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The posttranslational regulation of mammalian clock proteins has
been assigned a time-keeping function, but seems to have more
essential roles. Here we show that c-Jun N-terminal kinase (JNK),
identified by inhibitor screening of BMAL1 phosphorylation at
Ser 520/Thr 527/Ser 592, confers dynamic regulation on the clock.
Knockdown of JNK1 and JNK2 abrogates BMAL1 phosphorylation
and lengthens circadian period in fibroblasts. Mice deficient for
neuron-specific isoform JNK3 have altered behavioural rhythms,
with longer free-running period and compromised phase shifts to
light. The locomotor rhythms are insensitive to intensity variance
of constant light, deviating from Aschoff’s rule. Thus, JNK
regulates a core characteristic of the circadian clock by
controlling the oscillation speed and the phase in response to light.
Keywords: JNK; BMAL1 phosphorylation; suprachiasmatic
nucleus; behavioural rhythm
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INTRODUCTION
In mammals, a master circadian clock governing behavioural
rhythms is located in the hypothalamic suprachiasmatic nucleus
(SCN), while the peripheral tissues and even cultured fibroblasts

harbour self-sustained molecular clocks [1,2]. In these cells, clock
genes and their products form transcriptional/translational feed-
back loops, in which BMAL1 and CLOCK transactivate a series of
genes including Per and Cry through E-box elements, and
translated PER and CRY proteins suppress the function of
BMAL1–CLOCK complex [3]. In the molecular cycling, the clock
proteins are regulated by posttranslational modifications such as
phosphorylation, in terms of activity, stability, localization and
interaction [4]. Extrapolation from the clock system of cyano-
bacteria suggests more dynamic and essential contribution of
protein phosphorylation in mammalian clockwork [5].

We previously found that circadian phosphorylation of
BMAL1–CLOCK complex regulates its transactivation ability [6].
Molecularly, BMAL1 phosphorylation is catalysed by CKI [7], CKII
[8] and GSK3 [9], while our in vitro study showed that BMAL1 is
phosphorylated by extracellular signal-regulated kinase (ERK), a
member of mitogen-activated protein kinase (MAPK) family [10].
In the SCN of Syrian hamsters, the three members of MAPK family,
that is, ERK, p38 kinase and JNK, are activated not only in a
circadian manner but also in response to light [11]. Among them,
JNKs (JNK1–3) are stimulated by a variety of environmental signals
such as hyperosmotic stimuli and ultraviolet radiation [12], but
their role(s) in the mammalian clockwork has been enigmatic.
Here we demonstrate that JNKs transmit light signals to BMAL1–
CLOCK complex and control the oscillation speed and the phase
response of the master clock governing the behavioural rhythms.

RESULTS AND DISCUSSION
JNK phosphorylates BMAL1–CLOCK complex
In vitro experiments previously showed that ERK2 phosphorylates
chicken BMAL1 at Ser 527, Thr 534 and Ser 599 [10], which are
conserved among BMAL1 proteins from other species; for
example, Ser 520, Thr 527 and Ser 592 in mice (Fig 1A). As
reported [6], BMAL1 phosphorylation can be characterized by its
CLOCK dependency accompanying a decrease of BMAL1 level in
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NIH3T3 cells (Fig 1B). We found that the CLOCK-dependent
phosphorylation of mouse BMAL1 was markedly reduced when
the three phosphorylatable residues were mutated to Ala (mut3A;
Fig 1B). The reduced phosphorylation of mut3A–BMAL1 is
not due to impaired interaction with CLOCK, because (i)
mut3A–BMAL1 also stimulated CLOCK phosphorylation and (ii)

mut3A–BMAL1 level was reduced by coexpression of CLOCK as
was observed for wild-type (WT) BMAL1 (Fig 1B).

To explore contribution of MEK–ERK pathway to the phosphor-
ylation, NIH3T3 cells were treated for 24 h with U0126, an
inhibitor of MEK1/2 upstream of ERK1/2. We found no significant
effect of U0126 on phosphorylation of endogenous BMAL1,
whereas it was reduced dramatically by treatment with SP600125,
an inhibitor of phosphorylation-dependent activation of JNK
(Fig 1C). Importantly, the phosphorylation rhythm of BMAL1
in NIH3T3 cells [6] was abrogated by chronic treatment
with SP600125 (Fig 1D).

Then we examined whether BMAL1–CLOCK complex is
phosphorylated by activation of JNK. A 30-min treatment of
HEK293T cells with 600 mM sorbitol, a hyperosmotic stimulus
that activates JNK [12] (Fig 2A, supplementary Fig S1A,B online),
elevated phosphorylation of coexpressed BMAL1 (Fig 2A), while
the phosphorylation was markedly attenuated when mut3A was
introduced to BMAL1 (Fig 2B). Still, the protein band of mut3A–
BMAL1 was weakly upshifted by JNK (supplementary Fig S1C
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Fig 1 | Effects of c-Jun N-terminal kinase (JNK) inhibitor SP600125 on

BMAL1 phosphorylation. (A) The protein sequence around in vitro

phosphorylation sites of chicken BMAL1 was aligned with the

corresponding regions of mouse, rat and human BMAL1. (B) NIH3T3

cells were transfected with Myc–CLOCK/pSG5 and BMAL1/pcDNA3.1,

and the cell lysates were subjected to immunoblot analysis. Ser 520,

Thr 527 and Ser 592 in mouse BMAL1 were mutated to Ala (mut3A).

(C) NIH3T3 cells were treated for 24 h with indicated inhibitors (20mM).

Data are means with s.e.m. (n¼ 3). Single and double asterisks indicate

Po0.05 and Po0.01, respectively (Student’s t-test, versus DMSO).

(D) NIH3T3 cells were treated with dexamethasone (Dex) to synchronize

the cellular rhythm. After 2-h incubation, the medium was changed to

normal culture medium with 20 mM SP600125 or DMSO (control) and

this time point was defined as time 0. The cells were collected at

indicated time points. (C,D) The total protein extracts of the cells were

immunoprecipitated with anti-CLOCK mAb, followed by immunoblot

analysis with anti-BMAL1 mAb. DMSO, dimethylsulphoxide; IP,

immunoprecipitation; mAb, monoclonal antibody; WB, western blot;

WT, wild type.
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Fig 2 | c-Jun N-terminal kinase (JNK)-stimulated phosphorylation of

BMAL1 and CLOCK proteins. (A,B) HEK293T cells were transfected with

Myc–CLOCK/pSG5, BMAL1/pcDNA3.1 and JNK1/pSRa. Ser 520, Thr 527

and Ser 592 in mouse BMAL1 were mutated to Ala (mut3A). The cells

were collected 30 min after the sorbitol stimulation (indicated

concentrations) and were subjected to immunoblot analysis. Data are

means with s.e.m. (n¼ 3). Double asterisks indicate Po0.01 (Student’s

t-test, versus WT 0 mM). (C) NIH3T3 cells were transfected with

Myc–CLOCK/pSG5, BMAL1/pcDNA3.1 and MKK7–JNKs/pCI. Total

amount of DNA was adjusted by adding empty plasmids. The transfected

cells were collected and subjected to immunoblot analysis. Lys 93

in JNK3 was mutated to Ala for a kinase-dead (KD) mutant,

MKK7–JNK3(KD). WT, wild type.
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online) potentially due to additional phosphorylation of BMAL1.
The BMAL1 mutation had no effect on sorbitol-enhanced CLOCK
phosphorylation (Fig 2B), which was inhibited by SP600125
treatment (supplementary Fig S1D online), suggesting that
activated JNK mediates phosphorylation of BMAL1–CLOCK
complex. More directly, expression of MKK7–JNK1 or MKK7–
JNK3, a fusion with upstream kinase MKK7 that specifically
activates JNKs [12], stimulated phosphorylation of BMAL1 and
CLOCK coexpressed in NIH3T3 cells (Fig 2C). Such stimulation
was not observed with MKK7–JNK3(Lys 93Ala), a fusion
with a kinase-dead mutant of JNK3 (Fig 2C). An in vitro kinase
assay demonstrated that preactivated JNK1, JNK2 or JNK3
phosphorylated glutathione S-transferase (GST)–BMAL1, but not
GST (supplementary Fig S2A online), as did ERK1/2 and p38
kinase. These kinases also phosphorylated GST–CLOCK(364–537)
harbouring Ser/Pro-rich domain that includes in vivo phosphor-
ylation site Ser 427 [6]. These data indicate that the activated JNK
isoforms directly phosphorylate BMAL1–CLOCK complex.

JNK inhibition lengthens cellular rhythms
SP600125 treatment not only suppressed the circadian phosphor-
ylation of BMAL1 (Fig 1D) but also lengthened the period of
the cellular rhythms in in vivo systems such as NIH3T3, Rat-1,
mouse embryonic fibroblasts and SCN explants (supplementary
Fig S3A–D online), consistently with a previous study [13].
Although SP600125 is widely used to inhibit JNK activation [14],
this drug might affect activities of other protein kinases [15]. The
period-lengthening effect of SP600125 seemed to have an impact
on CKI, because CKI inhibitor such as IC261 also lengthened
the cellular rhythms [16,17] (supplementary Fig S3B online). On
the other hand, BMAL1 phosphorylation was not reduced in the
presence of IC261 (supplementary Fig S3E online), supporting
contribution of JNK signalling to BMAL1 phosphorylation. We
investigated a role of JNKs for BMAL1 phosphorylation and
cellular rhythms by performing knockdown experiments in
NIH3T3 fibroblasts, which express Jnk1 and Jnk2 but not Jnk3
(supplementary Fig S4A–F online). JNK1 and JNK2 each have four
splice variants, for which we designed short hairpin RNA (shRNA)
constructs targeting all the variants (Fig 3A, supplementary
Fig S4G online). Expression level of transfected JNK1 in NIH3T3
cells was markedly reduced by coexpression of shJNK1 or
shJNK1/2. Similarly, JNK2 level was largely decreased by shJNK2
or shJNK1/2 (supplementary Fig S4H online). Importantly, transient
transfection of shJNK1/2 reduced not only endogenous protein
level of JNK1 and JNK2, but also phosphorylation level of
endogenous BMAL1 in NIH3T3 cells (Fig 3B). Furthermore, we
found significant lengthening of the circadian period when JNK1
and JNK2 were simultaneously knocked down either by shJNK1/2
(Fig 3C,D) or by co-transfection of shJNK1 and shJNK2 (Fig 3E,F). It
is most probable that JNKs have a main regulatory role for the
oscillation speed of the cellular clock by phosphorylating circadian
component(s) including BMAL1.

Altered behavioural rhythms in JNK-deficient mice
Among the three Jnk isoforms, Jnk1 and Jnk2 are ubiquitously
expressed throughout the body, and mice lacking both Jnk1 and
Jnk2 are embryonic lethal [18]. On the other hand, Jnk3 is
expressed almost exclusively in the nervous system [19], and
Jnk3-deficient mice are fertile with no apparent abnormalities in

their development [20]. We found that Jnk3-deficient mice
showed robust behavioural rhythms under light–dark (LD) cycles
(Fig 4B, supplementary Fig S5A online). When transferred to
constant darkness (DD), Jnk3-deficient mice exhibited signifi-
cantly longer free-running period (24.1±0.1 h) than WT controls
(23.6±0.2 h) at days 90 to 100 in DD (Fig 4C). A more striking
effect was observed when the mutant mice were exposed to 30-
min light pulse at subjective night. A remarkable reduction of the
phase-shift, particularly the phase-advance, was observed when
the light pulse was given at circadian time (CT) 20 and 22 (Fig 4D).
We also found that the free-running period of Jnk3-deficient mice
was unaltered even after receiving the light-pulse at the two time
points (Fig 4E). Such a light pulse, on the other hand, caused
a noticeable phase-dependent period-shortening in WT mice
(Fig 4E), known as ‘aftereffect’ [21]. The aftereffect has an adaptive
significance, because the light pulse modulates the circadian
period towards a direction that reduces the phase-shift. Under
24-h LD cycles, shortening or lengthening of the circadian period
could reduce the daily phase-shifts in animals having the
circadian period longer or shorter than 24 h, respectively. Such
an advantageous modulation, however, is missing in Jnk3-
deficient mice, indicating that JNK also contributes to the
frequency modulation of the circadian clock in a 24-h LD cycle.

Another striking effect of Jnk3 deficiency was observed in
constant light condition (LL), where the free-running period of WT
mice became longer than that in DD (23.6±0.2) depending on
the light intensity (Fig 4F, supplementary Fig S5B online;
24.7±0.2 and 26.3±0.6 h in 10 and 300 lux, respectively). This
property is widely known as ‘Aschoff’s rule’; the higher the light
intensity in LL is, the longer the circadian period becomes in the
nocturnal animals, and vice versa in the diurnal species [22]. In
spite of the evolutionary importance, Aschoff’s rule has not been
explained at the molecular level. Surprisingly, Jnk3-deficient
mice showed almost a constant period in LL at various light
intensities (Fig 4F, supplementary Fig S5C online; 24.9 and 25.1 h
in 10 and 300 lux, respectively). As a result, the free-running
period of Jnk3-deficient mice became even shorter than that of
WT mice in LL of 300 lux (Fig 4F). A recent report [23] predicted
that a change in the shape of phase-response curve causes
different period responses to LL in Per mutant mice. On the other
hand, reduced responsiveness of Jnk3-deficient mice to light
intensities is unlikely due to changes in responses to brief light
pulses, because the reduction that was caused by the mutation in
the phase-advance shift (1.97 h in total) was almost equivalent to
that in the phase-delay shift (1.94 h in total). The present results
together pinpoint a key role of JNK3-mediated posttranslational
process not only in the phase-dependent phase-shift by a light
pulse, but also in regulation of the oscillation speed (period) in
response to environmental light intensities.

Light-activation of JNK in the mouse SCN
We investigated E-box-mediated transcription in the SCN of the
Jnk3 mutant mice, because it affects the circadian period of
the behavioural rhythms. We found that expression levels
of Per1 and Per2 were significantly elevated in the mutant SCN
(supplementary Fig S6A–D online), suggesting Jnk3 deficiency
upregulates E-box-mediated transcription. Intriguingly, although
the behavioural rhythms of the mutant mice were far less sensitive
to the light pulse at CT20 or CT22 (Fig 4D,E), Per1 and Per2 in
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the mutant SCN were induced by the light normally to levels that
were observed in WT SCN (supplementary Fig S6E,F online).
These observations indicate that Per induction-independent
phase-shift signalling is sensitive to Jnk3 deficiency, while Jnk3

seems to have a marginal role in CRE-mediated transcription for
Per induction.

We unexpectedly found remarkable elevation of cytosolic and
nuclear JNK1 protein at any time of the day (supplementary
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Fig S7E,F online) albeit with a minor effect on the mRNA level
(supplementary Fig S7C online). The increase of JNK1 was evident in
not only the SCN but also hippocampus and olfactory bulb, while it
was mostly unaffected in the cortex and cerebellum (Fig 5A) or in
whole brain extracts (supplementary Fig S7G online). Even with the
increase of JNK1 protein, the overall activation level of JNK in
the mutant SCN was lower than that in WT (Fig 5D, lanes 1 and 3).
In fact, the BMAL1 phosphorylation levels at the peak (ZT12) and
trough (ZT0) were slightly lower in the mutant SCN than WT (Fig 5B).
Importantly, 30-min light at CT22 stimulated JNK phosphorylation in
the WT SCN [11] (Fig 5C,D), whereas the light-dependent activation
of JNK was no more evident in the mutant SCN (Fig 5D).
Furthermore, the light pulse at CT22 also stimulated BMAL1
phosphorylation in the SCN (Fig 5E).

All these observations highlight essential roles of JNK not only
in the normal oscillation of the mammalian clock but also in its
photic regulation, that is, (i) the phase-dependent phase-shift,
(ii) the aftereffect of light and (iii) light intensity-dependent
period-response (Aschoff’s rule).

METHODS
Cell culture and transfection. NIH3T3 and HEK293T cells were
maintained at 37 1C under 5% CO2, 95% air in Dulbecco’s

modified Eagle’s medium (Nissui) containing 1.8 mg/ml NaHCO3

and 4.5 mg/ml glucose supplemented with 100 units/ml penicillin,
100 mg/ml streptomycin and 10% fetal bovine serum. For transient
transfection, the cells were plated in 12-well plates 24 h before the
experiments, and transiently transfected by using Lipofect AMINE
PLUS Reagent (Invitrogen) according to manufacturer’s directions.
Total amount of transfected DNA was kept constant in an
experiment by adding the empty plasmid. For activation of JNKs,
the cells were treated for 30 min with sorbitol just before
collecting the cells.
Plasmid. The mammalian expression vectors used were Myc–
CLOCK/pSG5 (a kind gift of Dr Paolo Sassone-Corsi), BMAL1/
pcDNA3.1 (a kind gift of Dr Steven M. Reppert) and Flag–JNK1/
pSRa (a kind gift of Dr Mutsuhiro Takekawa). Ala mutations were
introduced into BMAL1 by using a site-directed PCR mutagenesis
method. Full-length mouse Jnk1a1, Jnk2a1 and Jnk3a1 comple-
mentary DNA (cDNA) were cloned from the total cDNA of the
mouse SCN (C57BL/6J) by reverse transcription–PCR analysis with
gene-specific primers. Mammalian expression vectors for expres-
sion Flag epitope-tagged JNK isoforms were generated by inserting
the Jnk cDNAs into the pSG5 vector, with a slight modification
to create NotI sites, a Kozak sequence, and a Flag epitope.
Full-length human Mkk7, Jnk1a1 and Jnk3a1 cDNAs were cloned
and inserted into the pCI vector for Flag–MKK7–JNK1/pCI and
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Flag–MKK7–JNK3/pCI. Lys93 in JNK3 was mutated to Ala as a
kinase-dead mutant. For knockdown of JNK1 and JNK2, shRNA
were designed using siDirect (http://sidirect2.rnai.jp/), a web-
based software, and the following sequences were used: shJNK1;
50-GAGAACUAGUUCUUAUGAAGU-30, shJNK2; 50-GUAUAU
UACUGUUUGGUAUGA-30, and shJNK1/2; 50-GGAAUAAAGU
UAUUGAACAGC-30. The oligonucleotides to express the shRNA
were inserted into the pBS-mU6 vector.
Antibodies, immunoprecipitation and immunoblot analysis. The
nuclear and cytoplasmic fractions were prepared as described [6].
Anti-CLOCK monoclonal antibody (mAb), CLNT1, was used for
immunoprecipitation as described in our previous paper [6]. In
immunoblot analysis, antibodies used were CLSP3 anti-CLOCK
mAb [6], B1BH2 anti-BMAL1 mAb [6], anti-JNK1/3 (Santa Cruz
Biotechnology, C17), anti-JNK2 (Millipore), anti-JNK3 (Millipore,
C05T), anti-phospho-JNKs (Cell Signaling) and anti-b-actin

(Sigma-Aldrich). For specific detection of JNK1, anti-JNK1 (Santa
Cruz Biotechnology, F3) was used, as shown in Figure 5A.
Real-time monitoring assay. Real-time monitoring assay was
performed as described [24] with modifications. NIH3T3 cells
plated on 35-mm dishes were transiently transfected by shRNA
vectors with Bmal1-luc/pGL4, a firefly luciferase reporter under
regulation of a 0.3-kb Bmal1 promoter. The cells were treated
with 0.1 mM dexamethasone for 2 h, and then the medium was
replaced by a recording medium. Bioluminescence was recorded
with Dish Type Luminescencer, Kronos (ATTO) or LumiCycle
(Actimetrics).
Animals and behavioural rhythm measurement. Spontaneous
locomotor activities of male homozygote mice of Jnk3-deficient
[20] (Jackson Laboratory, Mapk10tm1Flv) and WT control mice
were measured every minute by an infrared thermal sensor.
Behavioural activity rhythms were analysed by Clock Lab
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Fig 5 | BMAL1 phosphorylation in the mouse suprachiasmatic nucleus (SCN). (A) The total extracts of indicated brain regions were prepared at

ZT6 from wild-type mice (WT) or Jnk3-deficient mice (KO). Equal protein amounts of the samples were subjected to immunoblot analysis. CER,

cerebellum; COR, cortex; HIP, hippocampus; OLF, olfactory bulb. (B) The SCN nuclear extracts were prepared at ZT0, 6, 12 and 18 from 15 mice (for

each time point) of WT and KO mice. They were immunoprecipitated (IP) with anti-CLOCK antibody and subjected to immunoblot analysis with anti-

BMAL1 antibody. The relative level of the upshifted band was plotted at the bottom. (C) Time schedules for SCN sampling on the first day of constant

darkness (DD). (D) Light-induced change of JNK phosphorylation level in the SCN of WT and KO mice was investigated after exposure to 30-min

light pulse at circadian time (CT)22. Total extract was prepared from the SCN punch of WT and KO mice, and subjected to immunoblot analysis with

anti-phospho-JNK antibody. (E) Light-induced change of BMAL1 phosphorylation level in the SCN of WT mice was investigated after exposure to 30-

min light pulse at CT22. JNK, c-Jun N-terminal kinase; WB, western blot.
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(Actimetrics), and circadian periods were determined by a
w2-periodogram.

Additional methods are available as supplementary informa-
tion online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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