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Abstract
Objective: To investigate if a diagnosis of diminished ovarian reserve (DOR) is associated with a differential gene profile of ovarian
granulosa cells (GCs) in infertile women undergoing in vitro fertilization (IVF). Design: Prospective Cohort Study. Setting:
Academic IVF Program. Patients: Infertile women <38 years were prospectively enrolled into 2 groups: normal ovarian reserve
(NOR, follicle-stimulating hormone [FSH] < 10 mIU/mL, n ¼ 4) and DOR (FSH � 10.0 mIU/mL, n ¼ 4). Interventions: Cumulus
(C) and mural (M) GCs were isolated at egg retrieval; messenger RNA was extracted and transcribed. Main Outcome Measure(s):
Differential gene expression in cerebellar granule cells (CGCs) in the 2 groups was assessed by cDNA microarray. Microarray
findings were validated by quantitative real-time polymerase chain reaction (qRTPCR) in CGCs and explored in multinucleated
giant cells (MGCs). Results: Of the 1256 differentially regulated genes identified in CGCs of women with DOR, the insulin-like
growth factor (IGF) family was a biologically relevant gene family of a priori interest. Downregulation of IGF1 and IGF2 ligands
(�3.28- and �2.54–fold, respectively), and their receptors, (�3.53- and �1.32-fold downregulation of IGF1R and IGF2R, respec-
tively) was identified in luteinized CGCs in women with DOR compared to those with NOR. Downregulation of both IGF1 and
IGF 2 ligands (�4.35- and 3.89-fold, respectively) was furthermore observed in MGCs in women with DOR compared to those
with NOR; no differences in the expression of respective receptors were however observed in MGCs in the 2 groups. Conclusions:
Components of the IGF gene family are downregulated in GCs of women with DOR. These findings maybe contributory to the
reproductive compromise observed in women with DOR, and merit further exploration.
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Introduction

The Practice Committee of the American Society of Reproduc-

tive Medicine defines ovarian reserve as reflecting a woman’s

reproductive potential with respect to quantity and quality of

residual ovarian follicles and oocytes.1 Abnormalities in folli-

culogenesis and in oocyte competence are suggested to partly

underlie the poor reproductive performance in the context of

aging and declining ovarian reserve.2 Of the available spectrum

of biochemical and morphometric markers reflecting ovarian

reserve status, early follicular phase serum levels of follicle-

stimulating hormone (FSH) remain one of the most commonly

utilized of the available parameters in clinical practice.3,4 Sub-

optimal ovarian responses to the attempts at controlled ovarian

hyperstimulation (COH) and subpar reproductive success are

well recognized in women demonstrating evidence of dimin-

ished ovarian reserve (DOR).3,5

Anatomical proximity and functional interdependence

describe the relationships between ovarian germ cells and

the surrounding somatic cells (ie granulosa cells [GCs]).6

A bidirectional communication between oocytes and GCs is

essential for oocyte and follicular growth and is crucial for

fertility.7 Transfer of critical molecules through gap junction

exchange, as well as via paracrine signaling, affords a means
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of communication between the developing oocyte and the

surrounding GCs.8 Oocytes secrete potent mitogenic factors

(members of the transforming growth factor-b superfamily:

growth differentiation factor [GDF]-9, GDF-9B also known

as bone morphogenetic protein [BMP]-15, BMP-6, and the

activins) that influence GC’s growth, development, differen-

tiation, and function, including mucification, expansion, and

ovulation.8,9 These oocyte contributors in turn are regulated

by GC factors (ie kit ligand, FSH, insulin-like growth factor

[IGF], and androgens) that play critical roles in oocyte biol-

ogy.10,11 Optimal progression of folliculogenesis is thus dri-

ven by both oocyte and GC-derived contributions.

During folliculogenesis, 2 distinct subtypes of GCs, mural

(M) and cumulus (C), are identified. Cerebellar granule cells

are proximate to the developing oocyte, demonstrate a high rate

of proliferation, exhibit lower steroidogenic capacity, and

express very low levels of luteinizing hormone (LH) receptor

expression compared to the mural GCs.8 Cerebellar granule

cells produce an extracellular matrix and undergo expansion,

phenomena that are imperative for normal oocyte development,

ovulation, and fertility.8,12Multinucleated giant cells, in con-

trast, occupy a peripheral location within the developing folli-

cle, are mitotically active, express high levels of LH receptors,

exhibit robust steroidogenic activity, and are the integral con-

stituents of the postovulatory corpus luteum.

Meiotic arrest of oocytes encased within the antral follicles is

attributed to suppressive influences of the surrounding GCs7;

indeed, in 1935, Pincus and Enzmann described the spontaneous

resumption of meiosis in oocytes if removed from the antral

follicle and cultured in a supportive medium.13 Reciprocally, the

oocyte plays key roles in the differentiation of the 2 GC sub-

types. This interdependence is evident in the experiments utiliz-

ing removal of the oocyte from the oocyte-cumulus complex; in

the oocyte-denuded complexes, CGCs lose their distinct charac-

teristics and adopt a phenotype characteristic of mural GCs (ie

reduced DNA synthesis capacity and increased progesterone

secretion), whereas the cells maintain the CGC phenotype if

cocultured with oocytes stripped of surrounding GCs.11,14

Given the critical roles of GCs in the biology of follicu-

logenesis and for oocyte development, these cells have the

potential to provide meaningful information regarding their

respective oocytes. In addition, GCs are identified as a valuable

area of study of reproductive biology, given the ease of access

during assisted reproductive technique procedures.

Limited data are suggestive of GC compromise in the setting

of declining ovarian reserve. Decreased GC proliferation and

increased apoptosis are described in GCs obtained from infer-

tile women with DOR15-17; more recently, our group reported

an inverse relationship between increasing FSH levels (sugges-

tive of declining ovarian reserve) and declining GC viability.18

Hypothesizing that a differential pattern of gene expression

in luteinized GCs accompanies a diagnosis of DOR in young

women (age <38), this study pursues a global differential gene

expression analysis of luteinized cumulus GCs utilizing a

microarray platform with a focus on genes with the previously

recognized roles in ovarian folliculogenesis. Differentially

expressed genes of interest were subsequently validated within

the 2 GC compartments using quantitative real-time polymer-

ase chain reaction (qRTPCR).

Materials and Methods

Patients

This study was reviewed and approved by the Institutional

Review Board and patients provided written consent. Granu-

losa cells were collected from infertile women undergoing in

vitro fertilization (IVF). Inclusion criteria were age <38 (to

minimize confounding influences of advancing age19). As per

the clinical practice guidelines, early follicular FSH levels

(days 1-3) �10 mIU/mL identified those with DOR, whereas

levels <10 mIU/mL were taken to reflect normal ovarian

reserve (NOR). Follicle-stimulating hormone was assayed

using Roche Elecsys 1010 Immunoanalyzer, Indianapolis,

lower detection limit (sensitivity): <0.1 mIU/mL, cross-

reactivity (specificity): <0.1%, intra-assay variability: CV

1.7%, interassay variability: CV 4.2%. In those in whom FSH

levels were available from a prior menstrual cycle, the highest

value was taken to reflect ovarian reserve.20,21 Women with

ovulatory dysfunction, endometriosis, and tubal disease with

hydrosalpinx were excluded to minimize etiological influences

that could potentially alter the GC gene expression.22-24

Patients underwent suppression of ovulation and controlled

ovarian hyperstimulation (COH) according to the established

protocols. Ovarian downregulation was achieved by use of a

gonadotropin-releasing hormone (GnRH) agonist in a luteal

protocol for 6 out of 8 patients (3 in each group), whereas the

remaining 2 received GnRH antagonist (1 in each group). Stan-

dard formulations of gonadotropins (75 units per ampule) were

used for COH, and the ovarian response was monitored by

serum estradiol levels and serial ultrasound evaluation of folli-

cular development. Oocyte maturation was triggered with

10 000 IU of human chorionic gonadotropin when a minimal

of 3 dominant follicles had attained a size of 17mm or more.

Ultrasound guided transvaginal retrieval of oocytes was per-

formed approximately 34 hours after HCG administration.

Granulosa Cell Isolation
Mural GCs. During transvaginal oocyte retrieval, follicular

fluid aspirates from follicles averaging �14 mm in diameter

were collected. The first follicular aspirate from each ovary

was excluded to eliminate contamination with vaginal epithe-

lial cells (personal observation). Oocytes were identified and

transferred into modified human tubal fluid (mHTF; Concep-

tion Technology, San Diego, California) þ 5% plasmanate

(Bayer Corporation, Elkhart, Indianapolis). Follicular fluid

aspirates from each patient were pooled and GCs were har-

vested utilizing established methods25; briefly, follicular fluid

aspirate was treated with 40% Upper Phase Density Gradient

(Pureception, Sage BioPharma, Trumbull, Connecticut) and

centrifugation (10 minutes � 2000 rpm at room temperature

[RT]). The interphase layer of GCs was extracted and washed
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in phosphate-buffered saline (PBS, Fisher Scientific, Pittsburgh,

Pennsylvania) and centrifuged (10 minutes � 2000 rpm at RT).

The supernatant was discarded and the cells were resuspended in

PBS. Enzymatic digestion with Collagenase IA (Sigma Chemi-

cal Co, St Louis, Missouri) was performed to disperse GCs and

DNase (Sigma Chemical Co) to digest any stray genomic DNA.

Multinucleated giant cells were then washed in PBS and cell

suspensions were nutated for 20 minutes with anti-CD45

immunomagnetic beads (Dynal Biotech ASA, Oslo, Norway)

followed by application to a magnet to achieve leukocyte

depletion.26 The GCs were washed in PBS, centrifuged,

pelleted, and frozen at �80�C in RLT buffer (RNeasy kit, Qia-

gen, Valencia, California) activated with 2-mercaptoethanol

(Fisher Scientific, Fairlawn, New Jersy).

Cumulus GCs. Following isolation of oocytes, the CGCs were

isolated by mechanical stripping. Enzymatic digestion with

Cumulase (Halozyme Therapeutics, San Diego, California) and

Collagenase IA to disperse GCs, and DNase (Sigma Chemical

Co, St Louis, Missouri) to digest any stray genomic DNA was

performed, in combination with further mechanical stripping.

Cells were then washed in mHTFþ 5% plasmanate and centri-

fuged at 2000 rpm for 10 minutes and the pellets were frozen at

�80�C in RLT buffer (RNeasy kit, Qiagen, Valencia, Califor-

nia) activated with 2-mercaptoethanol (Fisher Scientific).

RNA Extraction

RNeasy Mini-kit (Qiagen, Valencia, California) was utilized

using the established protocols.27 The RNA quantity was

measured using the NanoDrop ND-1000 spectrophotomoter

(NanoDrop Technologies, Wilmington, Delaware). The RNA

integrity was assessed using the Agilent 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, California).

Cumulus GC Microarray Analysis

Microarray targets were generated from the CGCs using the

NuGEN Ovation v2.0 Biotin RNA Amplification and Labeling

System (NuGEN Inc, San Carlos, California).28 Labeled cDNA

was hybridized to Affymetrix Human Genome U133 þ 2.0

GeneChips (Affymetrix, Santa Clara, California). Microarray

data analysis was performed using Stratagene Array Assist

Enterprise software package (La Jolla, California). All micro-

array data were normalized at the probe-level utilizing Robust

Multichip Analysis (RMA).29

Quantitative Real-Time Polymerase Chain Reaction

Amplifications of the genes of interest and b-actin were per-

formed in triplicate wells. Polymerase chain reaction targets

were created from the template RNA using the manufacturer’s

protocols (WT-Ovation RNA Amplification System, NuGEN

Inc). Gene-specific primers and probes were designed using

ProbeFinder software according to the manufacturer’s proto-

cols (Exiqon ProbeLibrary, Roche-Applied Science,

Indianapolis). Reactions were performed in a total volume of

10 mL using Taqman Master Mix reagent (Applied Biosys-

tems, Foster City, California); 2 mL of cDNA/sample was

used as a template for the reaction, with 900 nM forward and

reverse primers, and 10 nM Exiqon probe. Thermal cycling

conditions included 2 minutes at 50�C and 10 minutes at

95�C, followed by 40 cycles of 95�C for 15 seconds and

60�C for 1 minute. Negative controls did not express the

genes of interest (data not shown). Threshold cycle (CT) val-

ues greater than 40 cycles indicated the absence of the gene of

interest. Results are expressed as relative fold changes in

genes, using the 2�DDCT method.30

Statistical Analysis

Data distribution was assessed. Student t test compared patient

and IVF cycle characteristics between the 2 groups (DOR and

NOR) for data demonstrating Gaussian distribution; skewed

data (no. of eggs retrieved and duration of COH) were com-

pared between the 2 groups using nonparametric Mann-

Whitney 2-sample rank-sum test. Student t test was used to

assess the differences in microarray data between the 2 groups.

Stata 10 (Statacorp, College Station, Texas) and P < .05 was

considered of statistical significance. A difference in gene

expression of greater than 2.0-fold was considered as biologi-

cally meaningful, and of potential clinical significance.31

Results

In total, 8 women <38 years were prospectively enrolled (4 each

diagnosed with DOR and NOR met study inclusion criteria).

Patient characteristics for the 2 groups (NOR vs DOR) are

summarized in Table 1. Continuous data are reported as mean

+ standard deviation (SD) (for normally distributed data) or

median (interquartile range—IQR) for skewed data.

In a relatively young population of infertile women, a diag-

nosis of DOR was associated with a differential gene expres-

sion profile of CGC. Using RMA, a robust normalization

schema,29 1256 statistically significant (P < .05) differentially

expressed genes with a 2.0-fold or greater difference in expres-

sion was identified between the DOR and the NOR groups; 843

genes were observed to be downregulated and 413 were upre-

gulated in the DOR, as compared with the NOR group. Figure 1

is a heat map, showing the result of a hierarchical clustering

algorithm of the most differentially expressed genes.32

As per our a priori focus on the genes of functional rele-

vance, the IGF family was identified as a biologically relevant

gene cluster of interest from the differentially regulated

genes.33 A differential downregulation in the expressions of

members of the IGF family was observed in luteinized CGCs

in the DOR compared to the NOR group (Figure 2). Another

biologically relevant gene observed to be differentially

expressed in the DOR population was pregnancy-associated

plasma protein-A (PAPP-A). Pregnancy-associated plasma

protein-A is a well-recognized protease of IGFBP4, and a med-

iator of IGF action,34 and was significantly downregulated in
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CGCs of the DOR compared to the NOR group (Figure 2).

These microarray findings were validated using qRTPCR

(Figure 2).

Expression of the IGF ligands and receptors noted to be dif-

ferentially expressed in the CGCs was then explored in MGCs

in the 2 groups by qRTPCR. Consistent with the findings in the

CGCs, a downregulation of both the IGF1 and the IGF2 ligands

was observed in MGCs of women with DOR compared to those

with NOR (Figure 3). In contrast to the findings noted in CGCs,

the expression of genes for IGF-1 and IGF-2 receptors was

comparable in the MGCs in the 2 groups (Figure 3).

Discussion

During the process of folliculogenesis, complex interactions

between the oocyte and the surrounding GCs are recognized,

as are enduring effects of this interplay on the potential for

postfertilization embryonic development.35 Oocyte-derived

factors are recognized to influence multiple processes during

folliculogenesis including formation of the oocyte-cumulus

complex, synthesis of progesterone, modulation of signaling

pathways, and suppression of luteinization in the preovulatory

cumulus GCs.35 The study of gene expression in CGCs thus

holds potential for meaningful insights into the processes that

reflect on the health of the developing oocyte.

Although utilization of the high-throughput gene microarray

technology for the study of GCs is increasingly being reported,

a single published study by Chin et al has thus far explored the

pattern of gene expression in MGCs in women with DOR com-

pared to those with NOR.36 These authors report a distinct

expression profile in the MGCs from the DOR group; our over-

all approach in utilizing a microarray platform is thus similar,

as our findings are on differentially expressed gene profile in

the setting of DOR. Our approach of systematically targeting

the individual GC compartments for the previously substan-

tiated genes of functional relevance in the context of folliculo-

genesis, as well as subsequent confirmation of the microarray

data by qRTPCR provide meaningful and novel additions to the

existing literature.

An intraovarian IGF system, including ligands, receptors,

binding proteins, and binding protein proteases has been

described.33 Both IGF1 and IGF2 have been shown to stimulate

GC proliferation and differentiation; a synergism with

gonadotropins in augmenting estradiol and progesterone pro-

duction by GCs via upregulation of aromatization of androgen

precursors37-41 is described. Prior studies show that IGF2 is

abundantly expressed in human GCs of preovulatory follicles

and is the dominant IGF ligand (as opposed to IGF1) within

human GCs.42,43 Our findings of significant downregulation of

IGF2 in both cumulus and mural GCs in women with DOR are

novel and not previously reported. Given the recognized role of

the IGF family in ovarian steroidogenesis,44 the observed down-

regulation in the expressions of the IGF ligands in the mural GCs

may explain the suboptimal serum estradiol levels during COH

that are commonly noted in the context of DOR.3 Our observa-

tions thus may be of relevance in advancing our understanding of

the altered ovarian biology in the setting of DOR.

Cellular effects of IGFs are modulated by a series of specific

binding proteins and binding protein proteases, in addition to

the expression levels of the respective receptors. Six IGF-

binding proteins (IGFBP-1-6) have been identified to regulate

IGF bioavailability.45 All IGFBPs exhibit inhibitory effects on

IGF expression although some also have stimulatory influ-

ences. Insulin-like growth factor-binding protein-4 has exclu-

sively inhibitory effects and has been found in increased

abundance in small antral follicles.46 Increased expression of

IGFBP-4 protease, also identified as PAPP-A,34 is described

in the dominant follicles; excess PAPP-A by decreasing

IGFBP4 activity allows availability of the free IGF ligand

within the dominant follicle, and hence facilitating the mito-

genic and gonadotropin-augmenting activities of the IGF

ligand.47 The marked decrease in expression of PAPP-A within

GCs of women with DOR, as shown, may further contribute to

an IGF-deficient intraovarian milieu in the setting of DOR.

Accruing data suggest that compromised ovarian reserve

may be salvageable with exogenous supplementation with

DHEA (dehydroepiandrosterone), an adrenal steroid and an

essential precursor for ovarian steroid hormones.48-51 While

mechanisms that may underlie the purported therapeutic

Table 1. Characteristics of the study sample, categorized by normal vs diminished ovarian reservea

Variable NOR (n ¼ 4) DOR (n ¼ 4) P Value

Age (years)b 28.75 + 6.18 34 + 2.16 .160
Body mass index (kg/m2)b 26.62 + 3.50 23.55 + 4.14 .300
FSH (mIU/mL)b 5.73 + 2.81 12.58 + 3.81 <.028*
# Ampules of Gonadotropinb 27.37 + 6.70 55.75 + 7.5 .001*
Duration of COH (days)c 12.0 (IQR 1-12) 12.5 (IQR 12-13) .342
Peak estradiol (pg/mL)bd 3043.25 + 858.0 1984.25 + 605.97 .090
# Eggs retrievedc 12 (IQR 9-15) 9.5 (IQR 7.5-12.5) .564

a Peak estradiol on the hyperstimulation standard deviation (SD; for normally distributed data) or median (interquartile range—DOR: diminished ovarian reserve
(FSH � 10.0 mIU/mL), NOR, normal ovarian reserve (FSH < 10 mIU/mL), COH, controlled ovarian hyperstimulation.
b Data expressed as mean + SD.
c Data expressed as median (IQR).
d Serum estradiol on the day of hCG administration.
p < 0.05.
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efficacy of DHEA for ovarian physiology are far from under-

stood, Casson et al were the first to suggest an upregulation

of IGF-1 axis with DHEA use as a mechanism for improved

folliculogenesis with DHEA.48,52 Our observations of a down-

regulated ovarian IGF axis within GCs of women with DOR

strengthen the argument proposed by Casson et al, and offer

a potential for guiding future research on this subject.

Limitations to our study include a small sample size and uti-

lization of FSH as the biomarker reflecting ovarian reserve.

The sample size constraints are secondary to the stringent

inclusion and exclusion criteria; we specifically attempted to

minimize the potential for microarray data from being

confounded by inclusion of conditions for which prior gene

expression signature profiles have been suggested, such as

endometriosis, polycystic ovary syndrome (PCOS), and the

presence of hydrosalpinges.22-24

Our study design allocated patients based on early

follicular phase FSH levels, a strategy that mimics our clinical

practice. Although newer, possibly more sensitive and

specific markers are identified for evaluating ovarian reserve

status (eg Anti-Mullerian Inhibiting Substance and Inhibin

B),53,54 elevated FSH is well-recognized and a fairly accurate

marker for identifying women with a poor prognosis for

success following IVF55; the choice reflected our practice

standard screening methodology during the recruitment

period. The need for significantly more ampules of gonado-

tropin during COH, the lower estradiol levels on the day of

HCG administration, and lesser number of eggs retrieved, all

identify that the patients categorized under DOR based on the

early follicular-phase FSH indeed exhibited poorer ovarian

reserve parameters compared to those with NOR, defined as

per specified FSH-based criteria.

Controversy exists with regard to the presence of IGF1 mes-

senger RNA within GCs of the human ovary. Prior reports by

el-Roeiy et al,42 and Zhou and Bondy43 using in situ hybridiza-

tion and immunohistochemistry techniques, showed an absence

of IGF1 mRNA transcripts within the human GC. In contrast,

Voutilainen et al, utilizing RT-PCR revealed IGF1 in the theca

and stromal compartments, as well as in GCs of smaller size

follicles when 32 amplification cycles were used.56 IGF1 is a

70 amino acid polypeptide that shares significant (approxi-

mately, 70%) sequence homology with IGF2.33 While a possi-

bility of overlap in the detection of these transcripts is

plausible, current techniques for qRTPCR are more precise,

and small copy numbers of IGF1 transcript can be detected

in luteinized cumulus and mural GCs of preovulatory follicles

and may explain our ability to demonstrate the expression of

IGF1 in both the mural and the cumulus luteinized human GCs.

Utilization of super-physiologic conditions, that is COH

with exogenous gonadotropins and the absence of information

regarding expression levels of the respective growth factors are

additional limitations. It has been suggested previously that

gonadotropins regulate IGF2 mRNA expression and secretion

in human luteal GCs in vitro57; while exogenous gonadotropins

may activate transcription of IGF genes and hence confound

results, the differential in expression of genes of interest was

identified in a comparable setting in the 2 groups (DOR and

NOR), and hence our findings may indeed be construed as valid.

In summary, we herein provide evidence that young women

with DOR exhibit a distinct GC genotype. Downregulation of

the IGF1 and IGF2 ligands and respective receptors in the

cumulus GCs and downregulation of the IGF1 and 2 ligands

in the mural GCs are identified in the setting of DOR. Our data

DOR NOR

DOR: Diminished ovarian reserve (FSH ≥ 10.0 mIU/mL) 

NOR: Normal ovarian reserve (FSH < 10 mIU/mL) 

Figure 1. Cluster analysis highlighting a subset of genes that were
differentially expressed between the DOR and the NOR women. Each
column represents the expression of a patient and each row repre-
sents a gene. Red denotes upregulation of gene expression and green
denotes downregulation of gene expression.
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allow us to propose that inefficiencies in the intraovarian IGF

system may contribute to the steroidogenic incompetence and

decreased reproductive capacity that is previously described

in women with DOR.
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