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Ready, Set, Reset: Stimulus-Locked Periodicity in
Behavioral Performance Demonstrates the Consequences

of Cross-Sensory Phase Reset
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The simultaneous presentation of a stimulus in one sensory modality often enhances target detection in another sensory modality, but the
neural mechanisms that govern these effects are still under investigation. Here, we test a hypothesis proposed in the neurophysiological
literature: that auditory facilitation of visual-target detection operates through cross-sensory phase reset of ongoing neural oscillations
(Lakatos et al., 2009). To date, measurement limitations have prevented this potentially powerful neural mechanism from being directly
linked with its predicted behavioral consequences. The present experiment uses a psychophysical approach in humans to demonstrate,
for the first time, stimulus-locked periodicity in visual-target detection, following a temporally informative sound. Our data further demonstrate
that periodicity in behavioral performance is strongly influenced by the probability of audiovisual co-occurrence. We argue that fluctuations in
visual-target detection result from cross-sensory phase reset, both at the moment it occurs and persisting for seconds thereafter. The precise
frequency at which this periodicity operates remains to be determined through a method that allows for a higher sampling rate.

Introduction

Sounds have been repeatedly shown to improve the detection of
co-occurring visual targets (Odgaard et al., 2003; Lippert et al.,
2007; Van der Burg et al., 2008b; Fiebelkorn et al., 2011). Some
researchers have suggested that this multisensory enhancement
of visual-target detection operates through a cognitive, attention-
related mechanism (Odgaard et al., 2003; Lippert et al., 2007),
whereas others have suggested that it operates through low-level,
multisensory connections between early sensory cortices (Stein et
al., 1996; Van der Burg et al., 2008b). Here, we tested the hypoth-
esis that auditory facilitation of visual-target detection results
from an interaction between top-down attention and ongoing
neural oscillations.

Moment-to-moment cortical excitability fluctuates with the
phase of ongoing oscillations (Monto et al., 2008; Busch et al.,
2009; Mathewson et al., 2009). Several studies have now demon-
strated that cortical spike timing aligns with the phase of low-
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frequency oscillations (1-4 Hz), with action potentials most
likely to occur during high-excitability phases (Montemurro et
al., 2008; Kayser et al., 2009; Whittingstall and Logothetis, 2009).
As a consequence, stimuli that align with high-excitability phases—
when neurons are closer to their firing threshold—are more
likely to be detected than stimuli that align with low-excitability
phases. The response of the brain to external stimuli is therefore
not only a function of stimulus properties but also a function of
the internal dynamics of the brain.

Recent data from nonhuman primates reveal that the influ-
ence of ongoing oscillations on perception in not merely passive,
but that attention can modulate the phase of ongoing oscillations
(Lakatos et al., 2008, 2009; Besle et al., 2011). In particular, Laka-
tos et al. (2009) described a mechanism, referred to as cross-
sensory phase reset, in which attending to a single stimulus
synchronizes ongoing oscillations across functionally intercon-
nected cortical regions, including multiple sensory cortices. At-
tending to a sound, for example, can reset the phase of ongoing
oscillations in visual cortex, thus potentially increasing sub-
threshold depolarization. This type of mechanism, through
which the presentation of a stimulus in one modality influences
baseline cortical excitability in another modality, might underlie
the auditory facilitation of visual-target detection in humans. To
date, however, the neurophysiological literature has been unable
to directly link cross-sensory phase reset with its behavioral con-
sequences (see Materials and Methods).

Here, we present the results of an experiment designed to
bridge the gap between cross-sensory phase reset and behavioral
performance. If attending to a temporally informative sound



9972 - J. Neurosci., July 6, 2011 - 31(27):9971-9981

consistently resets the phase of ongoing os-
cillations, visual-target detection at subse-
quent time points should reflect this
underlying, stimulus-locked oscillatory ac-
tivity. We therefore predicted that there
would be periodicity in behavioral perfor-
mance that would persist for seconds fol-
lowing the presentation of a sound. To test
the dependence of our results on endoge-
nous factors such as top-down attentional
control (Lippert et al., 2007; Lakatos et al.,
2009), we also manipulated the probability
that a low-contrast visual target would co-
occur with the sound. We predicted that
changing the probabilistic context would af-
fect how attention was deployed, and there-
fore influence whether ongoing oscillations
were reset such that co-occurring visual tar-
gets aligned with high-excitability phases.
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Materials and Methods

Participants
Eight neurologically normal volunteers partici-
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pated in each condition of the experiment (mean
age, 30.3 * 6.1 years; five females; three left-
handed), and data from all subjects were included
in the analyses. Two participants completed both
conditions, and the remaining 12 subjects
completed one condition each. The Institu-
tional Review Boards of The City College of
New York and Albert Einstein College of
Medicine approved the experimental proce-
dures. Written informed consent was obtained
from all subjects before data collection, in line
with the Declaration of Helsinki.

Figure1.

Stimuli and task

Measurement limitations have prevented cross-sensory phase reset
from being linked with its behavioral consequences. Simply put, phase
alignment across trials might result from either (1) phase reset of ongoing
oscillations or (2) a transient sensory response, which is superimposed
on ongoing oscillatory activity (Makeig et al., 2004; Shah et al., 2004;
Sauseng et al., 2007; Martinez-Montes et al., 2008). In a unisensory con-
text, in which, for example, a sound is presented and cross-sensory phase
reset is measured in early visual cortices (Lakatos et al., 2009), there is no
measurement limitation because there is no transient sensory response
evoked in visual cortex (i.e., there is no visual stimulus). In a multisen-
sory context, however, in which transient sensory responses are evoked in
both auditory and visual cortices (i.e., when a sound and a visual stimulus
are simultaneously presented), it becomes difficult to establish whether
cross-sensory phase reset occurred in either cortical region. It has thus yet
to be proven that cross-sensory phase reset resulting from a stimulus
presented in one sensory modality (e.g., a sound) has behavioral conse-
quences for a task in which potential targets are presented in a second
sensory modality (e.g., near-threshold visual targets). To bypass these
measurement issues that complicate the detection of phase reset in neu-
rophysiological data, we devised a task for which the behavioral results
themselves could be used to probe for cross-sensory phase reset.

Figure 1la provides a schematic of the experimental design. A sound
was presented at the beginning of each trial, and a near-threshold visual
target was presented either with the sound or at 1 of 12 time points at 500
ms intervals up to 6000 ms after the sound. If the sound presented at the
beginning of each trial consistently reset the phase of ongoing oscillations
in visual cortex, then phases should have aligned across trials. It follows
that the timing of visual-target presentation relative to the sound should
influence the likelihood of visual-target detection, leading to a periodic
pattern of behavioral performance (Fig. 1a). We thus used hit rates to

Equiprobable:1/17 1/17 /17 117 117 /17 /17 117 117 117 117 117 117 417
AV-dominant: 4/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20 4/20

Aschematic of the experimental design. a, On each trial, a 1-3 s SOA was followed by a 1000 Hz tone. A visual stimulus
was presented either simultaneously with the tone, or at 1 of 12 other evenly spaced time points after the tone (0.5, 1, 1.5, up to
65). Catch trials (CT) were also included to estimate false alarm rates. Participants were told to respond whenever they saw a visual
stimulus. It was hypothesized that consistent phase reset of underlying neural activity (relative to the tone) would be revealed
through periodicity in behavioral performance. b, For the equiprobable condition, the visual stimulus was equally likely to occur
with the tone as it was to occur at each of the other 12 time points. For the AV-dominant condition, the visual stimulus was four
times more likely to occur with the tone as it was to occur at each of the other 12 time points.

probe for underlying oscillatory activity, time-locked to a temporally
informative sound.

We chose a 2 Hz sampling rate to test for the existence of periodicity in
behavioral performance based on several factors, including pilot data,
previous literature, and our a priori goal, which was to demonstrate a
behavioral correlate of cross-sensory phase reset. Pilot data, collected
using different combinations of sampling rates and trial durations, sug-
gested that the most apparent and consistent oscillation to emerge in
observed hit rates was a low-delta frequency around ~1 Hz. This is
consistent with previous research, which has demonstrated that sensory
selection can occur through temporal modulation of low-delta frequen-
cies (Lakatos et al., 2007, 2008; Schroeder and Lakatos, 2009; Besle et al.,
2011). Higher frequencies, particularly those in the theta range (4—7 Hz),
have also been shown to influence behavioral performance (Busch et al.,
2009; Mathewson et al., 2009), but no oscillations in that range were
observed in the pilot data. The absence of these higher-frequency oscil-
lations likely reflects limitations of our psychophysical approach, rather
than cross-sensory phase reset being truly limited to low-delta oscilla-
tions. Lower frequencies (such as those in the low-delta range) generally
have greater power than higher frequencies (such as those in the theta
range), and their influence on visual-target detection is therefore more
likely to emerge from noise in behavioral data (Bak et al., 1987; Van
Orden et al., 2003; Buzséki and Draguhn, 2004).

Based on these considerations and our desire to minimize the substan-
tial time commitment of our participants, we adopted a sufficient sam-
pling rate to measure the low-delta oscillations observed in the pilot data
(i.e., the most apparent and consistent oscillation). Although the pilot
data suggested that cross-sensory phase reset might be occurring at a
frequency near 1 Hz, it is entirely possible that what appears to be a 1 Hz
oscillation reflects phase reset of higher frequencies. The important point
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here is that the possibility of such aliasing, while preventing us from
making strong statements about frequency, does not prevent us from
providing evidence of periodicity in visual-target detection.

To test the hypothesis that top-down attentional control is instrumen-
tal in the process of phase resetting [in light of the studies by Lippert et al.
(2007) and Lakatos et al. (2009)], the experiment included two condi-
tions (Fig. 1b). For the first condition (the “equiprobable” condition),
the simultaneous audiovisual stimulus (i.e., visual targets at 0 ms) and
visual targets at each of the other 12 time points were equiprobable. For
the second condition [the “audiovisual (AV)-dominant” condition], the
probability of simultaneous audiovisual targets was increased to 20%,
while the probability of visual targets at each of the other time points was
set at 5% (i.e., 5% multiplied by 12 time points). For both conditions,
participants were informed of these probabilities before the experiment
under the assumption that this knowledge would affect their strategic
approach to the task (Lippert et al., 2007).

Participants, who were positioned 70 ¢cm in front of a 21 inch CRT
computer monitor, were asked to maintain central fixation and report
the occurrence of visual stimuli: sine-wave gratings with 16 ms duration,
subtending 2.5 degrees of the visual angle in both the vertical and hori-
zontal planes. The visual stimuli were presented 2° below central fixation,
and sounds (1000 Hz tone, 16 ms) were presented from a Bose (Com-
panion 2) speaker positioned directly below the computer monitor. After
a participant clicked the right mouse button to begin a trial, there was a
1-3 s prestimulus interval, followed by a clearly audible sound (~75 dB
SPL). A visual stimulus sometimes co-occurred with the sound (at 0 ms),
or at one of the 12 evenly spaced time points following the sound (Fig.
1a). Catch trials (~20%), in which there was a sound at the beginning of
the trial but no visual stimulus throughout the duration of the trial, were
included to estimate false alarms. Participants were directed to click the
left mouse button whenever they detected a visual stimulus, regard-
less of when it occurred. Trials ended either when the participant
responded or 7200 ms after the sound was presented (giving partici-
pants enough time to respond to a visual stimulus that occurred at
6000 ms). Following each trial, participants were presented with a
pause screen and had to click the right mouse button to begin the next
trial. An SR Research EyeLink eye tracker was used to discard all trials
with blinks or eye movements. After every 20 trials, participants were
updated on their behavioral performance.

For six participants from the equiprobable condition, complete data-
sets were collected for three different contrast levels (3 X 80 trials for each
time point); however, this approach proved to be overly intensive. The
remaining participants completed a total of 80 trials for each time point,
with contrast being adjusted such that average visual-target detection
across all 13 time points was held at <50%. For the AV-dominant con-
dition, participants completed 320 multisensory trials and 80 trials for
every other time point. To maintain vigilance, participants rarely com-
pleted more than three blocks of the experiment on a given day (each
block took ~12 min to complete), and all participants were advised to
stop the experiment if they were unable to focus on the task at hand.
Overall, each participant completed 12 blocks.

Statistical bootstrapping procedures

Our first aim was to determine whether the observed data included a
periodic component that would be indicative of cross-sensory phase re-
set. To do this, we looked at the data in two general ways: (1) least-squares
fitting of sinusoidal models to the data, and (2) spectral analysis of the
data using the fast Fourier transform (FFT). Our second aim was to
determine whether cross-sensory phase reset was influenced by the prob-
ability of audiovisual co-occurrence. Here, we compared the phase of our
model fits across the equiprobable and AV-dominant conditions (for a
description of the probabilities in each condition, see Fig. 1).

For all of our analyses, we chose to use a nonparametric bootstrapping
procedure to quantify statistical confidence. Nonparametric statistics are
robust to violations of assumptions for parametric statistical tests, such as
normally distributed sampling distributions and homogeneity of vari-
ance (a more traditional, parametric approach, such as grand averaging
would not be appropriate in the context of the present experiment, be-
cause such an approach would assume that the frequency and phase of
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oscillatory activity was the same across participants). For the bootstrap-
ping procedure, each observed test statistic of interest is compared with a
reference distribution of statistics that is derived by iteratively random-
izing the original data. We used a one-tailed threshold of p < 0.05 to
define significance. The p value for a bootstrap test is the proportion of
values in the reference distribution that exceed the test statistic (i.e., the
observed value from our collected data). Since we wanted to evaluate the
significance of the temporal pattern of performance, we randomized
performance values (i.e., hit rates) across the 13 time points to create our
reference distributions. We performed this randomization differently de-
pending on which test statistic was being evaluated. In each case, we chose the
more conservative randomization procedure. In the following sections, the
applicable test statistics and randomization procedures are described.

Data modeling
Using an iterative MATLAB algorithm (Isqcurvefit), we fit the following
model equation to the observed data in a linear least-squares sense:

Pear = Ay TN 4 A et e oo gl < 0.25, loyd > 0.25,

(1)

Where x is a vector of sample time points in seconds, w is a frequency in
Hertz, ¢ is a phase angle in radians, A is an amplitude in performance
units (i.e., percentage), ¢ is a constant in performance units, and y is a
vector of modeled values in performance units. The subscripts If and hf
designate lower-frequency and higher-frequency sinusoidal components
of the model, respectively. The lower-frequency component was in-
cluded to model performance variability that could be attributed to con-
sistent within-trial fluctuations in a participant’s sustained attention or
vigilance, whereas the higher-frequency component was included to
model the aftereffects of cross-sensory phase reset. This higher-frequency
component was therefore the component of interest, given our a priori
goal to test for a behavioral correlate of cross-sensory phase reset. A
change of notation can make the sinusoidal nature of Equation 1 explicit
by substitution by Euler’s formula. That is, Equation 1 is equivalent to the
following:

j’full = ay cos(w; x) + by i sin(wye X) + aye cos(wpe x) +
bye+ i sin(wpex) +c. (2)

Note that phase from Equation 1 is now carried by the ratio of the
amplitudes of the sine and cosine components of Equation 2 by the
identity ¢ = tan ~'(a/b) for ¢ € (—m, 7). We should also mention that
negative frequencies, which are equivalent to their positive-valued coun-
terparts with a phase shift of 7 radians, and frequencies exceeding the
Nyquist limit (i.e., =1 Hz) were valid potential output parameters for the
model fitting procedure (i.e., our model fits were not constrained to
positive frequencies or frequencies less than or equal to £1 Hz). All free
parameters of the model were fit in parallel. The iterative curve-fitting
algorithm is dependent on initial conditions and can potentially return a
solution that is locally optimized despite the existence of a better solution
far from the local minimum. To avoid such suboptimal local solutions,
we repeated the fitting algorithm 10 times, with randomly selected initial
values for each parameter. We tested several quantities of such repeti-
tions and found that 10 repetitions were sufficient to consistently identify
the best-fitting model. This procedure had the additional advantage of
removing initial condition bias from the fitting procedure.

After determining the best-fitting model parameters, we calculated the
proportion of variance-accounted-for (R?) for both the full model [y
(Eq. 1)] as well as a model characterized by just the constant term and the
low-frequency sinusoidal component as follows:

yie = AT+, (3)
Note that we independently fit Equation 3 to the observed data. The
proportions of variance-accounted-for were calculated as follows:

E(}A’full - }’)2

Riy=1- Sy -

(4)



9974 - J. Neurosci., July 6, 2011 - 31(27):9971-9981

(5)

where y is the vector of observed performance values, and j is the scalar
mean of this vector. We took the difference of these R * values to describe
the increase in the proportion of variance-accounted-for by including
the higher-frequency sinusoidal component (AR}) as follows:

ARlzxf = R?ull - Rlzf- (6)

Not only were we interested in quantifying the quality of the fit of the
higher-frequency sinusoid to the data (i.e., AR}) but moreover we
wanted to know the absolute quantity of variance described by this term
of the model. To assess this, we multiplied the R? of each model by the
variance of that model. More specifically, we multiplied the R? of each
model by the variance of the predicted values at each sample point,
meaning that we did not include the model variance between the sample
points in our calculation, as follows:

A = 2
;2 (P — Pran)
Relgy = Ry N

E(}A/lf - }_A/lf)z
N >

(7)

Rel = Rlzf (8)

where 7 is the mean of model values and N is the number of sample
points. We termed this product the relevance of the model. We examined
the change in relevance due to the inclusion of the higher frequency
sinusoidal component to the model (ARel, ) as follows:

ARelhf = Relfuu - Rellf. (9)

Statistical bootstrapping of model fit statistics

The test statistics for this analysis were the R* values (Eqs. 4—6) and
relevance values (Egs. 7-9). Reference distributions were created by ran-
domly assigning hits and misses to the 13 time points. The total quantity
of hits and misses used for each dataset equaled the quantity of hits and
misses for the corresponding participant. For the AV-dominant condi-
tion, the 0 ms stimulus onset asynchrony (SOA) time point contained
four times as many targets as each of the other time points, and was
therefore assigned the concomitant number of scores for the boot-
strapped datasets.

Individual participant statistics. We generated 10° bootstrapped
datasets by randomly assigning hits and misses to the sampled time
points. For each of the bootstrapped datasets, we determined the
best-fitting model parameters using the method described above (see
Data modeling). The procedure used to fit models to the boot-
strapped data was identical in every way with those used to fit models
to the observed data. After fitting the models to the bootstrapped
data, we calculated relevance and R? values for the model terms to
create reference distributions.

Group-level statistics. The reference distribution for the group-level
analysis was created by drawing 10> eight-member samples from the
individual bootstrap distributions of R? and relevance values to create a
distribution of randomized “group-level” averages. The test statistics
were the actual observed group averages for R? and relevance values.

Statistical bootstrapping of frequency spectra
We tested for frequencies with significantly large amplitudes. The test
statistics were thus the amplitudes of each frequency. For the random-
ization procedure, we shuffled the time points at which performance was
measured for each subject while keeping the performance values them-
selves unchanged. This shuffling procedure preserves the total integrated
amplitude of the Fourier-transformed data, which aids in the interpreta-
tion of the statistical outcome. That is, we were less interested in testing
the total variability of the data than in testing the importance of the
temporal order of the data.

Individual participant statistics. For each participant we created 5 X
10° bootstrapped datasets by randomly shuffling the temporal order
of observed performance values. Each bootstrapped dataset was
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Fourier-transformed to yield a reference distribution of amplitude
spectra. Resultant frequencies ranged from 0 to 1 Hz with 0.16 Hz
resolution. We ignored the 0 Hz component, which was always iden-
tical with that of the observed data due to the nature of the shuffling
procedure.

Group-level statistics. The participant-level bootstrapping procedure
identifies significant spectral peaks. We were particularly interested
whether there was group-level commonality regarding peak frequencies.
For this analysis, the reference distribution was created by drawing 5 X
107 eight-member samples from the individual bootstrap distributions
to create a distribution of randomized group-level averages.

Statistical bootstrapping of phase concentrations across conditions
To test whether the phase of the high-frequency component of our best-
fitting models (i.e., ¢y, from Eq. 1) differed significantly between the
equiprobable and AV-dominant conditions, we again used a nonpara-
metric bootstrap test. The test statistic in this case was the magnitude of
the difference of the mean phases for each group. To derive this value, the
observed phase for each participant’s model fit (1) was first projected
onto the complex unit circle as follows:

z,=cos@, + ising,. (10)

Note that z, can be conceived as a two-element vector of unit magnitude
and argument ¢,,. These complex values were averaged for each condi-
tion to yield Z,, and Z,,, where eq and av represent the equiprobable and
AV-dominant conditions, respectively. An important property of the
vector Z is that it reflects both the central tendency and dispersion of the
sample of phases: the argument of Z is the mean phase and the mag-
nitude of Z reflects the distribution of the sample. The magnitude is
large when the sampled phases are concentrated around a common
value (attaining a maximum of 1 when all the phases in the sample are
identical), and the magnitude is small when the phases are broadly
distributed (attaining a minimum of 0 when the phase distribution is
uniform or antipodal). The distance between the two samples is the
following:

d=|Zq = 2| (11)

where ||| represents the scalar norm or magnitude of the resultant vector.
In theory, d can range from 0 (no phase difference) to 2 (opposite phases
with no within-sample variance). Figure 7 includes a geometrical illus-
tration of the quantity d.

To derive the reference distribution for this test, it was tractable to
resample the original 16 phases into all 12,870 possible combinations of
the two eight-member sets of participants. Because of the relatively small
sample for this test, we used a smoothed bootstrapping procedure in
which each resampled phase was jittered by a small random value drawn
from a normal distribution with zero mean and a SD of I/VN, where
N = 16, the sample size (Hall et al., 1989). This smoothing procedure
improves the bootstrapped estimate of the sampling error for small sam-
ple sizes. To further improve the estimate, we repeated the entire permu-
tation procedure 10 times with different jitters, resulting in a total of
128,700 permutations. For each such permutation, we computed the
distance d between the two groups by Equations 10 and 11. The p value
for this test is the proportion of distances in the reference distribution
that exceed the observed distance between the phases of the equiprobable
and AV-dominant condition.

Results

Multisensory enhancement of visual-target detection

It is well established that a simultaneously presented sound can
enhance visual-target detection (Stein et al., 1996; McDonald et
al., 2000; Frassinetti et al., 2002; Odgaard et al., 2003; Teder-
Silejarvi et al., 2005; Lippert et al., 2007; Van der Burg et al,,
2008a,b). Some debate remains, however, regarding the extent to
which these multisensory effects are stimulus-driven (Van der
Burgetal., 2008b) or instead operate under top-down attentional
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Figure 2.  Significant auditory facilitation of visual-target detection was observed in the

AV-dominant condition (p = 0.03). For the equiprobable condition, however, there was a
nearly significant (p = 0.06) decrease in the detection of visual targets that co-occurred with
the sound, relative to visual targets that occurred 0.5 s after the sound. Error bars indicate SEM.

control (Lippert et al., 2007). As a first step in our analysis, we
assessed whether (1) our behavioral setup led to auditory facili-
tation of co-occurring visual targets and (2) whether auditory
facilitation was dependent on the probability of simultaneity (i.e.,
audiovisual co-occurrence). If the multisensory enhancement of
visual-target detection is a bottom-up process that is indepen-
dent of attentional influences, it should be evident in both exper-
imental conditions. That is, if auditory facilitation is entirely
based on the instantaneous properties of the stimulus, it should
be observed whenever a visual target is presented with a sound,
regardless of the probabilistic context.

To test whether the sound presented at the beginning of each
trial enhanced the detection of co-occurring visual targets, we
compared hit rates in response to audiovisual targets (i.e., visual
targets presented at 0 ms) with those in response to visual-alone
targets that were presented 500 ms after the sound. These visual-
alone targets are well outside the temporal window for integra-
tion and thus a good approximation of the visual-alone targets
typically used in multisensory studies (Slutsky and Recanzone,
2001). For the equiprobable condition, a two-tailed, paired t test
revealed that hit rates in response to audiovisual targets were
actually lower than those in response to visual-alone targets at a
nearly significant level (p = 0.06). Rather than facilitating visual-
target detection, these data suggest that the sound at the begin-
ning of each trial in the equiprobable condition acted as a
distractor. For the AV-dominant condition, however, a two-
tailed, paired ¢ test revealed a significant multisensory enhance-
ment of visual-target detection (p = 0.03).

To summarize, auditory facilitation of co-occurring visual
targets was evident in our second condition, in which there
was a higher probability of simultaneity (Fig. 2), but not in our
first condition. These data therefore support earlier findings that
the predictive power of a sound determines whether or not there is a
multisensory enhancement of visual-target detection (Lippert et al.,
2007). Because participants were informed of the probabilities be-
fore the experiment, we propose that their strategic approach to the
task, or rather how they deployed their attention, determined how
the sound at the beginning of each trial influenced visual-target de-
tection. We discuss this proposal in greater detail in the Discussion.
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Although the sound had less predictive power in the
equiprobable condition relative to the AV-dominant condition,
it still provided temporal information about when participants
could begin to expect the occurrence of visual targets. Given that
the sound did not provide competing or contradictory informa-
tion, lower detection of audiovisual targets relative to visual-
alone targets (at 500 ms) might seem somewhat surprising. But
the present analysis was limited to the first two time points and
therefore does not reveal the whole story. The antipodal results
observed here might be better explained in the broader context of
phase reset of ongoing oscillations. It is possible, for example, that
phase reset occurred in both conditions but that the exact nature
of this phase reset (e.g., the timing of phase reset relative to the
sound, or the phase to which oscillations were reset) differed
based on the probabilistic context of the task. In the next section,
we examine visual-target detection across the entire trial duration
(i.e., 6 s) to test for stimulus-locked periodicity in behavioral
performance.

Stimulus-locked periodicity in visual-target detection
Attention is known to increase the apparent contrast of visual
stimuli (Carrasco et al., 2004), and thus it is reasonable to sup-
pose that an attentional mechanism might be involved in the
multisensory enhancement of visual-target detection. Further-
more, insofar as periodicity has been hypothesized to be particu-
larly relevant to timekeeping (Matell and Meck, 2000), if
attention is indeed being deployed based on temporal informa-
tion—as we propose—then cross-sensory phase reset of ongoing
oscillations seems an excellent candidate mechanism (Lakatos et
al., 2007, 2009). Here, we probed for evidence of periodicity in
visual-target detection at consecutive time points, time-locked to
a temporally informative sound.

To test for the presence of periodicity, a bootstrap statistical
approach was combined with a two-part sinusoidal model (for
the equations, see Materials and Methods), in which the model fit
of the observed hit rates for each time point was compared with
the model fit of randomly resampled data (i.e., hits and misses
were randomly redistributed across the 13 time points). This
procedure was tailored to address the following hypotheses: (1)
that the observed data included a lower-frequency component
that resulted from consistent changes in a participant’s sustained
attention (or vigilance) across the duration of a trial, and (2) that
the periodic nature of the observed data was attributable to
stimulus-locked oscillatory activity. The first sinusoid of the
model was constrained to be =0.25 Hz (i.e., 1.5 cycles per 6 s).
This lower-frequency sinusoid was expected to explain variability
associated with consistent changes in sustained attention that
occurred within a trial. For example, if a participant’s focus con-
sistently waned, such that her performance generally decreased
from the first (0 ms) to the last time point (6000 ms). The lower-
frequency component of our two-part model had the flexibility to
also conform to strategies based on probabilities; for example, if
probability summation improved a participant’s performance in
response to visual targets that were presented near the end of a
trial, such that her performance generally improved from the first
to the last time point. The second sinusoid of the model was
constrained to be >0.25 Hz. This higher-frequency sinusoid was
expected to explain variability associated with a physiological
rhythm (i.e., ongoing oscillatory activity), in which the phase but
not the frequency was influenced by a participant’s strategic ap-
proach to the task.

The results of this analysis for the equiprobable condition are
shown in Table 1 (columns 1-3) and Figure 3, and for the AV-
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dominant condition, in Table 2 (columns 1-3) and Figure 4. For
the equiprobable condition, at the group level, the full model
(i.e., the model with both sinusoids) explained ~73% of the vari-
ability in visual-target detection across the 13 time points. The
lower-frequency component of the model, when fit by itself, ex-
plained ~33% of the variability in visual-target detection, and
the addition of the higher-frequency component to the model
explained another 40% of the variability in visual-target detec-
tion. Whereas the full model (p < 0.002) explained a significantly
higher proportion of variance in the observed data relative to the
randomly redistributed data, the proportion of variance ex-
plained by the lower-frequency component was only nearly
significant (p = 0.07) and the propor-
tion of variance explained by the higher-
frequency component (p = 0.23) was
not statistically significant.

a Participant-level sinusoidal model
fits for the equiprobable condition

Fiebelkorn et al.  Periodicity in Behavioral Performance

Table 1. Model fit results for the equiprobable condition

Participant  R*(full) (1) R*(f)(2) ~ R*(hf)(3)  Rel(full) (4)  Rel (i) (5) Rel (hf) (6)
P1 0.72(0.24)  0.54(0.06) 0.17(0.86) 0.038(0.03)  0.022(0.03)  0.016(0.20)
P2 0.77(0.15)  0.20(0.59) 0.58(0.10) 0.089 (0.000) 0.006 (0.23)  0.084 (0.000)
P3 0.62(0.49)  0.17(0.65) 0.45(0.28) 0.027(0.09)  0.002 (0.49)  0.025(0.05)
P4 0.89(0.01)  0.20(0.55) 0.68 (0.03) 0.095(0.000) 0.005(0.24)  0.090 (0.000)
P5 0.69(0.33)  0.39(0.19) 0.30(0.64) 0.027 (0.10)  0.009(0.12)  0.018(0.17)
P6 0.68(0.34)  0.40(0.19) 0.28(0.65 0.055(0.003) 0.019(0.04)  0.036 (0.008)
P7 0.74(0.19)  0.24(0.48)  0.50(0.18) 0.039(0.03) ~ 0.004(0.33)  0.035(0.02)
P8 0.71(0.27)  0.50(0.07) 0.21(0.79) 0.079(0.000) 0.038 (0.009) 0.041(0.01)
Al 0.73(0.002) 0.33(0.07) 0.40(0.23) 0.055(0.000) 0.017(0.005) 0.044 (0.000)

Notes: Values of p are in parentheses. Full, Full model (i.e., it includes both sinusoids); If, lower frequency (i.e.,
<0.25 Hz); hf, higher frequency (i.e., >0.25 Hz).

b Group-level bootstrapped
statistics (R?)
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a low-amplitude sinusoid might explain a
large proportion of variance, it cannot be
taken as evidence of periodicity. To calculate
the relevance of the model fit, the propor-
tion of variance explained was weighted by
the absolute value of the average deviation
of the predicted values of the model from
the predicted mean (for the equations, see
Materials and Methods). As shown in Ta-
bles 1 and 2, columns 4—6, once the total amount of variance was
incorporated into the dependent measure, statistical signifi-
cance was achieved not only at the group level for both condi-
tions but also at the participant level. On average, the
randomly redistributed data had significantly less variability

Figure3.

Modeling results for the equiprobable condition. a, Each participant's data were fit with a two-part sinusoidal model.
The gray dots represent the observed data, and the black lines represent the model predictions. The frequencies of the two
sinusoids that the modelfit to the observed data are shown above each participant's plot. Average false alarm rates across four time
windows show that participants were not biased to respond more at the beginning of each trial. b, The proportion of variance (R?)
explained by the two-part sinusoidal model for the observed data was compared with that explained for randomly redistributed
data (Table 1). The gray lines represent where the model fit for our observed data falls relative to the bootstrap distributions. ¢, An
additional measure of model it that incorporated the total amount of variance explained by the model (i.e., the model relevance)
was used to further compare the observed data to randomly redistributed data (Table 1, Fig. 5).

than the observed data, further supporting the assertion that
the observed data included a periodic component.

To further probe for the absence or presence of periodicity,
the observed data were also transformed into their frequency-
domain representation. The FFT was used to compare the fre-
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Table 2. Model fit results for the AV-dominant condition

Participant  R*(full) (1) R*(f)(2)  R*(hf)(3) Rel(full) (4)  Rel(If) (5) Rel (hf) (6)

P1 0.68(0.27)  0.14(0.71) 0.55(0.11) 0.035(0.03)  0.001(0.62) 0.034(0.02)
P2 0.89(0.02)  0.55(0.05) 0.33(0.55) 0.071(0.000) 0.028 (0.001) (0.043) (0.003)
P3 0.66 (0.35)  0.17(0.62) 0.49(0.20) 0.073 (0.000) 0.005 (0.19) 0.068 (0.000)
P4 0.85(0.06)  0.25(0.45) 0.60(0.08) 0.058 (0.000) 0.005 (0.22) 0.053 (0.000)
P5 0.69(0.32)  0.23(0.47) 0.46(0.27) 0.050(0.001) 0.005 (0.20) 0.045 (0.000)
P6 0.81(0.08)  0.36(0.22) 0.45(0.28) 0.053(0.002) 0.010(0.07) 0.042 (0.004)
P7 0.78(0.17)  0.41(0.18) 0.37(0.46) 0.032(0.04)  0.009 (0.09) 0.023 (0.07)
P8 0.66(0.37)  0.15(0.69) 0.51(0.17) 0.038(0.02)  0.002 (0.44) 0.036 (0.009)
Al 0.75(0.000) 0.28(0.27) 0.47(0.02) 0.051(0.000) 0.008 (0.007)  0.043 (0.000)

Notes: Values of p are in parentheses. Full, Full model (i.e., it includes both sinusoids); If, lower frequency (i.e.,
<0.25 Hz); hf, higher frequency (i.e., >0.25 Hz).

a Participant-level sinusoidal model
fits for the AV-dominant condition

b Group-level bootstrapped
statistics (R?)
Full Model, p < 0.001
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consistent periodic component. Figure 6 shows the group-level
results of this analysis for both experimental conditions. For the
equiprobable condition, there were peaks at both 0.17 Hz (1 cycle
per 6 s) and 1 Hz, but the amplitudes of these peaks were not
significantly greater than those of the randomly shuffled data
(p = 0.08 and p = 0.14, respectively). In comparison, for the
AV-dominant condition, there was a single peak at 1 Hz that was
indeed significantly greater than the amplitude of the randomly
shuffled data (p = 0.008).

Because of potential aliasing, it is not possible to definitively
conclude based on the FFT results that the observed periodic
component reflects oscillatory activity at 1 Hz. Oscillations at 4
and 8 Hz, for example, would also be ex-
pected to show peaks (i.e., alias) at 1 Hz
with a sampling rate of 2 Hz. It can be
concluded, however, that the modeling
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and FFT results for the AV-dominant con-
dition both provide evidence for stimulus-
locked periodicity in the observed hit rates.
The modeling results for the equiprobable
condition, once the total variance explained
is taken into account, also provide evidence
for stimulus-locked periodicity. We pro-
pose that the emergence of a periodic com-
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reset, and ongoing neural oscillations
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phase (and auditory facilitation of visual-
target detection was therefore observed).
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lations are being reset to a low-excitability
phase. To formally test whether phase was
being reset differently across the two con-
ditions, we measured whether the phase
concentrations of our best-fit models for
the higher-frequency component were
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Figure4. Modeling results for the AV-dominant condition. a, Each participant’s data were fit with a two-part sinusoidal model.
The gray dots represent the observed data and the black lines represent the model predictions. The frequencies of the two sinusoids
that the model fit to the observed data are shown above each participant's plot. Average false alarm rates across four time windows
show that participants were not biased to respond more at the beginning of each trial. b, The proportion of variance (R?) explained
by the two-part sinusoidal model for the observed data was compared with that explained for randomly redistributed data (Table
2). The gray lines represent where the model fit for our observed data falls relative to the bootstrap distributions. ¢, An additional
measure of model fit that incorporated the total amount of variance explained by the model (i.e., the model relevance) was used

to further compare the observed data to randomly redistributed data (Table 2, Fig. 5).

quency content of the observed data to that of random-order
data. Here, the bootstrap statistical approach involved randomly
shuffling the observed hit rates across the 13 time points. Since
the frequency spectrum of white noise is flat, any significant spec-
tral peaks in the observed data would provide evidence for a

model fit (relevance)

004 006 statistically different.

An examination of the observed hit
rates in Figures 3 and 4 reveals that the
audiovisual time point (0 ms) was a rela-
tive low point in visual-target detection
for seven of the eight participants in the
equiprobable condition, whereas the same
time point was a relative high point in
visual-target detection for seven of the
eight participants in the AV-dominant
condition. We therefore measured the dif-
ference in phase concentrations across the two conditions both
with all 16 participants and without the two outliers. These out-
liers were selected based on the observed data, rather than the
model fits. With the entire sample (N = 16), the difference be-
tween phase concentrations across the conditions was nearly sig-
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nificant (p = 0.08). With the smaller sample (N = 14), this
difference between phased concentrations was significant (p = 0.01).
Figure 7 shows the results obtained both with and without the two
outliers, whose data are represented by Xs on the unit circle. A
comparison of the modeled phase concentrations across the
two conditions suggests that the exact nature of cross-sensory
phase reset—perhaps whether phase is reset to a high- or low-
excitability state—is influenced by the probabilistic context
(i.e., the probability of audiovisual co-occurrence).

Discussion
The present data strongly support the hypothesis that one of the
primary mechanisms driving auditory facilitation of visual-target
detection is cross-sensory phase reset of ongoing neural oscilla-
tions. Because of measurement limitations, neurophysiological
research in nonhuman primates has been limited to describing
cross-sensory phase reset in response to unisensory stimulation
(Lakatos et al., 2009). Using a purely behavioral approach, we
circumvent these limitations and provide compelling evidence
for cross-sensory phase reset in response to multisensory stimu-
lation. Importantly, these data provide a highly plausible link
between this attentional mechanism that has been observed with
neurophysiological recordings and its perceptual consequences.
Consistent with the notion that cross-sensory phase reset under-
lies behavioral facilitation, we found that performance on a
visual-target detection task waxed and waned in a periodic fash-
ion, time-locked to a temporally informative sound. These peri-
odic fluctuations in behavior extended beyond 5 s, indicating—at
least when attention must be sustained—that cross-sensory
phase reset influences perception not only

at the moment it occurs but also for sec-

onds thereafter. We attribute this period- a
icity in behavior to ongoing oscillations

Equiprobable
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Figure 5.  An illustration of the additional information that the relevance term provides
about the modelfit. The relevance of the model fit incorporates both the proportion of variance
explained and the total amount of variance explained. Here, we show observed subject data (a)
and randomly redistributed data (b) in which the model explains a similar amount of variance,
but the observed subject data have much greater total variance. The total amount of variance is
indicated by the size of the pie chart. Given the low amplitude of the sinusoids that were fit to
therandomly redistributed data, it should not be described as periodic. That is, a low-amplitude
sinusoid begins to approximate a line, and therefore a periodic model, although it might pro-
vide a good fit in terms of the proportion of variance explained, does not provide a meaningful
description of the data beyond what would be provided by a linear model.
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The role of endogenous factors

Our data are consistent with the view-
point that multisensory enhancement of
visual-target detection operates through
strategic top-down processes (Lippert et al., 2007). In the present
experiment, auditory facilitation was observed only when partic-
ipants knew that the visual target was more likely to co-occur
with the sound than at any of the other time points (i.e., during
the AV-dominant condition). Given that participants were in-
formed of the probabilistic context before each experimental ses-
sion, and that the difficult task required highly focused attention,

bootstrap distributions.

dots). Amplitude is measured in performance units (based on hit rates). b, Bootstrap distributions of FFT-amplitude measurements
at 0.17 and 1 Hz. The gray lines represent where the FFT-amplitude measurements of our observed data fall relative to the

we believe that explicit knowledge may have played a role in how
participants deployed their attentional resources. For example, in
the AV-dominant condition, the optimal approach to the task
was to deploy attentional resources immediately following the
button press that initiated each trial. Such anticipatory attention
was useful because visual targets were most likely to co-occur
with the sound, but the exact timing of the sound following the
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Figure 7. A comparison across conditions of the phase concentrations fit by the higher-
frequency component of our two-part sinusoidal model. a, Each participant’s phase value is
plotted on the unit circle, with participants in the AV-dominant condition represented by blue
circles and participants in the equiprobable condition represented by red circles. The Xs repre-
sent the phase values for the two participants who were removed from the analysis because
their observed hit rate at 0 ms (i.e., the audiovisual time point) violated the general pattern of
results for their respective conditions. The value of d represents our measure of the difference
between the phase concentrations, with phases in the equiprobable condition clustered closer
to a low-excitability phase (LEP) and phases in the AV-dominant condition clustered closer to a
high-excitability phase (HEP). b, The bootstrap distribution of phase concentrations generated
by randomly reassigning phase measurements across the two groups. The solid red line repre-
sents the length of d when all participants were included in the statistical analysis (p = 0.08),
and the dashed red line represents the length of d when two participants were excluded from
the statistical analysis (p = 0.01).

button press was unpredictable (i.e., the sound occurred 1-3 s
after the button press). For the equiprobable condition, however,
there was no such optimal approach. As a result, attentional de-
ployment in time relative to the sound was probably less consis-
tent, both across participants and across trials. Because visual
targets were just as likely to co-occur with the sound as they were
to occur at any of the other 12 time points, participants in the
equiprobable condition had far less impetus to deploy their at-
tention in anticipation of the sound than did participants in the
AV-dominant condition. Instead, participants in the equiprob-
able condition might have more often used the sound like a tem-
poral cue to begin attending for the possible occurrence of a
visual target, which would make anticipatory attentional deploy-
ment weaker in the equiprobable condition than it was in the
AV-dominant condition. We propose that it was such differences
in attentional deployment across the conditions that led to dif-
ferences in the observed results. First, a more consistent behav-
ioral approach might explain why evidence of periodicity in
visual-target detection was stronger for the AV-dominant condi-
tion than for the equiprobable condition. That is, the proportion
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of variance explained by the higher-frequency component of the
two-part sinusoidal model was significant for the AV-dominant
condition, even before it was weighted by the total variance ex-
plained (Fig. 3), whereas the model fit of the higher-frequency
component for the equiprobable condition was only significant
when both the proportion and the total variance explained were
considered together (i.e., as the model relevance) (Fig. 4). Sec-
ond, because auditory facilitation of visual-target detection was
only observed for the AV-dominant condition, it might be that
anticipatory attentional deployment is a prerequisite for cross-
sensory phase reset to a high-excitability phase.

Possible support for our proposal that attentional resources
were deployed differently across the two conditions arises from
the FFT results (Fig. 6). The frequency spectrum for the
equiprobable condition includes a nearly significant peak at 0.17
Hz (p = 0.08) that is entirely absent in the AV-dominant condi-
tion. This peak might reflect the ramping up of sustained atten-
tion (or vigilance) following the sound that occurs near the
beginning of each trial. In other words, the typical strategic ap-
proach for the equiprobable condition might best be described by
a Gaussian resembling a 0.17 Hz sinusoid, with a crest that occurs
either at the beginning, middle, or end of the trial (i.e., a sinusoid
with one complete cycle over the 6 s period of a trial). In compar-
ison, in the AV-dominant condition, in which we suspect that
anticipatory attentional deployment was stronger, changes in
sustained attention across the duration of a trial might be best
described by an even lower-frequency sinusoid, time-locked to
the button press that initiated each trial. However, here a fre-
quency <0.17 Hz would not be apparent in our FFT results, as
0.17 Hz is the lower limit of our frequency resolution.

If multisensory enhancement of visual-target detection in-
deed operates through strategic top-down processes, then its un-
derlying neural mechanism should be similarly susceptible to
endogenous factors. In support of this prediction, Lakatos et al.
(2009) observed phase reset in visual cortex in response to an
auditory-alone stimulus during an attend-auditory condition,
but no such phase reset was observed in response to the same
auditory-alone stimulus during an attend-visual condition.
These results demonstrated that, in a unisensory context, cross-
sensory phase reset only occurs in response to stimuli presented
in the to-be-attended modality. In the present experiment, we
provide evidence that manipulating the probability of simultane-
ity—and presumably how participants’ deployed their atten-
tional resources—determined whether a co-occurring visual
target aligned with a high-excitability phase. As shown in Figures
3 and 4, the hit rate in response to co-occurring visual targets (at
0 ms) was at a peak of visual-target detection for just one partic-
ipant in the equiprobable condition, but seven (of eight) partic-
ipants in the AV-dominant condition. After removing one
outlying participant’s data from each condition, phase concen-
trations of the higher-frequency component of the model (i.e.,
the model component thought to reflect the aftereffects of cross-
sensory phase reset) were shown to be significantly different. On
average, modeled phase in the equiprobable condition was clus-
tered closer to a low-excitability phase, while modeled phase in
the AV-dominant condition was clustered closer to a high-
excitability phase (Fig. 7). Thus, the specifics of when and how
cross-sensory phase reset occurred may have hinged not only on
whether the sound at the beginning of each trial was attended or
ignored (Lakatos et al., 2009) but also on a participant’s strategic
approach to the task. The length of the vectors in Figure 7 repre-
sents the dispersion of phase values around the means for the two
conditions. The longer (blue) vector in the AV-dominant condi-
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tion suggests greater consistency in phase reset (relative to the
equiprobable condition), perhaps reflecting a more consistent
strategy with a stronger deployment of anticipatory attention.

We framed the preceding discussion of potential strategies in
terms of anticipatory attention, which we assume (and the data
suggest) was deployed based on the predictive power of the sound
that occurred at the beginning of each trial. Following this first
time point (i.e., the potential audiovisual time point), the prob-
ability of visual-target presentation had a fixed temporal distri-
bution that also might have influenced behavioral performance
(Fig. 1). Several previous studies have shown that a temporal
distribution of visual-target onsets (i.e., a probability distribu-
tion) can modulate behavioral performance through temporal
expectancy (Coull and Nobre, 1998; Miniussi et al., 1999; Janssen
and Shadlen, 2005), whereby peaks in performance align with the
time periods in which a visual target is most likely to occur. What
is critical to the interpretation of our results is whether periodic-
ity in observed hit rates can be explained by such temporal expec-
tancy effects rather than cross-sensory phase reset. For both the
equiprobable and AV-dominant conditions, the probability of
visual-target presentation following the first time point (i.e., the
potential audiovisual time point) had a comb-like distribution,
with a peak every 500 ms (Fig. 1). If participants had been able to
infer the nonuniform nature of this temporal distribution and
use that information either implicitly or explicitly to their advan-
tage, then the pattern of observed hit rates would have been flat,
not periodic. That s, if the comb-like distribution of visual-target
onsets had induced periodicity of temporal expectancy, then
peaks in performance would have optimally matched the sam-
pling rate (i.e., the frequency of our temporal distribution). In-
stead, the presence of both peaks and troughs in the observed hit
rates demonstrates that periodicity did not conform to the sam-
pling rate, meaning that periodicity in visual-target detection
cannot be explained by the temporal distribution of visual-target
onsets. We argue that the most parsimonious explanation for
periodicity in visual-target detection following a temporally in-
formative sound is thus cross-sensory phase reset of ongoing
neural oscillations.

A possible anatomical substrate

The dependence of auditory facilitation of visual-target detection
(and cross-sensory phase reset) on endogenous factors indicates a
role for the so-called frontoparietal attentional network, which
has been repeatedly associated with goal-oriented behavior and
top-down attention (for review, see Corbetta et al., 2008). Acti-
vation of the frontoparietal network during sustained attention
might alter the neurophysiological properties of neurons in sen-
sory cortices, such that incoming information from the sensory
periphery resets the phase of ongoing oscillations. Given the su-
pramodal nature of cross-sensory phase reset, however, the influ-
ence of frontoparietal regions on sensory cortices might be
mediated indirectly via the thalamus—the sensory hub of the
brain. Anatomical data suggest that thalamocortical projections
are well situated to synchronize subthreshold oscillatory activity
across multiple cortical regions. In addition to the frequently
described “core” projections from the sensory nuclei of the thal-
amus to layer IV of sensory cortices, the thalamus is known to
have less-specific, more-diffuse cortical projections (Jones,
1998). These “matrix” neurons from the thalamus project to su-
perficial layers of the sensory cortices and are thus thought to
modulate ongoing processing. The thalamic reticular nucleus re-
ceives projections from many cortical regions, including the pre-
frontal cortex (Zikopoulos and Barbas, 2007), and is therefore
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particularly likely to have a role in widespread cortical modula-
tions. The reticular nucleus itself sends inhibitory projections to
various thalamic nuclei, including the primary sensory nuclei
(e.g., the lateral geniculate nucleus). Perhaps in this way, process-
ing in prefrontal cortex associated with sustained attention
(Coull et al., 1996; Manly and Robertson, 1997) disinhibits dif-
fuse thalamocortical projections. When a stimulus occurs, these
disinhibited thalamocortical projections might then reset the
phase of ongoing oscillations across multiple sensory cortices
(Lakatos et al., 2007, 2009).

Concluding remarks

Ongoing oscillations shape our perception (Foxe et al., 1998;
Worden et al., 2000; VanRullen et al., 2006, 2007; Monto et al.,
2008; Busch et al., 2009; Lakatos et al., 2009; Mathewson et al.,
2009; Busch and VanRullen, 2010; Snyder and Foxe, 2010), and
attentional modulation of phase prevents this influence on per-
ception from being random (Lakatos et al., 2009). Here, we
probed for evidence of cross-sensory phase reset in the context of
a visual-target detection task, in which phase reset in response to
a temporally informative sound was hypothesized to increase the
likelihood of detecting low-contrast visual stimuli; however, we
suspect that the influence of cross-sensory phase reset on perception
extends far beyond this context. For example, by synchronizing sub-
threshold neural activity across cortical regions, cross-sensory phase
reset in response to a single attended stimulus might serve to select
the co-occurring multisensory features of an object for further pro-
cessing (Fiebelkorn et al., 2010a,b). In a complex environment,
cross-sensory phase reset might also aid in attentional capture when
asound co-occurs with a sudden change in the visual scene (Van der
Burg et al., 2008b). In both of these cases, the stimuli might be easily
seen or heard—unlike the present experiment, in which we used
near-threshold visual stimuli—but cross-sensory phase reset still
serves as a tool for attentional selection.

The present data point to several remaining questions that will
need to be investigated by future studies. First, the exact relation-
ship between behavioral periodicity and the specific frequencies
of underlying neural oscillations needs to be established. (i.e.,
periodicity in behavioral performance might reflect phase reset of
higher-frequency oscillations). Second, here we investigated
phase reset in a multisensory context; it remains to be shown
whether temporal cueing can lead to behavioral periodicity in a
unisensory context. For example, does a temporally informative
visual stimulus lead to periodicity in visual-target detection? Fi-
nally, reaction times in the present study did not seem to reflect
an underlying oscillatory process in the same way that hit rates
did (data not shown); however, the present study was also not
optimally designed to investigate the relationship between phase
reset and reaction times. For example, participants were asked to
emphasize accuracy over speed when responding to near-
threshold visual stimuli. A couple of recently published studies,
however, have shown evidence that the phase of oscillations
modulates reaction times (Drewes and VanRullen, 2011; Thorne
et al., 2011), with Thorne et al. (2011) relating the relationship
between oscillations and reaction time to cross-sensory phase
reset in auditory cortex. Future studies will be needed to further
establish the degree to which reaction times are influenced by
oscillations in both sensory and motor cortices (Gross et al.,
2002), as well as how oscillations in these anatomically separated
cortical regions interact.
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