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Abstract
Induced pluripotent stem cells (iPSCs) hold great hopes for therapeutic application in various
diseases. While ongoing research is dedicated to achieving clinical translation of iPSCs, further
understanding of the mechanisms that underlie complex pathogenic conditions is required.
Compared to other classical models for studying diseases, iPSCs provide considerable advantages.
A newly emerging application of iPSCs is in vitro disease modeling, which can significantly
improve the never-ending search for new pharmacological cures. Here, we will discuss current
efforts to create iPSC-dependent, patient-specific disease models. Furthermore, we will review the
use of iPSCs for development and testing of new therapeutic agents, and the implications for high-
throughput drug screening.
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Introduction
Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is a
powerful approach that holds great promise for regenerative medicine in the future. The first
successful reprogramming of somatic cells into an induced pluripotent state was reported in
2006 by Yamanaka and colleagues [1]. This pioneering work defined a combination of four
transcription factors, Oct4, Sox2, Klf4 and c-Myc, as both necessary and sufficient to return
terminally differentiated cells to a pluripotent state, making these iPSCs capable of
generating tissues of all three germ layers as well as whole organisms [1], similar to the
capacity of human embryonic stem cells (hESCs) [2–4]. These findings were confirmed by
many other researchers using various donor cell types, such as skin cells [5–7], neuronal
cells [8–10], hematopoietic cells [11–13], adipose stromal cells [14], and others. Since then,
iPSCs have evolved into an exciting, productive, and fast-moving research field.
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Considerable advances have also been made regarding various integration-free iPSC
reprogramming techniques, including episomal plasmids [15–17], minicircles [18, 19],
recombinant protein [20, 21], synthetic mRNA [22], microRNA [23, 24], and others [25,
26].

Because iPSCs are derived directly from the somatic tissues of patients, this technology
overcomes major ethical concerns that have plagued hESCs, such as the destruction of
human embryos and oocytes, thereby opening a vital portal for broader research on human
pluripotent cells [27–30]. Furthermore, iPSCs provide an unlimited source of proliferating
cells. This latter desirable feature of iPSCs overcomes the constraints of confined donor cell
availability, as well as limited proliferation capacity and loss of functionality, both of which
have been observed in ex vivo-expanded cells [31]. Hence, iPSCs not only provide
promising therapeutic approaches for the future but may also pave the way for personalized
medicine. However, recent studies have also reported substantial differences in genetic or
epigenetic profiles of iPSCs versus hESCs [32–36], which must further investigated before
therapeutic application of iPSCs in humans. Moreover, the possibility of an immunological
response and rejection of iPSCs by a recipient patient cannot be completely precluded [37–
39].

A different field of application establishes potential roles for iPSCs in modeling diseases and
drug screening (Figure 1). Previously available human drug screening models relied on the
patient’s samples or immortalized, tumor-derived cell lines. While a patient’s cells directly
model the effects of a drug on humans, their availability and capacity for expansion are
limited and finite compared to in vitro derived cell lines. The latter, however, may contain
genetic and metabolic abnormalities due to their derivation, and thus would not represent a
realistic or ideal drug model for human patients. These drawbacks restrict the capacity of
these models to faithfully simulate human disease. By comparison, iPSCs can sidestep these
limitations and thus provide a powerful and versatile tool for disease therapy as well as basic
research.

Disease modeling using iPSCs: a cardiac perspective
In recent years, researchers have begun to explore the iPSC technology’s full potential for
creating disease models from patients with complex genetic defects [40–43]. Clinically
relevant mutations can be derived from cells of patients with a particular genetic disease of
choice. To date, various tissue-specific iPSC derivatives have been generated (Table 1),
including hematopoietic [44–49], hepatic [50–52], endothelial [53], neurological [8–10, 54–
56], and cardiovascular diseases [43, 57–61]. The number of diseases successfully modeled
via iPSCs is also increasing constantly [9, 57–59, 62, 63], reflecting their growing utility and
versatility as platforms for studying disease development and models in vitro, as well as
investigating pathophysiology and testing therapeutic agents (Tables 1 and 2).

In the past, experimental mouse model systems have been used to understand the functional
changes of genetic mutations identified in patients with inherited disease. However, mouse
models do not always demonstrate the same phenotypes as those observed in humans. For
example, mice showed a much higher heart beating rate of 600 beats per minute (bpm) and
much shorter action potentials than humans because the type and/or distribution of cardiac
ion channels are different between mice and human. In vitro analysis of human
cardiomyocytes is therefore important to understand the mechanism of human genetic
arrhythmias, and iPSCs may be able to fill in this knowledge gap regarding genetic
alterations in the ‘native’ cellular context.

Neuronal disease models using iPSCs were introduced as early as 2008 [8]. Dimos et al.
reported reprogramming of an amyotrophic lateral sclerosis patient’s fibroblasts into iPSCs
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and their differentiation into functional motor neurons. Since then, various studies have
successfully modeled neuronal disease [8–10, 45, 64–67], as reviewed elsewhere [68]. Very
recent efforts include modeling of lysosomal storage diseases (LSDs), a most frequent cause
of neurodegeneration originating from deficient recycling (and hence accumulation) of
molecular catabolites [69]. Lemmonier et al. focused on mucopolysaccharidosis IIIB
(MPSIIIB), a LSD resulting from α-N-acetylglucosaminidase deficiency. This lysosomal
hydrolytic enzyme mediates heparan sulfate proteoglycan (HSPG) degradation and is
involved in a critical step in protein turnover. Analysis of the disease via patient-derived
iPSCs revealed that undifferentiated iPSCs rapidly displayed the disease phenotype-
characteristic proliferation defects reflecting deficient FGF-2 signaling in the absence of
lysosomal glucosaminidase and accumulation of the ganglioside GM3 in storage vesicles.

A different example providing insight into the field of iPSC-dependent disease modeling is
hepatic differentiation. Significant advances have been made for in vitro differentiation of
iPSCs into hepatocytes [50, 52, 70], and the unlimited proliferation potential of iPSC-
derived hepatic cells holds great promise for regenerative tissue therapy, but challenges
remain as it requires functional engraftment of hepatic cells into the liver. While the in vivo
functionality of iPSC-derived hepatic cells has not been established in detail [31, 71], the
properties of iPSC-derived hepatic cells that reflect disease features have been confirmed
[50, 52, 70].

Cardiovascular disease modeling
Cardiomyopathies are defined as myocardial diseases, which can be due to myocardial
infarction, genetic mutation, valvular regurgitation, storage disorder, endocrine disease, and
toxicity from chemotherapy or alcohol. This complex disease requires an elaborate model to
study the underlying functional mechanism. Recently, iPSCs have been utilized for in vitro
disease modeling of cardiac arrhythmias [57–59]. A prominent example of cardiac
arrhythmia is the long QT syndrome (LQTS). This rare inborn heart condition has an
estimated prevalence of about 1:7000 persons (inherited LQTS), causing ~2000–3000
sudden deaths in children and young adults each year in the US alone [72–74]. QT describes
a specific interval on an electrocardiogram (ECG), the time from the electrical stimulation
(depolarization) of the heart’s pumping ventricles to the end of the recharging of the
electrical system (repolarization). The total duration is measured in seconds or milliseconds
(ms) and closely approximates the time from the beginning of the ventricles’ contraction
until the end of relaxation. The normal QTc interval varies from 350–450 ms. About 95% of
people show values between 338–440 ms, which is the range generally considered as the
‘normal’ range [75, 76].

In LQTS, delayed repolarization of the heart following a heartbeat increases the risk of
episodes of Torsade de Pointes (TdP), a form of irregular heartbeat that originates from the
ventricles [77–80]. These episodes may lead to palpitation, fainting, and sudden death due to
ventricular fibrillation [81, 82]. It became evident that iPSC lines derived from patients with
LQT1, LQT2, and LQT7 (also called Timothy Syndrome) can be differentiated into
cardiomyocytes, showing the disease’s characteristic electrophysiological signature [57–59]
and establishing a convenient and powerful system for studying mechanisms of pathogenesis
and therapeutic compound testing. Moretti et al. generated for the first time iPSCs derived
from LQT1 patients who are affected by an identified autosomal dominant missense
mutation (R190Q) in the long-QT syndrome type 1 (LQT1) gene, which encodes the
repolarizing potassium channel that mediates the delayed rectifier IKS current. Patient-
derived iPSCs maintained the disease genotype of LQT1 and were successfully
differentiated into functional cardiomyocytes. In “ventricular” and “atrial” cells derived
from patients with LQT1, the duration of the action potential was markedly prolonged as
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compared to cells from control subjects. Interestingly, the R190Q–KCNQ1 mutation in the
pathogenesis of LQT1 turned out to be associated with a dominant negative trafficking
defect, leading to a 70~80% reduction in IKS current and altered channel activation as well
as deactivation properties. Furthermore, the phenotype of iPSC-derived cardiomyocytes
(iPSC-CMs) derived from patients with LQT1 had an increased susceptibility to
catecholamine-induced tachyarrhythmia, which was diminished by beta-blockade treatment.

Following the same approach for LQT2, which is caused by a mutation in the KCNH1 gene
and encodes the repolarizing potassium channel mediating the delayed rectifier IKr current,
two studies generated iPSCs derived from LQT2 patients carrying the missense mutations
A614V and G1681A, respectively [57, 83]. Detailed multielectrode array (MEA) and whole-
cell patch clamp studies established a significant reduction of the cardiac potassium current
IKr, which in turn can significantly prolong the action potential and cause early-after
depolarization (EAD) [84, 85]. Intriguingly, several existing as well as novel
pharmacological agents were tested on this newly established LQT human iPSC-derived
cardiac tissue model, including potassium-channel blockers (E-4031), calcium-channel
blockers (nifedipine), sodium-channel blockers (ranolazine), KATP-channel openers
(pinacidil and nicorandil), stressor (isoprenaline), and β-blockers (propranolol and nadolol).

Collectively, these findings provide a powerful proof-of-principle demonstration that iPSCs
can reliably reproduce abnormal cellular phenotypes and behaviors in vitro, thereby
providing crucial mechanistic insights into the disease process [57–59]. Furthermore, these
studies suggest that iPSCs may serve as a valuable platform for functional analysis of small
molecules (Figure 2). Nevertheless, further optimization of the iPSC technology is required
to facilitate its application in drug screening and pharmacological large-scale drug
screening. Ongoing research is committed to improving both derivation efficiency and
quality of iPSCs and their differentiated target cell progeny. These improvements will be
highly beneficial not only for disease modeling research but also potential clinical
applications, and for high-content, industrial-scale drug screening approaches.

Employing iPSCs for drug screening
Pharmacological studies have been performed for many years and are an important part of
the nonclinical drug evaluation prior to first-in-human clinical trials [86–89]. Well-defined
models enable researchers to study specific pathogenic mechanisms and to identify relevant
targets, by using chemical compound library screens while screening for new drug
candidates. Candidate targets identified by such means will be subjected to secondary
validation screens addressing their pharmacokinetic and safety properties [75]. Using in
vitro models that resemble conditions in human patients increases the efficiency and
accuracy of drug screening tremendously, as the targets can then in principle be scaled up
for high-content production. The tremendous opportunities that iPSCs present for creating
cardiac disease models highlight their exceptional potential for high predictive value drug
screening (Figures 1 and 2), making iPSCs and iPSC-CMs an increasingly popular and
powerful new tool for drug testing [75, 90].

Classical drug screening – The example of hERG
From 1990 to 2001, several non-cardiovascular drugs were withdrawn from clinical use
because they prolonged the QT interval [91]. Blockage of the ion channel coded by the
human ether-a-go-go-related gene (hERG) has been correlated to a prolongation of the QT
interval in the ECG, which in turn is correlated to a potential risk of a life-threatening
polymorphic ventricular tachycardia (Torsades de Pointes, TdP) [84, 92–96]. Given its
possible role in life-threatening cardiac arrhythmias, ‘hERG’ is viewed with caution in the
drug discovery community [95–97]. It is now widely accepted that data for the compound
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effects on hERG channel activity are generally part of the safety pharmacology risk
assessment in regulatory submissions [86–89, 95, 96]. The current gold standard assay for
hERG liability is the measurement of patch clamp currents in the absence and presence of a
drug [98, 99]. In general, safety evaluation of biological agents is further complicated by the
fact that they are designed to act on a human target, making it difficult to translate the results
of experiments using non-human animal models to potential human toxicity. One well-
known example is verapamil. In Chinese Hamster Ovary (CHO) cells overexpressing hERG,
verapamil blocks the Ikr (delayed rectifying potassium channel), thereby predicting an
association with prolonged QT interval [100]. In reality, although outward ion flux through
Ikr channels is blocked in functional cardiomyocytes, verapamil also blocks inward flux
through L-type calcium channels, and the overall effect on QT interval is cancelled out
[100].

Drug screening employing iPSCs
Recent achievements in differentiation of hESC and iPSC into functional cardiomyocytes
have provided the basis for this technology to develop into a platform for drug screening and
toxicity testing (Figure 2). Available studies characterize hESC-CMs and iPSC-CMs as
largely similar in their differentiation efficiency, gene expression profiles, and
electrophysiological and pharmacological functionality [61, 101–104]. With regard to
cardiac disease drug discovery, several independent research groups recently addressed the
question whether the currently established models are capable of accurately predicting the
safety of a candidate drug prior to its application to humans [105–107]. hESCs were
differentiated into cardiomyocytes using staged protocols for stepwise cardiac progenitor
cell induction. Subsequently, hESC-CMs were analyzed by electrophysiological means to
explore their response towards a selection of well-characterized drugs [105–107]. Braam
and colleagues made an important contribution showing that field potential duration (FPD)
prolongation can be employed as readout to evaluate drug safety results in greater statistical
significance and larger confidence level of data, as compared to standard hERG in vitro
assays [105, 108, 109]. These studies showed that hESC-CMs have the potential of
providing a reasonably economical human model for predictive cardiac pharmacological
safety, shedding new light on the definition of a safety margin, which may be utilized to
improve preclinical decision-making and to reduce drug development costs [105–107].
Further developments of iPSCs promise the generation of pluripotent cells from any
individual and may ultimately provide differentiated cell types of any genetic background.
Combined with automated culturing techniques and high-throughput screening approaches,
the developing iPSC technology may enable pharmaceutical in vitro testing for both toxicity
and efficacy over any individual genotype, making it possible to translate the potential of
personalized medicine into the clinic (Tables 1 and 2).

It has been acknowledged that differentiation of iPSCs produces partially immature cells
[110]. Many iPSC-derived cell types, such as iPSC-CMs, may still show gene expression
profiles similar to human fetal cardiomyocytes, a phenomenon that has been extensively
documented for hESC-CMs [75, 104, 111] and recently has been compared for hESC and
hiPSC-derived progeny derivatives [112]. The electrophysiological properties of partially
mature iPSC-CMs vary from those of human adult cardiomyocytes, particularly in the QT
interval [113]. These limitations of current iPSC-CM derivation methods could not only
prove problematic for potential therapeutic approaches in humans, but also compromise the
iPSC-CM system for application in drug development. For example, early developmental
stage and therefore restricted functionality of iPSC-CMs may lead to misinterpretation of a
candidate drug’s deleterious features [107]. To overcome this constrains, it will be crucial to
develop in the future maturation protocols for iPSC-CMs. Nevertheless, while “prematurity”
of iPSC-CMs may have yet unknown implications for the clinical translation of iPSC-CMs,
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they still represent a considerable improvement for predicting and analyzing early
pharmacological development and industrial-scale drug screening [90, 114].

High-throughput screening using iPSCs
Understanding disease mechanisms is crucial for development of effective and sensitive
drugs with minimal side effects. In the past years, large-scale chemical screens and rational
design have been employed to create and identify small molecules that modulate disease-
specific molecular processes. Components revealed by such screens are validated in animal
models and eventually in clinical trials, paving the way for new therapeutic approaches and
cures [115–117]. However, due to the complexity of disease mechanisms in whole
organisms, which is poorly reflected by cellular in vitro models, only a few out of the many
initially promising small chemicals identified in large-scale chemical in vitro screens qualify
for application in humans [115, 118]. A major advantage of iPSC-dependent disease
modeling lies in its capacity to provide both a more direct resemblance of pathogenic
conditions in vitro as well as an acceleration of the screening procedure (Table 2).
Validation of putative drugs identified via iPSC-dependent chemical screening will not
diminish the weight and relevance provided by downstream characterization and validation
in animal disease models. However, the use of iPSC-dependent chemical screening may
significantly improve the success rate and thereby accelerate the overall drug development
process.

At the present, iPSC-dependent high-throughput drug screening is still in its infancy. To
comprehensively benefit from the advantages that iPSCs provide as a large-scale drug
screening platform, several parameters need to be optimized and explored in more detail.
Examples are the potential influence of the donor cell type, as well as virus-free and
integration-free reprogramming approaches, while maintaining the requirement of safe gene
delivery and introducing minimal genetic aberrations [18, 20, 22–24, 119–123]. Further
hurdles may depend on the particular features of iPSC growth and culture conditions, which
can complicate their implementation in industrial scale screens [75]. Nevertheless, high-
throughput screens in human pluripotent cells performed thus far demonstrate the
effectiveness of these pioneer systems [122, 124–127].

Conclusion
In summary, a growing number of researchers have employed iPSCs for modeling a variety
of diseases, including hematopoietic [44–46], hepatic [70], neurological [8, 128, 129],
endothelial [53], and cardiovascular [45, 60, 61]. Tissue-specific differentiation protocols
have been developed to derive these specialized cell types from human pluripotent cells. The
challenge to re-create the disease phenotype in vitro as accurately as possible has given rise
to striking advancements. For instance, three different cardiac arrhythmias—LQT1, LQT2
and LQT7—have been recapitulated by employing patient-specific iPSCs [43, 57–59].
Future studies will have to focus on how accurately iPSC models reflect a disease
phenotype, as drugs for any given disease can be designed only as well as the
methodological systems employed to create them. Advances in iPSC-dependent
technologies cannot completely replace animal models for studying disease mechanisms and
for pre-clinical evaluation of drugs. However, the emerging iPSC technology presents
considerable advantages over classical in vitro models, optimizing the integrated approaches
by using efficient, high-performance tools for clinical translational research and drug
development.
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Figure 1. Application of iPSCs for regenerative medicine, disease modeling, and drug screening
After reprogramming of somatic, patient-derived cells to an induced pluripotent state, iPSCs
can be differentiated into cell types of all three germ layers, allowing regeneration of tissue
and posing great hopes for clinical translation of iPSCs and treatment of many diseases.
Also, iPSC-derived tissue-specific cells may be employed for modeling diseases to
understand the complex mechanisms underlying various diseases, and for assessing
cytotoxicity of small chemicals in drug development. This illustrates how iPSCs provide an
improved model system for disease modeling, high-throughput drug screening, and toxicity
testing.

Ebert et al. Page 13

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Schematic representation of cardiac drug screening and toxicity testing with human
iPSC technology
Cardiomyocytes are differentiated from normal or disease-specific, patient-derived iPSCs.
Subsequently, these iPSC-derived cardiomyocytes (iPSC-CMs) undergo drug screening and
toxicity testing with existing or novel drugs. The baseline properties of iPSC-CMs and their
response to drugs are determined by electrophysiological assays such as extracellular multi-
electrode array (MEA) and patch clamp recordings, using beating embryonic bodies (EBs)
in MEA experiments (MED64 MEA amplifier, Alpha Med Scientific, Japan) and isolated
single cardiomyocytes in patch clamp recordings (EPC-10 patch clamp amplifier, HEKA,
Germany), respectively. Here, nifedipine (100nM) is tested in iPSC-CMs, which showed a
significant shortening of field potential duration (FPD) on MEA compared to baseline.
Similarly, nifedipine is tested with patch clamp recordings in a dose-dependent manner and
exhibited an effect consistent with MEA data.
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