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Several bone marrow-derived cells have been shown to pro-
mote tumour growth and progression. These cells can home 
to the primary tumour and become active components of the 
tumour microenvironment. Recent studies have also identified  
bone marrow-derived cells—such as mesenchymal stem cells and 
regulatory T cells—as contributors to cancer metastasis. The innate 
versatility of these cells provides diverse functional aid to promote 
malignancy, ranging from structural support to signal-mediated 
suppression of the host immune response. Here, we review the 
role of mesenchymal stem cells and regulatory T cells in cancer 
metastasis. A better understanding of the bipolar nature of these 
bone marrow-derived cells in physiological and malignant contexts 
could pave the way for new therapeutics against metastatic disease.
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See the Glossary for abbreviations used in this article.

Introduction
Cancer metastasis accounts for over 90% of mortality from solid 
malignancies and is a multi-step process that allows primary 
tumour cells to escape from the site of origin and colonize distant 
organs [1,2]. The metastatic process has traditionally been classified 
into several distinct stages—local invasion, intravasation, survival 
in the circulation, extravasation and colonization—each of which 
is regulated intrinsically by the tumour cell and extrinsically by the 
surrounding stroma [3–5]. The complexity of this multi-stage pro-
cess has enraptured many generations of cancer researchers, starting 
with Stephen Paget’s century-old ‘seed and soil’ hypothesis that com-
pared tumour cells to ‘seeds’ that are systematically distributed, but 
only inhabit particular environments, or ‘soils,’ which are support-
ive of their sustained growth [6]. Although distinct genetic profiles of 
tumour cells with particular proclivities to colonize specific distant 
organs have begun to be elucidated, how such metastasis genes exert 

their functions in the context of tumour–stroma interactions remains 
a major topic of ongoing research [3,7–9].

Throughout the expansion of the primary tumour, a vast array of 
host cells—ranging from macrophages to fibroblasts—create and 
sustain a favourable microenvironment for malignant growth [4,10]. 
Bone marrow-derived cells, including mesenchymal stem cells 
(MSCs) [11–14] and immunosuppressive cells, such as regulatory 
T cells (Tregs) [15–17], have been identified as major components of 
the primary tumour microenvironment. More recently, new evidence 
corroborates the contribution of these populations in the metastatic 
process [18–20], largely by providing cell motility-inducing fac-
tors and promoting a protective microenvironment for tumour cells 
throughout their journey to distant organs. These studies therefore 
reinforce the idea that the stromal components of the tumour micro-
environment can play an active role in promoting cancer meta
stasis. However, given the complexity and multi-faceted progression 
of tumour metastasis, an in-depth analysis of these metastasis- 
promoting interactions is still incomplete. In addition, the function of  
bone marrow-derived cells in modulating the immune system to pro-
mote metastasis must be viewed in the context of the general con-
troversy surrounding immunosurveillance of tumour cells [21–23], 
both in primary tumour growth and in cancer metastasis. Despite 
such challenges, numerous studies have implicated several immune 
cells, such as immature myeloid cells [24–26], mast cells [27,28], 
macrophages  [29,30], platelets [31,32], neutrophils [33], and 
haematopoietic and endothelial progenitor cells [34–36] to pro-
mote cancer metastasis, and have already been addressed in other  
reviews [37–40]. Here, we review our understanding of the contribu-
tion of MSCs and Tregs to cancer metastasis and discuss their potential 
as therapeutic targets in the treatment of metastatic disease.

Tumour–MSC crosstalk in metastatic progression
The bone marrow stroma, which is the master haematopoietic com-
partment, is composed of various cell types and crucial regulators 
required for creating an ideal niche for the maintenance of haemato
poietic stem and progenitor cells [41–43]. A dominant subpopula-
tion in the bone marrow stroma is believed to be mesenchymal in 
nature [44–46], with a primitive population of MSCs able to differ-
entiate into osteoblasts, adipocytes and chondrocytes [47,48]. MSCs 
have also been reported to differentiate into fibroblasts [49–51] and 
pericytes [52,53], although studies showing similar differentiation 
potential of dermal pericytes [54], retinal pericytes [55] and primary 
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fibroblast-like populations [56] suggest that both fibroblasts and  
pericytes might not be terminally differentiated progenies.

Despite numerous studies characterizing the versatile differenti-
ation potential of MSCs [57–59], a general consensus is lacking on 
the immunophenotypic markers used to isolate this multi-potential 
population [49,60]. A broad array of MSC markers have been used 
in various studies in both human and mouse models, including 
CD73, CD90, CD105, CD140, CD146 and Sca1, and the clono
genic purity of the MSC population has been proposed to vary 
depending on which combinations of these markers are used for 
isolation [52,53,61–63]. Given that a multipotent cell able to dif-
ferentiate into osteoblasts, adipocytes and chondrocytes meets the 
criteria of an MSC [61] and given the extremely heterogeneous 
nature of this population, it is essential to evaluate studies on MSCs 
in a context-dependent manner. It is also important to note that the 
bone marrow, although providing a significant proportion, is not 
the only source of MSCs. Adipose tissue [64,65] and the umbilical 
cord [66,67] have been shown to create a niche for MSCs, which 
can also be recruited to sites of wound healing and the primary 
tumour. These tissue-specific MSCs meet the tri-lineage criterion 
mentioned above, but multiple studies show varying differentia-
tion propensity toward specific lineages and plasticity depending 
on the source of MSC isolation [68–71]. For example, adipose 
tissue-derived MSCs, otherwise referred to as adipose-derived 
stem cells (ADSCs), can differentiate into osteoblasts [72], adipo-
cytes, chondrocytes [73,74], myoblasts [75] and even endothelial 
cells [76,77], but they have also been shown to arise from mature 
human adipocytes through a process known as dedifferentia-
tion [78,79]. These reprogrammed multipotential cells, commonly 
referred to as DFAT cells, acquire the surface markers of ADSCs 
and have the capacity to differentiate into osteoblasts, chondro-
cytes and adipocytes in vitro [79,80]. However, these findings are 
still contested, as conflicting results can be obtained depending on 
the culture conditions and immunophenotypic markers used for 
isolation, emphasizing the need for in vivo lineage tracing studies 
of these versatile stem cells. The plasticity of MSCs to transdiffer-
entiate in various settings is crucial for their normal physiological 
functions, but also allows them to have a more ominous role in 
cancer. For example, one of the major functions of MSCs is their 
differentiation into connective tissue during wound healing [81–
83] and secretion of a battery of growth-modulating factors, such 
as IL‑6 [11,84] and Ang1 [53], to promote accelerated regenera-
tion of injured tissue. In cancer, this process can create a growth-
promoting tumour microenvironment in which MSCs differentiate 
into cancer-associated fibroblasts (CAFs) [14,85,86], which secrete 
IL‑6 [87] and VEGF [88] to promote tumour angiogenesis. In this 
context, MSCs act in sharp contrast to their known endogenous 
functionality by exacerbating what has been described as “a 
wound that never heals” [89].

Although the contribution of MSCs to primary tumour growth 
has been studied extensively in a variety of cancers [11], including 
breast cancer [13], colon cancer [90] and lymphoma [91], studies 
demonstrating their potential to promote tumour metastasis are rela-
tively rare in comparison. Nevertheless, MSCs have been recently 
shown to facilitate tumour metastasis by secreting inflammatory 
cytokines to promote cell motility (Fig 1). Subcutaneous co-injec-
tion of the human breast cancer cell line MDA-MB‑231 and human 
bone marrow-derived cells into immunodeficient mice significantly 
enhances lung and liver metastasis [13,18]. These studies identify 

CCL5 as an MSC-derived metastasis-promoting factor, the expres-
sion of which increases after the interaction of MSCs with cancer 
cells (Fig  1). CCL5-induced Akt activation allows tumour cells 
to extravasate from the circulation to colonize distal organs, and 
thereby significantly increases metastatic potential [13]. Tumour-
derived osteopontin (OPN) was also recently found to promote 
CCL5 secretion from MSCs by stimulating the binding of c-Jun 
homodimers to the CCL5 promoter and, thus, stimulating its transac-
tivation (Fig 1; [18]). Aptamer-mediated neutralization of circulating 
OPN in MDA-MB‑231 xenograft models reduces serum CCL5 lev-
els, as well as lung and liver metastasis. In this model, the contribu-
tion of CCL5 to metastasis does not seem to depend on its effect on 
the primary tumour stroma, as there is no difference in infiltrating 
macrophages, angiogenesis or SMA-positive stromal cells between 
tumours initiated by CCL5 overexpressing MDA-MB‑231 cells and 
those by control MDA-MB‑231 cells [13].

In addition to promoting tumour-intrinsic metastatic proper-
ties, the tumour–MSC interaction can modulate the stromal micro
environment to promote metastasis [18]. Tumour cell-derived OPN 
promotes the expression of cancer-associated fibroblast mark-
ers—such as αSMA, tenascin‑C, SDF1 and FSP1—in human MSCs 
(Fig 1). Interestingly, the expression of these markers is enhanced in 

Glossary

Ang1 	 angiopoietin 1
Ap1 	 activator protein 1
β-GBP 	 β-galactoside-binding protein
CCL	 CC chemokine ligand
CCR	 CC chemokine receptor
CTL	 cytotoxic T lymphocyte
CTLA4	 cytotoxic T‑lymphocyte antigen 4
DFAT	 dedifferentiated fat
ECM	 extracellular matrix
EGF	 epidermal growth factor
ErbB2	 v-erb-b2 erythroblastic leukaemia viral oncogene homologue 2
FOXP3	 forkhead box P3
FSP1	 fibroblast-specific protein 1
HGF	 hepatocyte growth factor
HLA	 human leukocyte antigen
HLA-G5	 human leukocyte antigen-G5
IFN‑γ	 interferon‑γ
IL	 interleukin
IL-17BR	 IL-17B receptor
MCA	 3-methylcholanthrene
M-CSF	 macrophage colony-stimulating factor
MMP	 matrix metalloproteinases
NK	 natural killer
NOD/SCID	 nonobese diabetic/severe combined immunodeficient
PGE2	 prostaglandin E2
Rag	 recombination-activation gene
RANK(L)	 receptor activator of nuclear factor-κB (ligand)
Sca1	 stem cell antigen 1
SDF1	 stromal-derived factor 1 
shRNA	 short hairpin RNA
SMA	 smooth muscle actin
TGF‑β	 transforming growth factor‑β
TH2 cell	 T helper 2 cell
TNF‑α	 tumour necrosis factor‑ α
TRAIL	 tumour necrosis factor-related apoptosis-inducing ligand
VEGF(R)	 vascular endothelial growth factor (receptor)
VLA4	 very late antigen 4
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MSCs isolated from the metastatic site, suggesting another mecha-
nism whereby OPN contributes to cancer metastasis. Human and 
mouse MSCs have been shown to transdifferentiate into CAFs when 
co-injected with Skov3 ovarian cancer cells [14] or with MKN45 
gastric cancer cells  [87]. In addition to secreting tumour growth-
promoting factors such as EGF and IL‑6, these MSC-derived CAFs 
also express extracellular matrix- and angiogenesis-regulating pro-
teins to create a metastasis-promoting stromal microenvironment 

for the primary tumour. Human MSC-derived CAFs are also found at 
the sites of metastasis, have similar characteristics as in the primary 
tumour [18,92,93] and probably create a fostering environment for 
tumour cells—‘the metastatic niche’. In this regard, it is of particu-
lar interest that tenascin‑C, which is derived from cancer cells and 
myofibroblasts, has been recently shown to generate a metastatic 
niche to facilitate lung metastasis [94]. As noted above, tenascin‑C 
expression is also increased in OPN-stimulated human MSCs.

CAFs are thought to be one of the most important and aggressive 
supporters of tumour growth and invasion [95–100], but they have 
also been recently implicated in facilitating metastasis after the can-
cer cells have entered the circulation [101,102]. Periostin—a crucial 
extracellular component in bone and heart formation—is upregu-
lated in αSMA+ vimentin+ myofibroblasts in metastatic lungs [103]. 
Periostin deficiency in spontaneous mammary tumour-bearing mice 
significantly reduces pulmonary metastasis and is thought to disrupt 
the putative cancer stem cell niche at the metastatic site. Despite 
such similarities in the characteristics between the MSC-derived 
CAFs that have been recently identified and CAFs of various sources, 
it remains to be determined whether MSCs actively promote metas-
tasis as a differentiated CAF at the metastatic site (Sidebar A).

The emerging theory of the pre-metastatic niche proposes that 
target organs can be primed by secreted factors from primary 
tumours to create a more accommodating microenvironment 
before the arrival of metastatic tumour cells [25,104,105]. For 
example, the accumulation of VEGFR1-positive myeloid progeni-
tors in pre-metastatic lungs creates favourable docking sites for 
lung carcinoma tumour cells [25]. Tumour-secreted factors, such 
as placental growth factor (PlGF), are transmitted from the primary 
tumour to the metastatic organ, causing resident fibroblasts to pro-
duce fibronectin at future sites of metastasis. The secreted factors 
also stimulate the recruitment of bone marrow-derived progenitor 
cells that express VEGFR1 and integrin VLA4, which is a fibronec-
tin receptor [25]. Although this study showed that VEGFR1 activity 
is crucial for metastasis, another report claims that VEGFR1 defi-
ciency in a genetic model that lacks the tyrosine kinase domain of 
VEGFR1 does not affect spontaneous metastasis of Lewis lung car-
cinoma and melanoma [106]. This aspect of CAF targeting clearly 
requires further study, as does whether the resident fibroblasts of 
the pre-metastatic niche arise from local MSCs or from the bone 
marrow. In addition, although MSCs isolated from sites of meta
stasis seem to have stronger CAF-associated marker expression than 
those in the primary tumour, whether and how metastatic MSCs dif-
ferentially contribute to primary and secondary tumorigenesis and 
whether MSC-derived CAFs precede tumour seeding to facilitate 
the colonization process remain open questions (Sidebar A).

Another molecule recently implicated in promoting meta
stasis through an MSC-dependent mechanism is the pro-inflam-
matory cytokine IL‑17B [107], which is secreted by human MSCs 
that migrate to the primary tumour in a TGF‑β-dependent man-
ner  [93]. The IL‑17BR is a prognostic indicator associated with 
invasive tumour progression [108,109], and its ectopic expres-
sion in MDA-MB‑231 and SUM1315 breast cancer cells leads to 
increased migration in vitro, as well as increased frequency of lung 
and liver metastases in vivo (Fig 1). IL‑17BR expression is signifi-
cantly higher in metastatic bone lesions of SUM1315 cells and is 
thought to promote organ-specific metastasis to the bone, although 
ectopic IL‑17BR alone is not sufficient to promote metastasis [93]. 
The IL‑17 family consists of six structurally related members, which 
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Fig 1 | Mesenchymal stem cells promote cancer metastasis. MSCs can secrete 
inflammatory cytokines—such as CCL5 and IL‑17B—to facilitate cell motility, 
which is necessary for tumour cell invasion through the surrounding ECM, 
intravasation into blood vessels and extravasation from the circulation at target 
sites. In addition, MSCs can differentiate into CAFs, which express tenascin‑C, 
FSP1 and SDF1 to support tumour progression and create a pro-metastatic 
microenvironment. Feedback mechanisms sustain these pro-metastatic effects 
of MSCs on tumour cells, as is the case of tumour-secreted OPN promoting 
both CCL5 transcription and CAF marker expression. Such MSC–tumour cell 
interactions have been observed both in the primary tumour as well as at the sites 
of metastases. CAF, cancer-associated fibroblast; CCL, CC chemokine ligand; 
ECM, extracellular matrix; FSP1, fibroblast-specific protein 1; IL, interleukin; 
MSC, mesenchymal stem cell; OPN, osteopontin; SDF1, stromal-derived factor 1.
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are produced by and act on various immune cells [110,111] to 
regulate immune function in inflammation, autoimmunity, host 
defence against bacterial and fungal infections and tumorigen-
esis [107,112]. IL‑17A+ immune cells in the tumour microenviron-
ment have been shown to promote tumour growth by increasing 
the production of pro-angiogenic factors—such as VEGF and pros-
taglandins [113,114]—and recruiting neutrophils to the primary 
tumour through the production of IL‑8  [115,116]. Interestingly, 
IL‑17A reduces TNF-induced CCL5 expression in mouse lung 
fibroblasts [117], whereas IL‑17E, which binds to IL‑17BR, has the 
opposite effect [118]. Although the roles of IL‑17A and E in tumori
genesis have been characterized in numerous studies [119–121], 
the function of IL‑17B in both tumorigenesis and immunity remains 
largely unknown. Both IL‑17B and C cause neutrophil infiltration by 
the induction of TNF and IL‑1β expression in monocytes [118,119]. 
In the light of the physiological role of IL‑17B, IL-17B-producing 
MSCs could facilitate the metastatic process by promoting tumour 
angiogenesis and recruiting neutrophils to the metastatic site. This 
would support β2-integrin-mediated docking of the tumour cells to 
the endothelial wall [122]. 

Notably, there are significant variations in how tumour cells use 
MSCs to enhance their metastatic potential. Although MDA-MB‑231 
and SUM1315 are both innately metastatic to the bone and can be 
induced to metastasize to the liver and lungs upon ectopic expression 
of IL‑17BR, only SUM1315 cells express significantly higher levels of 
IL‑17BR in bone metastasis. shRNA-mediated knockdown of CCR5 
in MCF7/Ras and HMLER cells does not affect metastatic potential, 
whereas lung metastasis is seriously compromised in MDA-MB‑231 
and MDA-MB‑435 cell lines under these conditions. In addition, the 
metastasis-promoting potential of MSCs can be independent of their 
effect on primary tumour growth, as is the case in the enhancement 
of MCF7/Ras metastasis by MSC admixture [13]. By contrast, MSCs 
apparently inhibit hepatocellular carcinoma metastasis by suppress-
ing TGF‑β and MMP2, although they promote primary tumour growth 
in vivo [123]. Therefore, further investigation into how various can-
cer subtypes alter their metastatic potential in response to MSCs and 
whether these interactions are tumour type-dependent and context-
dependent will be crucial for developing new therapeutic strategies to 
block the metastasis-promoting function of MSCs (Sidebar A).

MSC-mediated immunomodulation in metastasis
The contribution of MSCs to tumour growth and progression 
is similar to that in wound healing; both processes benefit from 
physical support of the stroma provided by MSCs with their ver-
satile plasticity. However, one major difference between the 
endogenous role of MSCs healing a wound and their tumori-
genic role at the ‘never-healing’ wound site is their influence on 
immune cells—the former is immunostimulatory whereas the 
latter is generally immunosuppressive [124]. Human MSCs sup-
press the proliferation of T cells through mediators such as TGF‑β 
and HGF [125], and induce apoptosis of activated T cells through 
indoleamine 2,3-dioxygenase secretion [126]. MSCs also inter-
fere with dendritic cell differentiation   127–129], which is cru-
cial for the production of pro-inflammatory cytokines—including 
TNF‑α, IFN‑γ and IL‑12—as well as B- and NK-cell prolifera-
tion [130,131]. This markedly hampers the normal inflammatory 
function of immune cells (Fig  2). The MSC-driven promotion of 
Treg cell expansion and immunosuppressive activity is of particular 
interest, as many reports suggest that Tregs are a prognostic factor in 

a variety of cancers (discussed later). These FoxP3+ CD25Hi CD4+ 
cells expand after stimulation by MSC-derived HLA‑G5 [132] and 
can maintain their immunosuppressive activity for an extended 
period of time when cultured with MSCs in vitro [133]. Most of the 
aforementioned studies have led to promising results in the use of  
MSCs to treat graft-versus-host disease, allogeneic bone marrow 
transplantations and skin transplantation [124,134].

The immunomodulatory properties of MSCs have also been  
proposed to have an influential role in tumour growth, although 
evidence for this is limited. Injection of MSCs with B16 melanoma 
cells into syngeneic recipients allows tumour growth, whereas the 
tumour cells are rejected in the absence of MSCs or if their num-
bers are reduced [135]. More recently, MSC-secreted TGF‑β1 has 
been shown to promote Treg cell expansion, and blocking TGF‑β1 or 
depleting Tregs has been shown to increase CTL- and NK‑mediated 
lysis of T47D breast cancer cells in vitro [136]. Finally, CAFs polar-
ize the tumour microenvironment to an immunosuppressive TH2 
cytokine profile, which can stimulate Treg expansion and promote 
4T1 tumour growth and metastasis to the lungs [137]. This sug-
gests that differentiated progenies of MSCs might also contribute to 
immunosuppression. Although these studies confirm that tumour-
associated MSCs can exert immunosuppression, they do not 
provide unequivocal evidence that MSC-mediated immunosup-
pression can promote metastatic tumour growth independently of 
other MSC-dependent mechanisms discussed above.

The prospect of targeting MSCs to render the tumour micro
environment more immunoreactive has been discussed but must be 
considered in the light of the controversy surrounding tumour immu-
nosurveillance. Burnet and Thomas proposed in 1957 that tumour 
cells with their “new antigenic potentialities” can induce an immune 
response against the primary tumour; successful tumorigenesis occurs 
if the tumour cells are able to escape recognition by the innate and 
adaptive immune systems [138–140]. Deficiency of Rag [141], the 
depletion of CD4+ and CD8+ T cells, and neutralization of IFN‑γ in 
MCA-treated mice [142] have all been shown to significantly increase 
the incidence of tumorigenesis, supporting the immunosurveillance 
hypothesis. However, other studies have shown that immunoedit-
ing—a process by which tumour cells can lose their immunogenic-
ity through loss of the major histocompatibility complex [138]—is 
not observed in other strains of spontaneous cancer-prone mice. For 
example, tumours spontaneously arising from simian virus 40 T anti-
gen (SV40 Tag) can elicit a Tag-specific B-cell and T-cell response, 
but this response cannot suppress tumorigenesis [23]. In fact, some 
key studies have demonstrated a pro-tumorigenic role for adap-
tive immune cells [143,144]. CD4+ effector T  cells, which secrete 
cytokines to support CTL proliferation, also secrete cytokines such as 

Sidebar A | In need of answers
(i)	 How are tumour-associated MSCs, Tregs and other bone marrow-

derived cells different from those present in normal tissues?
(ii)	 Do bone marrow-derived cells have a role in a particular stage of 

metastasis, distinct from other stages?
(iii)	What is the nature of tumour metastatic niches and how do they differ 

from normal adult stem cell niches, such as the haematopoietic stem 
cell niche? What are the roles of the various bone marrow-derived cells 
in such niches?

(iv)	 How can we interfere with the interaction of bone marrow-derived cells 
with tumour cells to inhibit tumour metastasis?
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IL-4 that stimulate EGF production from tumour-associated macro
phages (TAMs) in a spontaneous MMTV-PyMT murine mammary 
adenocarcinoma model. This, in turn, promotes EGF receptor-medi-
ated invasion and subsequent metastasis to the lungs [144]. In line 
with these reports, CCL5 and IL-17B—which have been discussed 
above as mediators of cancer metastasis—are inflammatory cytokines 
known to recruit and activate adaptive immune cells. Therefore,  
further investigation is needed regarding the immunomodulatory 
properties of MSCs in the context of tumorigenesis and metastasis.

Tregs and metastasis
There is rapidly growing evidence that Tregs infiltrate tumours 
and positively correlate with poor prognosis in cancer 
patients[15,145–147], with the exception of renal cell carcinoma 
and certain haematological malignancies [148]. Tregs maintain 
immune tolerance and prevent inflammatory disease by suppressing 
cytotoxic T-cell activity and the proliferation of effector T cells [149–
151]. Various subsets of Tregs of different immunophenotypes are 
found in both lymphoid and non-lymphoid organs [152–154]. As in 
the case of MSCs, there are many markers—such as CD25, FOXP3 
and CTLA4—used to identify Tregs, the immunosuppressive role of 
which has been well-characterized [15]. Impairment of Treg function 
induces a range of autoimmune and inflammatory diseases, such 

as type  I diabetes  [155], rheumatoid arthritis [156] and systemic 
lupus erythematosus [157]. Hypomorphic alleles of the FoxP3 
gene and the loss of CTLA4 expression—which are both required 
for Treg maintenance and function [158–160]—lead to severe sys-
temic autoimmunity and lymphoproliferative disease in humans 
and animal models [15,161,162]. This suggests that Treg infiltration 
into the tumour mass could render the tumour microenvironment 
immunosuppressive and thus prevent the inflammatory response  
to tumours.

Indeed, depletion of Tregs suppresses tumour progression in mod-
els of breast cancer [163], leukaemia, myeloma, fibrosarcoma [164], 
colon adenocarcinoma [165] and lung cancer [166]. Furthermore, 
the infiltration of Tregs into the primary tumour has been recently 
proposed to promote metastatic potential (Fig  3; [19,163,167]), 
although some studies disagree with these findings due to the dif-
ferences in animal models and cell lines [168,169]. Administration 
of autologous CD25 antibody—which depletes the Treg pool—alone 
or with concomitant stimulation of NKT cell activity can suppress 
pulmonary metastasis of 4T1 murine mammary tumour cells [163]. 
This suggests additive effects on the suppression of tumour meta
stasis when Tregs are inactivated and NKT  cells are relieved from  
Treg-mediated suppression (Fig 3).

Another study supporting the role of Tregs in promoting metasta-
sis showed suppression of 4T1 lung metastasis after administration 
of CD25 antibody, and that the secretion of CCR4 ligand, CCL17 and 
CCL22 in the lungs can recruit CCR4+ 4T1 and CCR4+ Tregs  [167]. 
In addition, the loss of lung metastasis in NOD/SCID mice can be 
restored by transferring CD25+ CD4+ Tregs from BALB/c mice [166]. 
Most importantly, this study identified a molecule responsible for Treg-
mediated apoptosis of NK cells, β-GBP, which is secreted by Tregs and 
specifically affects NK cells [167]. The same research group also iden-
tified a population of immunosuppressive B cells that express one of 
the Treg markers, CD25, as well as B-cell markers B220 and CD19 
[170]. This immunosuppressive population can also promote 4T1 
lung metastasis, as shown by its reduction after B220 antibody treat-
ment. Culturing CD25+ B220+ CD19+ regulatory B cells (Breg) with 
non-regulatory CD4+ T cells leads to increased expression of FOXP3 
in the latter population and the acquisition of immunosuppressive 
properties in vitro, suggesting that Breg cells might promote Treg con-
version (Fig 3). Furthermore, only transfer of both regulatory B cells 
and non-Tregs—and not of Breg cells alone—can restore lung metasta-
sis in NOD/SCID mice, demonstrating that Bregs have an indirect, sup-
porting role in Treg-mediated lung metastasis. These studies provide 
fairly convincing evidence that Tregs have a crucial role in lung meta
stasis, but they also strongly suggest that there could be many other 
subpopulations involved in this process. For example, a specific sub-
set of CD4+ CD25+ Tregs that express CCR6 is more frequently found in 
breast and colorectal tumours than its CCR6– counterpart, and relies 
on TGF‑β signalling for propagation in situ [171]. CD11c+ dendritic 
cells, which secrete TGF‑β and stabilize FOXP3 and CCR6 expres-
sion, and TAMs, which recruit CCR6+ Tregs through CCL20 secre-
tion, mediate this subtype-specific immunosuppressive response 
[171]. Other immune cells, such as myeloid-derived suppressor cells 
(MDSCs), secrete various cytokines—such as TGF‑β—to recruit and 
activate Tregs in tumorigenic settings (Fig 3; [172,173]).

It has also been shown, however, that Tregs might promote meta
stasis independently of their immunosuppressive activity. RANK 
activity can repress the expression of maspin, which regulates cell 
adhesion and has been characterized as a metastasis inhibitor in 

Treg  expansion

HLA-G5
MSCs

PGE2

M-CSF
IL-6
IL-10
TGF-β

PGE2
TGF-β

Indoleamine
2,3-dioxygenase

Activated T-cell apoptosis

DC differentiationB-cell proliferationNK-cell proliferation

Fig 2 | Immunomodulatory properties of mesenchymal stem cells. 
MSCs can secrete a variety of immunomodulatory factors to promote an 
immunosuppressive environment. They induce apoptosis of activated T cells and 
the expansion of immunosuppressive Tregs through the secretion of indoleamine 
2,3-dioxygenase and HLA‑G5, respectively. MSCs can also produce PGE2 and 
TGF‑β to inhibit NK-cell proliferation, as well as secrete PGE2 to inhibit B-cell 
proliferation. MSC secretion of M-CSF, IL‑6, IL‑10 and TGF‑β also suppresses 
DC differentiation. DC, dendritic cell; HLA‑G5, human leukocyte antigen 
G5; IL, interleukin; M-CSF, macrophage colony-stimulating factor; MSC, 
mesenchymal stem cell; NK, natural killer; PGE2, prostaglandin E2; Treg cell, 
regulatory T cell; TGF‑β, transforming growth factor‑β.
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breast cancer [174–176]. Tregs in murine mammary carcinoma, 
which are induced by the overexpression of ErbB2, are a major 
source of RANKL and promote metastasis by suppressing maspin 
expression (Fig 3; [19]). In this case, Treg cell-mediated metastasis 
does not occur through immunomodulation, as pulmonary meta
stasis can be enhanced with exogenous RANKL in the complete 
absence of T cells. 

Therapeutic potential
Effective treatment for metastatic disease remains elusive, as the 
dissemination of tumour cells severely hinders the ability to deliver 
effectively therapeutic agents to numerous metastatic colonies [2]. 
Furthermore, various components of the metastatic microenviron-
ment offer tumour cells protection and resilience against ther-
apy [177]. Therefore, ideal candidates for the treatment of cancer 
metastasis should be able to efficiently home to metastatic sites and 
disrupt the protective environment of the metastatic lesions.

Application of MSCs. The tumour-targeting affinity of MSCs has 
been characterized, although some controversy remains, and pro-
posed to be a potentially effective mode of drug delivery for can-
cer treatment  [178–180]. Furthermore, MSCs might incorporate 
into the tumour stroma as CAFs [11], thereby effectively infiltrating 
the tumour microenvironment. Many therapeutic agents, ranging 
from oncolytic adenoviruses in ovarian cancer [181] to cytokines 
in melanoma [182] and various adenocarcinomas [183], have been 
delivered by tumour-tropic MSCs and shown to suppress tumour 
growth in experimental models. MSCs engineered to produce 
and deliver TRAIL in metastatic breast cancer [184] and pancre-
atic carcinoma [185] have been recently shown to suppress lung 
metastasis. The administration of TRAIL holds high therapeutic 
potential, as it induces apoptosis in transformed cells with minimal 
toxicity towards normal cells [186,187]. The application of a deliv-
ery platform is crucial, however, as the unstable pharmacokinetics 
of TRAIL in the circulation hinder efficient delivery to the tumour 
[188]. Studies demonstrating the targeting of MSCs to metastatic 
organs [18,92,93] suggest that TRAIL could be delivered to these 
metastatic sites effectively by using this strategy. Indeed, TRAIL-
expressing MSCs have been shown to target metastatic lungs in an 
MDA-MB‑231 experimental metastasis model [184].

Despite the potential advantage of using MSCs for drug deliv-
ery, their pro-tumorigenic and pro-metastatic effects described 
above are a cause for concern and could possibly outweigh the 
benefits of efficient delivery to tumour metastasis. Nevertheless, 
MSC drug delivery studies so far show that this is not the 
case  [179,185,189,190] and it remains unknown whether such 
engineered MSCs lose their innate potential to promote tumour 
progression from genetic manipulation, or the pro-tumorigenic 
effect of such engineered MSCs has minimal impact in the context 
of such experimental settings.

However, a major caveat of the aforementioned MSC-based ther-
apeutics is that the preclinical studies began MSC-mediated drug 
delivery relatively early in tumour progression—10 days after sub-
cutaneous injection of pancreatic carcinoma cells [185] and 7 days 
after intravenous injection of breast adenocarcinoma cells [184]—
whereas patients with metastatic disease would require treatment 
at much later stages of progression. Therefore, whether MSC drug 
delivery would elicit anti-metastatic effects in a clinical setting still 
needs to be explored.

The greatest challenge in searching for therapeutic targets 
to disrupt tumour–MSC interactions lies in the fact that certain 
molecular mechanisms defined under pathological conditions 
are also crucial components of physiologically normal condi-
tions. For example, CCL5 is secreted by tumour-associated MSCs 
to promote primary tumour growth and metastasis in a malig-
nant setting, but its endogenous function is to recruit and activate 
inflammation-inducing immune cells [191]. Targeting of CCL5 as 
a therapeutic option, therefore, might be problematic and result 
in severely adverse effects unrelated to the intended therapeu-
tic impact on cancer. Alternatively, extensive characterization of 
cancer-associated MSCs as compared with normal MSCs might 
yield unique cancer-associated MSC-specific properties as poten-
tial therapeutic targets. This is especially important when devising 
a therapeutic strategy to inhibit MSC activity, as normal MSCs are 
crucial in wound healing and tissue regeneration [54]. In fact, nor-
mal MSCs and their derivatives are being considered in numerous 
clinical trials for the treatment of bone fractures, stroke, multiple 
sclerosis and leukaemia [192–194]. For example, osteoprogeni-
tors expanded in vitro on hydroxyapatite scaffolds have been used 
to successfully treat 4 patients with diaphyseal segmental defects 
in long bones [195,196]. Therefore, a detailed molecular char-
acterization of cancer-associated MSCs in various metastasis 
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Fig 3 | Tregs promote cancer metastasis through immunosuppression and by 
stimulating invasive behaviour. Tumour-associated Bregs enhance the conversion 
of CD4+ T cells into immunosuppressive Tregs, which further promote cancer 
metastasis through immunosuppression and stimulating cell motility. Other 
immune cells, including MDSCs, DCs and TAMs, secrete various cytokines 
to recruit and activate Tregs. Tregs, in turn, inhibit the proliferation of tumour-
reactive NK cells and CTLs to create a metastasis-permissive immune 
environment. Tregs can also produce abundant RANKL, which has been shown 
to promote tumour cell invasion through maspin suppression. B/Treg, regulatory 
B/T cell; CTL, cytotoxic T lymphocyte; DC, dendritic cell; MDSC, myeloid-
derived suppressor cell; NK, natural killer; RANKL, receptor activator of 
nuclear factor-κB (ligand); TAM, tumour-associated macrophage. 
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organ sites might provide new therapeutic approaches to target  
organ-specific metastasis.

Application of regulatory T cells. There is a strong clinical corre-
lation between the presence of Tregs and poor prognosis of cancer 
patients [16,17,197]. The amount of Tregs in the primary tumours 
and sentinel lymph nodes has been proposed as a strong prognos-
tic indicator for metastasis-free survival in breast cancer [198,199] 
and papillary thyroid cancer [200]. For example, the probability 
of 10-year survival of lymph node FOXP3-negative and FOXP3-
positive subgroups of breast cancer patients is 41% and 18%, 
respectively [198]. Therefore, a great effort to suppress Treg cell 
expansion and the immunosuppressive activity of this population 
has been made but has resulted in limited success.

Selective Treg depletion by expressing FOXP3-driven diphtheria 
toxin receptor improves therapeutic vaccination against ovalbu-
min-expressing B16 melanoma cells in mice by allowing the accu-
mulation of activated CD8+ CTLs [201]. However, Treg cell depletion 
in the peripheral blood of melanoma patients with the CD25 neu-
tralizing antibody Daclizumab failed to enhance the efficacy of 
dendritic cell vaccination [202]. By contrast, administration of the 
recombinant IL‑2 diphtheria toxin conjugate denileukin diftitox to 
renal cell carcinoma patients, followed by RNA-transfected den-
dritic cell vaccination, significantly increased tumour cell-reactive 
T-cell responses [203]. This suggests that different cancer types 
might have different sensitivity to immunosurveillance, as well as 
different evasion mechanisms [204].

The suppression of cancer metastasis in patients receiving Treg-
cell-depleting agents has not yet been reported, although their ben-
efits in the context of tumour progression and metastasis are being 
assessed in clinical trials (NCT01307618).

Conclusion and future directions
It has become increasingly evident that the distinct stages of 
tumour progression cannot be viewed as a linear cascade, but 
rather must be placed in the context of an intricate network of 
tumour–stroma interactions with multiple signalling and cellular 
feedback loops. Bone marrow-derived cells are crucial mediators 
in fulfilling the potential of tumour cells for distant metastasis, by 
using their innate versatility to perform a wide range of supportive 
functions. MSCs can put on many faces as accomplices in tumour 
progression and metastasis. Similarly, Tregs contribute to these 
complex processes not only with their immunosuppressive prop-
erties but also by inducing cell motility. Both MSCs and Tregs dem-
onstrate how a beneficial endogenous function can be rendered 
harmful in the context of cancer progression. However, non-dis-
criminatory targeting of MSCs and Tregs could lead to dysfunctional 
wound healing and autoimmune diseases, respectively. Therefore, 
how various bone marrow-derived populations in the metastatic 
context can be distinguished from those with normal endo
genous function is a crucial goal that requires further research. 
Not only the MSCs, Tregs and other bone marrow-derived cells pre-
sent at the primary tumour should receive attention, but also the  
bone marrow-derived cells recruited to the metastatic niche to 
promote organ-specific metastasis should become a major topic 
for further investigation. Given the challenges of targeting tumour-
specific pathways, investigating the specificity of metastasis- 
promoting bone marrow-derived cells could provide a new  
targeted strategy for cancer treatment.
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