatin

has been cleared from midzone [35]. Unravelling the events

underpinning this new surveillance mechanism is of relevance for

human cancer, since this averts furrow regression and cell

tetraploidization. Several lines of evidence support the idea that

the proliferation of tetraploids gradually generates subtetraploid

lineages of genomically unstable cells that might fire the

carcinogenic process. Almost all human cancers are genetically

unstable, but the potential factor driving the acquisition of this

unstable phenotype may not always be the same. A network of

safeguard mechanisms and DNA repair pathways oversees the

integrity of the genome. Importantly, disruption of any of these

might render cells to flow through a phase of anaphase-bridge

intermediates that could result in the generation of unstable

tetraploids and carcinogenesis. Accordingly, defects in proteins

involved in cellular processes such as sister chromatid-cohesion

[36] and spindle-assembly checkpoint [37,38], decatenation of

replication intermediates [39–41] or even DNA-repair pathways

[42], all of which have been related to cancer, culminate in the

formation of chromatin bridges and binucleated tetraploid cells. As

a whole, it could be concluded that failure to resolve anaphase

bridges arising from the loss of telomere integrity or through

different background scenarios may be a major force underlying

the malignant evolution of eukaryotic cells.

Taking all things together, dysfunctional telomeres can induce

tetraploidization through different mechanisms; importantly, this

effect seems to be primarily dependent on the checkpoint status

governed by the RB and TP53 proteins. Endoreduplication might

occur when telomere damage resulting either by sheltering

deficiency [27] or excessive telomere attrition [28] lasts for a

considerable time period in the absence of functional p53. In such

circumstances, G2/M-arrested cells are able to skip mitosis, enter

into a G1-like state and are eventually licensed to reduplicate their

DNA. In contrast, cytokinesis failure might prevail when

progressive telomere erosion occurs in a functional p53 back-

ground. In the HMEC model, normal cultured in vitro cells cease

proliferation due to a stress-associated senescence barrier mediated

by the Rb pathway that is telomere-length independent. However,

certain cell clones can overcome this barrier through the silencing

of the cyclin-dependent kinase inhibitor P16INK4A [43]. In the

absence of sufficient telomerase activity and wild-type p53,

ongoing proliferation produces progressively shortened telomeres

that initiate genomic instability through end-to-end chromosome

fusions (reviewed by [44]). This probably corresponds to a scenario

of greater physiological relevance.

Inactivation of p53/pRb pathways occurs in many tumour

types in which a permissive environment for the proliferation of

abnormal cells is created. Because the loss of each pathway does

not occur simultaneously (reviewed by [45]), the order of p53/pRb

inactivation could modulate the illicit mechanisms of whole-

genome duplication. In humans, a large amount of data collected

from tumour biopsies suggest that CIN is present in precancerous

lesions, even before TP53 mutations are acquired [46,47]. In this

scenario, it is therefore tempting to speculate that anaphase

bridges resulting from telomere dysfunction may trigger genomic

instability, in a deregulated pRb and wild-type p53 background,

by fuelling highly rearranged karyotypes where structural,

numerical and ploidy aberrations coexist. Eventually, the cumu-

lative effect of centrosome-clustering induced aneuploidy [48,49]

on the preceding unstable polyploids might lead to the

accumulation of highly CIN genomes with oncogenic potential;

these in turn might contribute to epithelial carcinogenesis in the

tissues of aged individuals.

Materials and Methods

Cells and culture conditions
HMECs were derived from normal breast tissue from two

independent donors and were purchased from BioWhittaker

(Walkersville, MD) and Cell Applications Inc. (San Diego, CA).

Cells were cultured in a Human Mammary Epithelial Cell Growth

Medium Kit (Cell Applications) at a temperature of 37uC in a 5%

CO2 atmosphere. The number of accumulated PDs per passage

was determined using the equation PD = PD initial+log (nu viable

cells harvested/nu viable cells plated)/log2.

Lentiviral transduction with hTERT and TRAP assay
HMECs at early PDs were transduced with viral particles

containing LV.hTERT, a lentivirus construct provided by the

Viral Vector Facility (CNIC; Spain), in the presence of 4 mg/ml

Polybrene (Sigma-Aldrich; St. Louis, MO). After 24 h post-

transduction, medium was replaced and cells were incubated at

37uC and 5% of CO2 atmosphere. The number of accumulated

PDs after transduction was calculated according to the equation

described previously. To evaluate telomerase activity, protein

extracts were prepared from transduced and control cells. They

were washed twice with PBS1X and lysed with 16CHAPS Lysis

Buffer (TRAPEZE Gel-Based Telomerase Detection Kit, Milli-
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pore; Billerica, MA). Protein concentration was measured with a

spectrophotometer (NanoDrop 2000, Thermo Fisher Scientific;

Waltham, MA). Briefly, telomere repeat amplification protocol

(TRAP) assay is based on the addition of telomeric repeats to the

39 end of a synthetic primer by telomerase, if present. In a second

step, the extended products are amplified by PCR. Then, samples

are mixed with 16 loading dye and resolved in a 12% non-

denaturing PAGE in 0.56 TBE buffer. Gel was stained with

SYBR Safe DNA gel stain (Invitrogen, Life Technologies;

Carlsbad, CA) for 30–45 minutes and images were obtained using

a transilluminator. A non-template control, heat-inactivated

samples and cell lysates from telomerase positive cells were

included as controls.

Fluorescence in situ hybridization (FISH), immuno–FISH,
and cell staining

PNA–FISH. Metaphase chromosome preparations were

obtained by means of treatment with colcemid 0.02 mg/ml for

8 hours, followed by hypotonic shock and methanol/acetic

fixation. Cell suspensions were dropped onto clean slides, which

were stored at 220uC. Centromeres and telomeres were labeled

by means of PNA-FISH techniques using a Cy3-(CCCTAA)3
PNA-probe for telomeres and a FITC-AAACACTCTTTTT-

GTAGA PNA-probe for centromeres (PE Biosystems; Foster City,

CA), as previously described [50]. For evaluation of telomere

dysfunction, metaphase karyotyping was performed by reverse

DAPI staining, which results in a reproducible G band-like pattern

that allows individual chromosomes to be identified accurately.

Thereafter, pantelomeric probes allowed us to determine the

chromosome arms that had signal-free telomeres (SFT). The SFT

rate was obtained by dividing the number of chromosome arms

without a telomere signal by the number of scored metaphases at

each PD analyzed.

Immuno–FISH. HMECs seeded in chamber slides were

grown until 70% confluence was reached. Fixation was carried

out with cold methanol for 10 minutes. Cells were then

permeabilized in 16PBS-1%TritonX100 solution. The blocking

step was carried out with 16PBS-0.1%Tween20-2%Fetal Calf

Serum for 1 hour at 37uC. Primary antibodies against

microtubules (mouse anti alpha and beta-tubulin; Sigma-Aldrich)

were diluted with blocking solution at a final concentration of

1:500. Secondary antibody was anti-mouse Alexa-488 (1:500;

Molecular Probes, Life Technologies). Three rounds of washes

with blocking solution were performed after each antibody

incubation. The FISH protocol was then applied using a

mixture of centromeric DNA probes specific for chromosomes 4

(CEP4; SpAqua) and 18 (CEP18; SpGreen) (Abbott Laboratories.

Inc.; Downers Grove, IL), as previously described [21].

Texas Red-X phalloidin staining. Texas Red-X phalloidin

staining (Invitrogen) was diluted with blocking solution at a final

concentration of 1.5 U/ml.

Finally, all slides were dehydrated and mounted in antifade

solution containing 0.125 mg/ml 49,6-diamidino-2-phenylindole

(DAPI) in antifade solution before proceeding to the microscopic

analysis. Fluorescent signals were visualized under an Olympus

BX60F5 epifluorescent microscope equipped with epifluorescent

optics specific for each fluorochrome. Capture and analysis was

carried out with the Cytovision platform (Genetix; UK).

Flow cytometry and cell sorting
Sub-confluent HMECs were collected and fixed with ethanol

70% and kept at 220uC until analysis. Permeabilization was

performed with 16PBS-1%TritonX100 solution. The primary

antibody rabbit anti-cyclin D1 (1:100; Abcam; UK) and anti-

rabbit Alexa-488 (1:500; Molecular Probes) were applied using

standard procedures that have been previously described [51].

Before acquiring the samples, they were counterstained with 0.5%

Propidium Iodide (PI; 1 mg/ml) in 16PBS-0.1%TritonX100

containing 0.2 mg/ml RNAase A DNAase-free (Sigma-Aldrich).

Cell-cycle analysis was performed in a FACSCalibur. In order to

prevent the cytometer recording two different cells as one event,

which would result in false polyploid HMECs, doublet cells were

gated out using a width-FL2/area-FL2 plot. Artificially induced

binucleated cells were collected and fixed with ethanol 60%,

stained with PI, and sorted with FACSCantoII (BD Biosciences;

Franklin Lakes, NJ). All results were analysed with the BDFacs-

Diva software (BD Biosciences).

Drug treatments
Double strand breaks were generated in HMEC-hTERT cells

by the radiomimetic drug Bleocin (Calbiochem, Merck-Chemicals;

Germany), a bleomycin compound, at a final concentration of

1.25 mg/ml. The drug was washed out after one hour, and cells

were left recovering for 0, 6, 24, 48 and 72 hours. Cytochalasin B

(Sigma-Aldrich) at a final concentration of 6 mg/ml was added to

an asynchronously proliferating HMEC-hTERT culture. After

24 h, cells were collected and fixed in 60% ethanol and kept

frozen until processed by FACS.

Transfection procedures and live-cell imaging
The day prior to transfection, HMECs were plated onto a 35-

mm glass bottom dish (MatTek; Ashland, MA) at a density of 7300

cells/cm2. Transfection procedures using a pEGFP-N1 plasmid

encoding H2B-GFP sequence (BD Biosciences) were performed

using Fugene HD (Roche Diagnostics S.L.; Indianapolis, IN)

according to manufacturer’s instructions. Live-cell imaging was

performed with a Leica TCS SP5 confocal microscope. Cells were

visualized with a HCX PL APO CS 40.061.25 OIL UV objective

using the 488 nm line from an argon laser. Mitotic cells were

imaged in a 36zoom using the software Leica LAS AF Lite (Leica

Microsystems; Germany) for up to 5 hours, at 3-minute intervals.

Acquisition settings were established to 10% laser power through a

pinhole of 5 AU, a line average of 2, and a scan speed of 400 Hz to

avoid excessive cellular damage. Throughout the whole process,

cells were kept at 37uC and 5%CO2.

To generate an immortal cell line expressing fluorescent H2B,

HMEC-hTERT cells were transfected with the pEGFP-N1

plasmid encoding H2B-GFP, as described above and selected

with the antibiotic Blasticidin (0.5 mg/ml; Sigma-Aldrich). Before

imaging, H2B-GFP-HMEC-hTERT cells were treated with

bleomycin in order to enrich the presence of anaphase bridges.

Analysis was performed on an Olympus Fluoview 1000 confocal

microscope, under the UPlansApo 606 objective. The Z-stacks

were set with a step size of 1.5 mm. Images were acquired every

5 min. Cells were kept at 37uC and 5%CO2. Images were

processed with ImageJ (WS Rasband, ImageJ, US National

Institutes of Health, Bethesda, MD, http://imagej.nih.gov/ij/,

1997–2011), Adobe Photoshop and Adobe After Effects software.

Statistical analysis
A Student t test was used to compare two groups of values;

alternatively, a Mann-Whitney analysis was used when values did

not follow a normal distribution. When 3 or more groups of data

were contrasted, variance analysis for nonparametric measures

(Kruscal-Wallis ANOVA) was performed. Specifically, a post-hoc

Dunnett’s test was applied to compare frequencies of anaphase

bridges, binucleated cells and ploidy at the different timepoints

analyzed. Correlation was calculated according to the Spearman

Gradual Telomere Dysfunction Leads to Tetraploidy

PLoS Genetics | www.plosgenetics.org 9 April 2012 | Volume 8 | Issue 4 | e1002679



rank correlation coefficient. A p value of less than 0.05 was

considered significant.

Supporting Information

Figure S1 DNA content exhibited by proliferating 830 HMECs.

Flow cytometry analysis of DNA content of 830 HMECs stained

with propidium iodide, at early and late PDs (upper panels). The

percentage of cells with 4N and 8N DNA content is given.

Bivariate analysis of DNA content and expression of cyclin D1

protein (lower panels), in which cyclin D1 positive cells are

grouped depending on their ploidy level.

(TIF)

Figure S2 Telomere and centromere detection in non-trans-

duced and hTERT-transduced HMECs. (A) Metaphase spread of

non-transduced HMECs at PD59 hybridized with FITC-pancen-

tromeric (green) and Cy3-pantelomeric (red) PNA probes, DNA is

counterstained with DAPI. The white arrowhead indicates signal-

free telomere ends (SFT) while asterisks represent end-to-end

fusion events. (B) Correlation between tetraploidization events (Y

axis) and the corresponding levels of SFT ends (X axis) are shown.

Dots represent values for both scored parameters at different PDs,

from PD25 to PD59 in donor 219-7 (blue dots) and at PD25 and

PD42 in donor 830 (red dots). (C) Chromosomes of an hTERT-

transduced HMEC at PD45.9 where reduced telomere instability

is observed. The white arrowhead indicates signal-free telomere

ends (SFT), while asterisks represent end-to-end fusion events. (D)

Metaphase-spread analysis of non-transduced HMECs revealed a

high presence of tetraploid cells with conventional chromosomes,

and (E) only a residual presence of metaphases with duplochromo-

somes was observed.

(TIF)

Video S1 For the precise investigation of the process of

tetraploidy development in HMECs with anaphase bridges,

time-lapse imaging was performed. The video shows a HMEC-

hTERT_BLEO cell expressing H2B-GFP with an over-strength-

ened chromatin bridge (highlighted circle) that persists unbroken

and eventually leads to the formation of a binucleated cell. Total

time between frames is 3 minutes; total recording time is

17.5 hours.

(MPG)
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