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SUMMARY

Epigenetic reprogramming in early germ cells is crit-
ical toward the establishment of totipotency, but
investigations of the germline events are intractable.
An objective cell culture-based system could provide
mechanistic insight on how the key determinants
of primordial germ cells (PGCs), including Prdm14,
induce reprogramming in germ cells to an epigenetic
ground state. Here we show a Prdm14-Klf2 syner-
gistic effect that can accelerate and enhance
reversion of mouse epiblast stem cells (epiSCs) to
a naive pluripotent state, including X reactivation
and DNA demethylation. Notably, Prdm14 alone
has little effect on epiSC reversion, but it enhances
the competence for reprogramming and potentially
PGC specification. Reprogramming of epiSCs by
the combinatorial effect of Prdm14-Klf2 involves
key epigenetic changes, which might have an analo-
gous role in PGCs. Our study provides a paradigm
toward a systematic analysis of how other key genes
contribute to complex and dynamic events of reprog-
ramming in the germline.

INTRODUCTION

Specification of primordial germ cells (PGCs) in mice is accom-

panied by extensive epigenetic reprogramming, which is essen-

tial for generating the totipotent state (Hayashi and Surani,

2009a). The key determinants of PGC specification, Blimp1/

Prdm1 and Prdm14, induce repression of the somatic program

and initiate epigenetic reprogramming in early germ cells

(Ohinata et al., 2005; Vincent et al., 2005; Yamaji et al., 2008),

and they regulate this process together with their direct and indi-

rect targets. Cell culture-based systems might be particularly

useful for testing how the individual components contribute to

complex reprogramming events in the germline, which in turn

could improve our ability to control cell fates.

PGC specification commences at embryonic day (E) 6.25 from

postimplantation epiblast; these epiblast cells undergo major
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epigenetic changes after implantation, including DNA methyla-

tion and X inactivation (Hayashi and Surani, 2009a). Epiblast

stem cells (epiSCs) derived from E5.5–E6.5 epiblast inherit key

properties from these cells (Brons et al., 2007; Tesar et al.,

2007) and retain the potential to undergo reversion to embryonic

stem cells (ESCs) (Bao et al., 2009) or specification to unipotent

PGCs (Hayashi and Surani, 2009b). The alternative fates from

epiSCs to ESCs or PGCs are quite distinct, but they share impor-

tant common features, including reactivation of the inactive X

chromosome, DNA demethylation, and re-expression of key

pluripotency genes (Hayashi and Surani, 2009a). Importantly,

for Oct4 expression, there is a switch from the use of the prox-

imal to the distal enhancer, the so-called enhanceosome locus

of pluripotency (Bao et al., 2009; Chen et al., 2008; Yeom

et al., 1996). Thus, the key epigenetic modifications in postim-

plantation epiblast and epiSCs, which constitutes a robust

epigenetic boundary, are reversed during reprogramming in

both instances, although reversion of epiSCs to ESCs, or indeed

of somatic cells to induced pluripotent stem cells (iPSCs), may

also transit through a PGC-like state (Chu et al., 2011). EpiSCs

can therefore be used to investigate aspects of epigenetic

reprogramming and the roles of genes in early germ cells. The

fact that epiSCs acquire additional DNA methylation during their

derivation, which probably reduces their competence for PGC

specification (Bao et al., 2009; Hayashi and Surani, 2009b), is

paradoxically an advantage for their use in such assays.

EpiSCs self-renew in activin and basic fibroblast growth factor

(bFGF), with a gene expression profile and epigenetic state that

is distinct from mouse ESCs (Brons et al., 2007; Tesar et al.,

2007). EpiSCs can, however, revert to ESCs upon exposure to

leukemia inhibitory factor (LIF)-Stat3 signaling on feeder cells

(Bao et al., 2009; Yang et al., 2010), a process that is improved

with the introduction of transcription factors, such as Klf4 or

Nr5a2 (Guo and Smith, 2010; Guo et al., 2009).

Here we used epiSCs to explore the role of germline factors

during reprogramming to ESCs. We found a potent combinato-

rial role for early germline factors, Prdm14-Klf2, that accelerate

and enhance the ensuing process, including X reactivation and

DNA demethylation, which are among the key reprogramming

events that are also seen in early PGCs. Our approach might

provide critical insight into the role of key germline factors, which

in turn could be tested directly on germ cells while expanding our

knowledge of complex reprogramming mechanisms in general.
, 2012 ª2012 Elsevier Inc. 425Open access under CC BY license.

mailto:a.surani@gurdon.cam.ac.uk
http://dx.doi.org/10.1016/j.stem.2012.01.020
http://creativecommons.org/licenses/by/4.0/


Oct4

female X-GFP ESCs

Sox2

Nanog

Oct4 + DAPI Oct4 Oct4 + DAPI 

Sox2 + DAPI Sox2 Sox2 + DAPI

Nanog + DAPI Nanog Nanog + DAPI

XiGFP EpiSCs

A

O
ct

4

XiGFP EpiSCs

D
A

P
I

X
is

t
 
R

N
A

D
A

P
I

X
is

t
 
R

N
A

O
ct

4
D

A
P

I

92% (n=100) 97% (n=100) 0% (n=100)97% (n=100)

XiGFP EpiSCs

D
A

P
I

XmXpGFPXY

XmXpGFP EpiSCsE6.5 X-GFP epiblast

ph
as

e
X

-G
F

P

XiGFP 
EpiSCs

D E

F G

(5
76

/2
6)

 

X-GFP (530/30) 

 

0 %

XiGFP EpiSCs

(5
76

/2
6)

 

B

27 %

XmXpGFP EpiSCs

Klf2 Prdm14 Stella Rex1 Nr0b1 Tsix

Xist Fgf5

Oct4 Nanog Sox2

Xi
GFP 

EpiSC gene expression

0.0001

0.001

0.01

0.1

1

10

100

1000

r
e

l
a

t
i
v

e
 t

o
 G

A
P

D
H

 a
n

d
 
f
e

m
a

l
e

 
X

-
G

F
P

 
E

S
C

s

ph
as

e
X

-G
F

P

Oct4

Nanog

H3K27me3

Ezh2

ubH2A H3K27me3

Oct4H3K27me3
DAPI

NanogEzh2
DAPI

H3K27me3ubH2A
DAPI

XiGFP EpiSCs

C

female
X-GFP MEFs

female
X-GFP MEFs

Figure 1. Establishment and Characterization of XiGFP EpiSCs

(A) Phase contrast and fluorescence images of XmXpGFP epiSCs derived from female E6.5 X-GFP epiblast. Scale bars represent 100 mm.

(B) Flow cytometry analysis of XmXpGFP epiSCs and XiGFP epiSCs.

(C) Phase contrast and fluorescence images of XiGFP epiSCs cultured in activin and bFGF on fibronectin. Scale bars represent 100 mm.

(D) Q-PCR analysis for selected ESC and epiSC markers in XiGFP epiSCs relative to GAPDH and ESCs. Error bars are mean ± SD (n = 2).

(E) Immunostaining for Oct4, Sox2, and Nanog in XiGFP epiSCs and ESCs. Nuclei were stained with DAPI. Scale bar represents 10 mm.
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RESULTS

EpiSC-Based Assay for Reprogramming
and X Reactivation
There are two major attributes of epiSCs that can be utilized to

generate reporter lines for studying epigenetic reprogramming.

First, female epiSCs exhibit an inactive X chromosome (Xi),

which is unlike ESCs and PGCs (Guo et al., 2009; Hayashi and

Surani, 2009b). Second, the expression of Oct4 in epiSCs

requires its proximal enhancer (PE), whereas it is the distal

enhancer (DE) that drives Oct4 expression in both ESCs and

PGCs (Bao et al., 2009; Yeom et al., 1996). We therefore estab-

lished two epiSC reporter lines to examine reprogramming by

monitoring the status of X reactivation and by analyzing the acti-

vation ofOct4DE in response to germline factors (see also later).

To monitor the state of the X chromosome in epiSCs, we

derived epiSCs from female E6.5 epiblast with a GFP reporter

on the paternal X chromosome (Hadjantonakis et al., 2001).

The resulting XmXpGFP epiSC lines showed heterogeneous

GFP expression resulting from random X chromosome inactiva-

tion in female postimplantation epiblast (Figures 1A and 1B).

Next, we established a homogeneous population of GFP-nega-

tive epiSCs, termed XiGFP epiSCs (Figure 1B), in which the GFP

transgene is located exclusively on the Xi, providing a basis to

study the reactivation of the Xi by monitoring GFP expression.

We observed a stable Xi when the cells were cultured in the

absence of feeder cells on fibronectin in serum-free medium

containing activin and bFGF, as shown by the fact that we did

not detect GFP-positive cells (Figures 1B and 1C). Only when

we cultured these XiGFP epiSCs on feeder cells in the presence

of serum supplement did we notice, albeit very infrequently,

a small number (around 0.05%) of GFP-positive cells (Pasque

et al., 2011; data not shown), which may arise because of LIF

or unknown factors secreted by feeder cells or present in serum

supplement. We therefore cultured the cells without feeders on

fibronectin andwithout serum supplement to ensure a repressed

X-GFP reporter at the outset.

XiGFP epiSCs showed high expression of postimplantation

epiblast genes Fgf5 and Xist and low expression of ESC- and

PGC-associated genes, including Klf2, Prdm14, Stella, Rex1,

Nr0B1, and Tsix (Figure 1D; Guo et al., 2009).WhereasOct4 tran-

script and protein levels were similar in XiGFP epiSCs and female

ESCs, both Sox2 and Nanog were detected at reduced levels

in XiGFP epiSCs (Figures 1D and 1E; Han et al., 2010). Further-

more, Oct4-positive XiGFP epiSCs showed nuclear domains of

Xist (92%, n = 100), as was the case in female mouse embryonic

fibroblasts (MEFs) (97%, n = 100) (Figure 1F), consistent with the

presence of an Xi (Brockdorff et al., 1991). These XiGFP epiSCs

showed accumulation of the repressive histone 3 lysine 27

trimethylation (H3K27me3) chromatinmark together with nuclear

foci of Enhancer of Zeste (Ezh2) (Figure 1G; Pasque et al.,

2011). In addition, monoubiquitinated H2A (ubH2A) (de Napoles
(F) RNA-FISH for Xist and side-by-side immunostaining for Oct4 in XiGFP epiSCs

(Xist), 20 mm (Oct4).

(G) Double immunostaining for H3K27me3/Ezh2/ubH2A (green) and Oct4/Nano

represents 10 mm.

See also Figure S1.
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et al., 2004) colocalized with H3K27me3 domains in the majority

of epiSC nuclei (Figure 1G). Notably, we did not detect binding of

Oct4, Sox2, or Nanog to intron 1 of Xist in XiGFP epiSCs, unlike

female ESCs (Figure S1A available online; Navarro et al., 2008),

which indicates dissociation of key pluripotency factors from

Xist intron 1 (and perhaps other loci), probably during the forma-

tion of postimplantation epiblast.

Thus, the presence of multiple Xi markers demonstrates stable

X inactivation in XiGFP epiSCs under our culture conditions.

Germline Factors with Impact on Reprogramming
and X Reactivation
Next, we asked whether reprogramming and X chromosome

reactivation in epiSCs could be promoted by factors that are

upregulated in early germ cells, including Blimp1, Prdm14,

Stella, Tcfap2c, Klf2, Klf5, Nanog, Sox2, and Dnd1, because

these genes are induced just before the repression of Xist and

X reactivation in PGCs (Chuva de Sousa Lopes et al., 2008;

Kurimoto et al., 2008).

Initially, we found that transient transfection of germline gene

combinations did not induce XiGFP reporter expression in epiSCs

(data not shown). We therefore generated epiSCs with stable

expression of combinations of two or three candidate factors

by piggyBac (PB) transposition (Figure 2A; Guo et al., 2009),

starting with Prdm14, Stella, Klf2, Nanog, and Sox2. EpiSCs

with stable expression of these factors at similar or higher

levels than the endogenous transcripts in female X-GFP ESCs

(Figure 2B) had increased Stella, Nanog, and Sox2 protein

compared to vector control epiSCs (Figure S1B). The levels of

Prdm14 in manipulated epiSCs were higher than those in ESCs

cultured in serum and LIF (Figure 2B), but similar to the levels

in ESCsmaintained in 2i (Ying et al., 2008) and LIF, with the latter

having about four times higher levels of Prdm14 transcript (Fig-

ure S1C). Transcript and protein levels of Sox2, a direct

Prdm14 target (Ma et al., 2011), showed an increase in epiSCs

with a gain of function forPrdm14 (Figures 2B andS1E), but there

was no change inNanog (Figure 2B). Despite these changes, the

X-GFP reporter remained repressed, indicating stability of the Xi

(Figure 2D, left panel).

To exclude a possibility that X chromosome reactivation had

been initiated but did not proceed to biallelic expression of

X-linked genes, we analyzed the levels of Xist and Tsix in epiSCs

sorted for SSEA1 to eliminate any differentiated cells (Hayashi

and Surani, 2009b). Quantitative real-time PCR (Q-PCR) for

Xist and Tsix showed that they remained highly expressed and

fully repressed, respectively (Figure S1D). Moreover, the epiSCs

continued to display nuclear H3K27me3 domains (Figure S1E),

which further confirmed that the Xi was not reactivated.

Thus, our data show that X inactivation is remarkably stable in

epiSCs expressing combinations of germline factors, which indi-

cates that LIF-Stat3 signaling may be required to trigger reprog-

ramming and X reactivation (Bao et al., 2009; Yang et al., 2010).
and female MEFs. Nuclei were stained with DAPI. Scale bars represent 10 mm

g/H3K27me3 (red) in XiGFP epiSCs. Nuclei were stained with DAPI. Scale bar
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Figure 2. Germline Factors with Impact on Reprogramming and X Reactivation

(A) PiggyBac (PB) constructs for the generation of epiSC lines with stable overexpression of germline genes. The PB vector with loxP sites, a dsRed reporter, and

a linked antibiotic resistance gene allows for transgene excision by Cre expression.

(B) Q-PCR analysis of transgene expression in XiGFP epiSCs with stable overexpression of germline genes in activin and bFGF relative to GAPDH. Error bars are

mean ± SD (n = 2).

(C) Experimental approach to identify germline factors affecting X reactivation. Stable PB epiSC lines with XiGFP orOct4-DPE-GFP reporter are cultured in activin

and bFGF and transferred to serum and LIF on feeder cells, and the number of GFP-positive colony patches is counted from 10,000/30,000/50,000 plated cells

per 6-well every day.
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Transfer to LIF-Stat3 Reveals Reprogramming Potential
of Germline Factors
Next, we examined the impact of LIF and serum (henceforth

called LIF-Stat3) on XiGFP expression during reversion of epiSCs

to ESCs on feeder cells (Figure 2C; Bao et al., 2009). By counting

the number of GFP-positive colony patches every day, we found

that epiSCs with exogenous Prdm14 and Stella or vector control

did not show activation of the X-GFP reporter despite culture for

2 weeks in LIF-Stat3 (Figures 2D and 2E). In contrast, epiSCs

expressing Klf2 and Nanog or Prdm14 and Nanog showed

GFP expression after 7–8 days (Figure 2E). However, epiSCs ex-

pressing Prdm14 and Klf2 produced GFP-positive colonies after

just 3–4 days, resulting in about 500 GFP-positive colonies from

50,000 plated cells on day 6 (Figures 2D and 2E). This effect is

striking considering that X reactivation is a late event during

reprogramming (Stadtfeld et al., 2008). The addition of Nanog

had no additional impact (Figure 2E), although Prdm14 and

Nanog have been proposed to cooperate in ESCs (Ma et al.,

2011).

Because Prdm14 activates Sox2 (Ma et al., 2011; Yamaji et al.,

2008), we asked whether epiSCs with exogenous Sox2 and Klf2

together could also accelerate activation of the X-GFP reporter,

but this combination resulted in a slower response compared

withPrdm14 andKlf2 (Figure 2E). This suggests that other critical

targets are activated or repressed by Prdm14 and might have

a role during reversion to ESCs.

Initially, epiSCs with Prdm14 and Klf2 transferred to LIF-Stat3

showedmosaic GFP expression (Figure S1F), but the GFP signal

frequently spread out to the whole colony (Figure 2F). These

GFP-positive colonies were picked and expanded, resulting in

lines with homogeneous GFP expression (Figure 2F), which indi-

cates a reactivated X chromosome.

Thus, our data show that Prdm14 and Klf2 trigger particularly

rapid X reactivation in epiSCs upon transfer to LIF-Stat3, raising

the possibility of cooperation between the two factors.

Prdm14 Is Not Sufficient but Acts Synergistically
with Klf2 to Accelerate X Reactivation
To test whether Prdm14 and Klf2 cooperate to promote reprog-

ramming, we examined XiGFP epiSCs expressing these genes

individually or together (Figure 3A). Prior to transfer to LIF-

Stat3, XiGFP epiSCs with different factor combinations retained

a characteristic epiSC gene expression profile, with low expres-

sion of Stella, Rex1, Nr0B1, and Tsix and high expression of Xist

and Fgf5 (Figure S2A). Importantly, epiSCs with Prdm14 alone

did not show XiGFP reporter expression after 11 days in LIF-

Stat3 (Figure 3B), and even after 21 days, only a slight effect

was seen (Figure S2B). This indicates that Prdm14 alone is not

sufficient to induce amajor effect on reprogramming and X reac-

tivation. By contrast, epiSCs with Klf2 alone produced GFP-

positive cells but in a relatively protracted manner on day 6–7,
(D) Fluorescence images of PB XiGFP epiSCs overexpressing germline gene comb

Scale bars represent 100 mm.

(E) Quantification of the timing of X reactivation after transfer of PB XiGFP epiSCs to

50,000 plated cells/6-well.

(F) Fluorescence images of XiGFP epiSCs overexpressing Prdm14-Klf2 on day 7 in

ESCs (rESCs). Scale bars represent 100 mm.

See also Figure S1.
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and more robustly on day 9, compared to a highly accelerated

rate of reprogramming by Prdm14 and Klf2 (Figure 3B). This

demonstrates a combinatorial role forPrdm14 andKlf2 in X reac-

tivation. The difference in the timing of X reactivation was not due

to faster division of epiSCs carrying Prdm14 and Klf2 compared

to cells with Klf2 alone, as monitored by growth curves (Fig-

ure S2C), although any putative contribution of cell division to

X reactivation will require tracking the number of cell divisions

in real-time.

Therefore, although Prdm14 does not promote reprogram-

ming on its own, it synergizes with Klf2 to trigger particularly

rapid X reactivation.

Prdm14 and Klf2: A Potent Combination for Epigenetic
Reprogramming
We noticed that XiGFP epiSCs that express Prdm14 and Klf2

formed compact, dome-shaped colonies faster than cells ex-

pressing Klf2 alone when cultured in LIF-Stat3 (Figure S2D).

Indeed, Stella, which is expressed in ESCs and PGCs (Payer

et al., 2006), was induced on day 3 in LIF-Stat3 when both

Prdm14 and Klf2 were present, but not in cells with Klf2 alone

or vector control (Figure 3C). In epiSCs with Prdm14-Klf2,

X-GFP-positive cells appeared within Stella-expressing colonies

(Figure 3C), suggesting that Stella expression may precede X

reactivation, consistent with the temporal sequence observed

in PGCs (Chuva de Sousa Lopes et al., 2008). After 4 days in

LIF-Stat3, larger clusters of X-GFP-positive cells were located

within Stella-positive colonies (Figure 3C). However, their

expression did not always coincide (Figure 3C), which could be

due to heterogeneity and dynamic changes in Stella expression

in ESCs (Hayashi et al., 2008). Q-PCR analysis confirmed

specific Stella induction in epiSCs with Prdm14 and Klf2 on

day 4 in LIF-Stat3, in contrast to cells expressing Klf2 alone,

Prdm14 alone, or vector control (Figure 3D). Bisulfite sequencing

revealed partial DNA demethylation of the Stella locus in sorted

GFP-positive cells from these cultures on day 4 in LIF-Stat3 (Fig-

ure S2E). Furthermore, Rex1, Nr0B1, and Nr5a2 were induced

earlier, when both Prdm14 and Klf2 were expressed in epiSCs

(Figure 3D). These data suggest that Prdm14 and Klf2 together

accelerate epigenetic reprogramming in epiSCs.

To gain further insight on the specificity of the response of

epiSCs to Prdm14 and Klf2, we examined the response to other

Klf family members, namely Klf4 and Klf5, that can promote

reprogramming of fibroblasts to iPSCs (Nakagawa et al., 2008);

both are expressed in ESCs, although only Klf5 is detected in

PGCs (Jiang et al., 2008; Kurimoto et al., 2008). We found that

although Klf2, Klf4, or Klf5 alone could induce reprogramming

of epiSCs (Hall et al., 2009), the efficiency of the process was

higher when Prdm14 was also present (Figure S2F). However,

Prdm14 was most potent when combined with Klf2, compared

to the response with either Klf4 or Klf5 (Figure S2F) or with other
inations in activin and bFGF (day 0) and after transfer to serum and LIF (day 6).

serum and LIF. Data are shown asmean ± SDof three biological replicates from

serum and LIF. The GFP-positive colony was picked and expanded as reverted

6, 2012 ª2012 Elsevier Inc. 429Open access under CC BY license.
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Figure 3. Prdm14 Synergizes with Klf2 to Accelerate Reprogramming

(A) Q-PCR analysis ofPrdm14 andKlf2 transgene expression in XiGFP epiSCs with stable overexpression ofKlf2,Prdm14,Prdm14-Klf2, or vector control in activin

and bFGF relative to GAPDH. Error bars are mean ± SD (n = 2).
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pluripotency factors such as Nanog (Figure S2G). The specific

effect of Prdm14 with Klf2 is unexpected, because Klf2, Klf4,

and Klf5 have redundant functions in mouse ESCs (Jiang et al.,

2008). This suggests that re-entry into naive pluripotency may

require different factors or factor combinations than mainte-

nance of a naive pluripotent state.

Fast and Efficient Oct4 Enhancer Switch by Prdm14

and Klf2

To further determine the rate and efficiency of reprogramming of

epiSCs by Prdm14 and Klf2, we monitored it with theOct4-DPE-

GFP reporter, which contains Oct4 DE only. This reporter is

repressed in epiSCs, but it is activated in the course of reversion

to ESCs and during PGC specification (Bao et al., 2009). We

introduced Prdm14 and Klf2 in Oct4-DPE-GFP epiSCs and

found that this reporter was also repressed in cells cultured in

activin and bFGF (Figures S3A and S3B). However, upon transfer

to LIF-Stat3, we detected an extremely rapid and efficient activa-

tion of the reporter, with GFP-positive cells appearing as early as

day 2 and with an efficiency of reporter activation of 5% after

6 days in LIF-Stat3 (Figures 3F and S3C). The speed of the

response in the presence of Klf2 alone did not match with that

observed with Prdm14-Klf2 (Figures 3E and 3F). These GFP-

positive cells, called reverted ESCs (rESCs), could bemaintained

thereafter and exhibit homogeneous Oct4-DPE-GFP expression

(Figure S3D). Thus, these data further suggest that Prdm14-Klf2

trigger particularly fast and efficient epigenetic reprogramming.

Interestingly, Klf2 expression follows Prdm14 induction in early

germ cells (Figure S3E; Kurimoto et al., 2008), suggesting that

the two factors may also act similarly to promote reprogramming

of PGCs. Indeed, the combination of Prdm14-Klf2 was particu-

larly potent for induction of PGC-like cells, which is not seen

with wild-type epiSCs (Figures S3F and S3G; Hayashi et al.,

2011; Hayashi and Surani, 2009b) or when the two factors are

tested individually. Additional factors or factor combinations

may be identified in the future that may further enhance PGC

specification.

To exclude the possibility that the effect of Prdm14-Klf2 is

mediated through factors present in serum or secreted by feeder

cells, we examined reprogramming in serum- and feeder-free 2i/

LIF conditions (Ying et al., 2008). Reprogramming by Prdm14

and Klf2 was again more efficient compared with Klf2 alone,

resulting in more compact GFP-positive colonies on day 6–9

(Figures S3H–S3J). There was also specific induction of Stella,

Rex1, and Nr5a2 as early as day 2 (Figure S3K). These observa-

tions suggest that Prdm14 and Klf2 enhance epigenetic reprog-

ramming also upon Erk inhibition in serum- and feeder-free 2i/LIF

conditions.
(B) Quantification of the timing of X reactivation after transfer of XiGFP epiSCs with

LIF. Data are shown as mean ± SD of three biological replicates from 50,000 pla

(C) Double immunostaining for Stella and X-GFP in XiGFP epiSCs overexpressing K

to serum and LIF (day 3, day 4). Nuclei were stained with DAPI. Scale bars repre

(D) Q-PCR analysis for Stella, Rex1, Nr0B1, and Nr5a2 expression in XiGFP epiSC

and after transfer to serum and LIF (day 2/4/8). Data are shown relative to GAPD

(E) Fluorescence images of Oct4-DPE-GFP epiSCs with Klf2 ± Prdm14 on day 3

(F) Quantification of the timing and efficiency ofOct4 distal enhancer activation aft

are shown as mean ± SD of three biological replicates from 10,000 plated cells/6

See also Figures S2 and S3.
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EpiSCs Reprogrammed by Prdm14 and Klf2 Progress
to Naive Pluripotency
To confirm complete reprogramming of rESCs, we tested their

potential to contribute to somatic lineages. The cells contributed

to chimeras after transgene excision (Figures 4A and 4B) and

not before, presumably because the PB transgenes were not

silenced (Guo et al., 2009). These Oct4-DPE-GFP-positive

rESCs (Figure 4C) had a similar gene expression profile to

ESCs (Figure 4G), integrated into the inner cell mass upon 8-

cell injection (Figure 4D), and contributed to coat-color chimeras

(Figure 4E) and to E13.5 genital ridges (Figure 4F). Interestingly,

rESCs with Prdm14 and Klf2 transgenes had lower transcript

levels of Dnmt3b, T, Lefty1, and Fgf5 than ESCs cultured in

serum and LIF but similar levels as ESCs maintained in 2i and

LIF (Figure 4G). Therefore, Prdm14 and Klf2 seem to generate

rESCs that acquire a naive pluripotent state with lower levels of

differentiation genes, which may have similarities with ESCs

cultured in 2i. We confirmed the loss of nuclear foci of Xist,

Ezh2, and H3K27me3 in rESCs (Figures S4A–S4C), indicating

a fully reactivated X chromosome.

Hence, our data suggest that these rESCs have acquired

a naive pluripotent state that remains stable in the absence of

ectopic transgene expression.

Prdm14 Enhances Competence for Reprogramming
To gain insight into themechanism of acceleration of reprogram-

ming by Prdm14 and Klf2, we analyzed the global gene expres-

sion changes, starting with epiSCs cultured in activin and

bFGF, and after 2–4 days in LIF-Stat3 culture (Figures 5A and

S5A). Unsupervised hierarchical clustering revealed two main

clusters, corresponding to epiSCs in activin and bFGF, and after

culture in LIF-Stat3, respectively (Figure 5A). Strikingly, epiSCs

maintained in activin and bFGF with Prdm14 alone were similar

to cells with both Prdm14 and Klf2, whereas epiSCs with Klf2

alone clustered together with vector control. The effect of

Prdm14 is also reflected in the changes in epiSC morphology

(Figure 5B).

We analyzed the transcriptome of epiSCs for additional

changes induced by Prdm14 and found that 1,433 genes were

induced and 1,310 genes were repressed in epiSCs with

Prdm14 compared to vector control (FDR < 0.005; Table S1).

Reanalysis of Prdm14 ChIP-Seq data for ESCs (Ma et al.,

2011) revealed that 1,135/1,433 upregulated genes (p value

1.38 3 10�26) and 1,088/1,310 downregulated genes (p value

6.163 10�42) are targets of Prdm14 (Table S1), indicating a direct

effect on the transcriptome and suggesting that Prdm14 can act

both as an activator and a repressor. Gene ontology analysis

showed that gastrulation, embryonic morphogenesis, and tissue
overexpression of Klf2, Prdm14, Prdm14-Klf2, or vector control to serum and

ted cells/6-well.

lf2, Prdm14-Klf2, or vector control in activin and bFGF (day 0) and after transfer

sent 20 mm.

s with Klf2, Prdm14, Prdm14-Klf2, or vector control in activin and bFGF (day 0)

H and error bars are mean ± SD (n = 2).

after transfer to serum and LIF. Scale bar represents 100 mm.

er transfer ofOct4-DPE-GFP epiSCs with Klf2 ± Prdm14 to serum and LIF. Data

-well.

il 6, 2012 ª2012 Elsevier Inc. 431Open access under CC BY license.

http://creativecommons.org/licenses/by/4.0/


A B

C D

F
E

G

Figure 4. Prdm14 and Klf2 Reprogram EpiSCs to Naive Pluripotency

(A) Flow cytometry analysis of dsRed expression in Oct4-DPE-GFP rESCs generated from Prdm14-Klf2-overexpressing epiSCs 3 days after transient Cre

transfection.

(B) Genomic PCR showing loss of Prdm14 and Klf2 transgenes and gain of recombined PB LTR fragments in four Oct4-DPE-GFP rESC clones.

(C) Phase contrast and fluorescence images of Oct4-DPE-GFP rESCs cultured in serum and LIF. Scale bar represents 100 mm.

(D) Inner cell mass contribution of Oct4-DPE-GFP rESCs 2 days after injection into E2.5 C57BL/6 morulae. Scale bar represents 100 mm.

(E) Coat color chimera generated by injection of Oct4-DPE-GFP rESCs into C57BL/6 blastocysts.

(F) Contribution of Oct4-DPE-GFP rESCs to E13.5 C57BL/6 male and female genital ridges. Scale bar represents 100 mm.

(G) Q-PCR analysis for selected ESC and epiSCmarkers inOct4-DPE-GFP rESCs before and after transgene excision and inOct4-DPE-GFP ESCs cultured in LIF

and serum or 2i. Data are shown relative to GAPDH and Oct4-DPE-GFP epiSCs. Error bars are mean ± SD (n = 2).

See also Figure S4.
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Figure 5. Gene Expression Changes upon Prdm14

Overexpression in EpiSCs

(A) Dendrogram derived from unsupervised hierarchical

clustering of Illumina microarray samples with Pearson

correlation coefficients: XiGFP epiSCs overexpressing Klf2

(K0), Prdm14 (P0), Prdm14 and Klf2 (PK0), or vector

control (V0) in activin and bFGF; XiGFP epiSCs over-

expressing Klf2 (K2, K4), Prdm14 (P2, P4), or Prdm14 and

Klf2 (PK2, PK4) on day 2 and day 4 after transfer to serum

and LIF.

(B) Phase contrast images of XiGFP epiSCs overexpressing

Klf2, Prdm14, Prdm14 and Klf2, or vector control in activin

and bFGF. Scale bar represents 100 mm.

(C) Top 10 DAVID gene ontology categories over-

represented in down- or upregulated genes upon Prdm14

overexpression in epiSCs compared to vector control in

activin and bFGF (FDR < 0.005).

(D) Heatmap showing selected down- or upregulated

genes upon Prdm14 overexpression in epiSCs compared

to vector control in activin and bFGF (FDR < 0.005).

(E) Q-PCR analysis for expression of epigenetic modifiers

in epiSCs overexpressing Prdm14 in activin and bFGF

relative to GAPDH and vector control. Error bars are

mean ± SD (n = 2).

See also Figures S5 and S6 and Tables S1 and S2.
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morphogenesis genes were predominantly repressed, whereas

cytoskeletal genes were induced (Figure 5C). We confirmed

that genes associated with early lineage specification were

repressed (Figure 5D) and many of them are Prdm14 targets,

such as Nodal, Foxa2, Gata6, Hhex, Eomes, Foxh1, and Otx2

(Ma et al., 2011).Whereas some genes were repressed in epiSCs

with Klf2, most of them were repressed only when Prdm14 was

present (Figure 5D). Thus, whereas Prdm14 represses extraem-

bryonic endoderm differentiation in ESCs (Ma et al., 2011), it may

also reduce differentiation toward early somatic lineages in

epiSCs. Indeed, we found that Prdm14 overexpression inhibited

differentiation of epiSCs into endoderm but not into neuroecto-

derm (Figure S6), which is consistent with the predominant

repression of mesendodermal genes in activin and bFGF

(Figure 5D).

Among the repressed genes in epiSCs by Prdm14, we also

found Thy1, which is repressed during the early phase of somatic

cell reprogramming (Stadtfeld et al., 2008); Snai1, a Prdm14

target and an effector of epithelial-to-mesenchymal transition

(Samavarchi-Tehrani et al., 2010); Tcf3, a Prdm14 target and

a negative regulator of pluripotency (Guo et al., 2011); and

components of the Wnt pathway (Figure 5D).

Notably, several early epiblast or ESC-associated genes, such

as Sox2, Gbx2, Esrrb, Fbxo15, Gdf3, Dppa2, and Dppa4 as well

as the FGF inhibitor Spry3 and several members of the dual

specificity phosphatase (Dusp) family, were induced (Figure 5D);

Dppa4 is particularly interesting, because its levels correlate with

the efficiency of epiSC reversion (Han et al., 2010). Altogether,

these data suggest that Prdm14 enables repression of early

germ layer-associated genes as well as induction of early

epiblast markers in epiSCs.

Next, we compared the reciprocal effects of gain of function of

Prdm14 in epiSCs with Prdm14 knockdown in ESCs (Ma et al.,

2011). We found only 37/1,443 induced genes, such as Sox2,

repressed upon Prdm14 knockdown, and 94/1,310 repressed

genes, such as Dnmt3b and Snai1, induced (Table S2). The

limited overlap in gene expression changes may suggest cell

context-dependent effects of Prdm14.

Among the epigenetic modifier targets, we found that Prdm14

repressed Dnmt3b and Hdac6 in epiSCs (Figures 5D and 5E).

Dnmt3b, which is predominantly responsible for DNA methyla-

tion in postimplantation epiblast cells (Borgel et al., 2010), is

also repressed in PGCs (Yabuta et al., 2006). However, we did

not detect changes in GLP (Ehmt1) and Uhrf1 (Figure 5E)

that are efficiently repressed in early PGCs (Kurimoto et al.,

2008); GLP was suggested to be responsible for the genome-

wide decrease in H3K9me2 (Hajkova et al., 2008). Consistently,

there was no decrease in H3K9me2 levels in epiSCs with gain

of Prdm14 (Figure S5B). Nonetheless, there was rapid DNA

demethylation in epiSCs during reprogramming as judged by

re-expression of Stella and Rex1 (Figures 3C and 3D), which

are methylated in epiSCs (Bao et al., 2009).

A particularly interesting observation was that many differenti-

ation-associated genes, which were repressed in epiSCs with

Prdm14, remained highly expressed or were even induced in

epiSCs with Klf2 when cultured in LIF-Stat3 (Figure S5C).

Thus, although Klf2 in epiSCs may induce differentiation upon

transfer to LIF-Stat3, such tendency is blocked efficiently by

Prdm14 and may contribute to fast and efficient reprogramming.
434 Cell Stem Cell 10, 425–439, April 6, 2012 ª2012 Elsevier Inc. Ope
Therefore, Prdm14 may enhance the competence for reprog-

ramming by repression of differentiation and induction of early

epiblast markers.

Prdm14 Enhances Klf2 Recruitment to Target Loci
in LIF-Stat3
The extensive gene expression changes induced by Prdm14

alone in epiSCs, although surprising, were not sufficient for

successful reprogramming in LIF-Stat3, suggesting that a combi-

natorial role of Prdm14-Klf2 is critical, which is reflected in the

gene expression changes (Figure 6A; Table S3). Gene ontology

analysis revealed that among genes specifically induced with

Prdm14-Klf2were transcription factors, DNA binding, and nega-

tive regulation of differentiation genes (Figure S7A). Among the

upregulated genes were reprogramming and ESC-associated

genes, such asNr5a2, Esrrb, Dppa2/3/4/5, Fbxo15, and Tcfap2a

(Figure 6A). The downregulated genes included those involved in

gastrulation, primary germ layer formation, and tissue morpho-

genesis (Figure S7A), such as the epiblast marker Fgf5 and the

X-inactivation regulator Satb1 (Figure 6A; Agrelo et al., 2009).

Reanalysis of ChIP-Seq data for Prdm14 (Ma et al., 2011) and

Stat3 (Chen et al., 2008) and ChIP-on-chip for Klf2 (Jiang et al.,

2008) showed that 578/611 Klf2-bound genes (95%) were also

bound by Prdm14, whereas 238 of them (39%) are bound by

both Prdm14 and Stat3 (Figure S7B and Table S4). Among

Prdm14-Klf2-bound genes were the reprogramming factor

Nr5a2 (Guo and Smith, 2010) and Oct4 DE (Figure S7C). To

test whether Prdm14 might help to recruit Klf2 to these

targets, we performed ChIP for Klf2 on the Nr5a2 promoter

andOct4 DE. This revealed increased Klf2 recruitment in epiSCs

in the presence of Prdm14 and Klf2, compared to cells with Klf2

alone on day 2 of culture in LIF-Stat3 (Figure 6B), indicating

that Prdm14 may promote the binding of Klf2 to enhance

reprogramming.

Does Reprogramming of EpiSCs to rESCs
by Prdm14-Klf2 Require a Transition through
a Blimp1-Positive Germ Cell-like State?
We found that Prdm14 and Klf2 induced several germline-asso-

ciated genes in epiSCs after transfer to LIF-Stat3, most notably

Blimp1 (Prdm1), Stella (Dppa3), Fragilis (Ifitm1/3/5), and Nanos3

(Figure 6A), indicating that epiSC reprogramming by Prdm14-

Klf2 may require progression through a germ cell intermediate.

If so, this process might be restricted in the absence of Blimp1,

a crucial determinant of PGC specification (Ohinata et al., 2005;

Vincent et al., 2005). We tested this hypothesis by using Blimp1-

knockout epiSCs in our assay, but found that reprogramming

was not affected as shown by the earlier appearance of Stella-

expressing colonies, as well as specific induction of Rex1 and

Nr5a2 and repression of Fgf5 in cells with Prdm14-Klf2

compared to those with Klf2 alone (Figures 7A–7C). In addition,

rESCs reprogrammed by Prdm14 and Klf2 had retained DNA

methylation in the imprinted loci Peg1, Peg3, and Snrpn

(Figure 7D).

Therefore, Prdm14 and Klf2 promote X reactivation and DNA

demethylation (excepting loss of imprints), which also occurs

in PGCs. However, Prdm14-Klf2 may act to induce characteris-

tics of naive pluripotency without necessarily passing through

a Blimp1-positive germ cell intermediate. This function may be
n access under CC BY license.
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Figure 6. Early Gene Expression Dynamics during EpiSC Reprogramming by Prdm14 and Klf2

(A) Heatmap of selected genes that are up- or downregulated specifically upon overexpression of Prdm14 and Klf2 compared to the factors overexpressed

individually upon transfer to serum and LIF (FDR < 0.005).

(B) ChIP analysis for Klf2 on Klf2+Prdm14-bound targetsOct4 DE and Nr5a2 in epiSCs overexpressing Prdm14-Klf2 or Klf2 alone in activin and bFGF (day 0) and

2 days after transfer to serum and LIF (day 2). Data were normalized to input and are shown as mean ± SD of three biological replicates.

See also Figure S7 and Tables S3 and S4.
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conserved not only in the reversion of epiSCs to rESCs but also

in re-establishing a primary background of pluripotency in PGCs,

which is vital to this lineage (Figure 7E; Yamaji et al., 2008).

DISCUSSION

Blimp1, Prdm14, and their targets drive PGC specification and

reprogramming, which culminates in an epigenetic ground state

(Surani and Hajkova, 2010). With an epiSC-based system to

explore the role of germline factors in epigenetic reprogramming,

we discovered a powerful synergistic effect of Prdm14-Klf2 that

accelerates and enhances reprogramming of epiSCs to rESCs.

Notably, Prdm14 alone has little effect on epiSC reprogramming,

but it potentiates the action of Klf2; neither Klf4 nor Klf5 have an

equivalent effect when combined with Prdm14.

Prdm14 Primes EpiSCs for Reprogramming
Whereas Prdm14 accelerates reprogramming of epiSCs by

Klf2, it has surprisingly little effect by itself, which suggests that
Cell Stem Cell 10, 425–439, April 6
Prdm14 might prime epiSCs for reprogramming. Indeed, we

show global changes in the transcriptome of epiSCs in response

to Prdm14 alone, which include induction of Esrrb and repres-

sion of Tcf3 and Nodal. Prdm14 apparently induces changes in

epiSCs toward an earlier postimplantation epiblast-like state,

with the induction of Dppa4 (Han et al., 2010), which might

contribute to the effectiveness of Klf2 in the process. In addition,

by repressing early lineage-specification genes, Prdm14 may

decrease the propensity of epiSCs toward heterogeneity (Han

et al., 2010) and increase their responsiveness to LIF-Stat3

signaling and reprogramming factors. Prdm14, which binds

predominantly to distal regulatory elements (Ma et al., 2011),

might also be important for priming by inducing a permissive

state in enhancers in preparation for interaction with the cognate

promoters.

Prdm14 Promotes Klf2 Recruitment to Specific Targets
Prdm14 enhances recruitment of Klf2 to key loci, such as Nr5a2

and the distal Oct4 enhancer, suggesting cooperation between
, 2012 ª2012 Elsevier Inc. 435Open access under CC BY license.
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Figure 7. Reprogramming of Blimp1-Knockout EpiSCs by Prdm14 and Klf2

(A) Q-PCR analysis of Prdm14 and Klf2 transgene expression in Blimp1-knockout epiSCs overexpressing Prdm14-Klf2, Klf2 alone, or vector control in activin and

bFGF relative to GAPDH. Error bars are mean ± SD (n = 2).

(B) Immunostaining for Stella in Blimp1-knockout epiSCs overexpressing Prdm14-Klf2, Klf2 alone, or vector control in activin and bFGF (day 0) and after transfer

to serum and LIF (day 3). Nuclei were stained with DAPI. Scale bar represents 20 mm.

(C) Q-PCR analysis for Stella, Rex1, Nr5a2, and Fgf5 expression in Blimp1-knockout epiSCs overexpressing Prdm14-Klf2, Klf2 alone, or vector control in activin

and bFGF (day 0) and after transfer to serum and LIF (day 5). Data are shown relative to GAPDH and error bars are mean ± SD (n = 2).

(D) Bisulfite sequencing of Peg1-, Peg3-, and Snrpn-imprinted loci in embryonic germ cells derived from E11.5 PGCs as well as Oct4-DPE-GFP epiSCs and

rESCs with Prdm14-Klf2 overexpressed. CpG dinucleotides are shown as open (unmethylated) or filled (methylated) circles.

(E) Schematic of epiSC and PGC reprogramming by Prdm14-Klf2.
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the two factors. The binding sites of Prdm14 and Klf2 are in

close proximity on these targets, suggesting that Klf2 could be

recruited directly by Prdm14. However, because Prdm14

predominantly binds far away from the transcription start site

(Ma et al., 2011), it might bring distal regulatory elements in

close proximity to promoters; the resulting changes in the

chromatin topography and potential chromatin-modifying activ-

ities of Prdm14, potentially through its PR/SET domain, may

promote its combinatorial role with Klf2. Because the current

analysis of Klf2 binding sites was performed with a tiling array

interrogating only about 400 genes (Jiang et al., 2008), the full

extent of the overlap of binding between Prdm14 and Klf2

remains unknown and the combinatorial effect could involve co-

binding on genes outside the scope of that assay. Therefore,

genome-wide binding profiles of Klf2 in the absence and pres-

ence of Prdm14 during epiSC reversion are needed to identify

Klf2 targets that are Prdm14 dependent and independent.

Notably, reprogramming occurs only after transfer of epiSCs

to LIF-Stat3, indicating a functional interaction of Stat3 with

Prdm14 and/or Klf2.

The Impact of Prdm14-Klf2 on X Reactivation and DNA
Demethylation
The epiSC-based assay we describe exhibits a rapid effect on X

reactivation as seen in early germ cells (Chuva de Sousa Lopes

et al., 2008). Prdm14-Klf2 can potentially act to regulate the

expression of Xist and Tsix; Prdm14 itself binds directly to Xist

intron 1 and to Rnf12, an X-linked Xist activator (Jonkers et al.,

2009; Ma et al., 2011), whereas Klf2 might promote Tsix expres-

sion resulting in repression of Xist (Navarro et al., 2010). Although

Oct4, Sox2, and Nanog are not enriched on intron 1 of Xist in

epiSCs, Prdm14 could promote recruitment of the pluripotency

factors during reversion of epiSCs to rESCs, e.g., by altering

the local status of the chromatin.

The derivation of epiSCs from epiblast is coupled with acqui-

sition of DNA methylation on loci such as Stella and Rex1 (Bao

et al., 2009), which could contribute to the refractory nature

of epiSC reprogramming. DNA demethylation by Prdm14-Klf2

occurs rapidly after epiSCs are transferred to LIF-Stat3 as

judged by the activation of Stella and Rex1. The rapid loss of

DNA methylation cannot be easily accounted for by a passive

mechanism, because expression of the maintenance methylase

Dnmt1 or its vital cofactor Uhrf1 were unaffected; Uhrf1 is

repressed in PGCs (Kurimoto et al., 2008). Thus, rapid DNA

demethylation might occur through alternative mechanisms,

potentially involving hydroxylation of 5-methylcytosine by

enzymes, such as Tet1 and Tet2, which are detected at the

time of reprogramming in PGCs, and in ESCs (Ficz et al., 2011;

Hajkova et al., 2010; Ito et al., 2011). A recent study indicates

that Stella and Rex1 are targets of Tet1/Tet2 (Ficz et al., 2011).

Further studies are needed to determine the precise mechanism

of DNA demethylation.

Diverse Roles of Prdm14 in Mouse and Human
Pluripotency
Besides the role of Prdm14 in PGCs (Yamaji et al., 2008),

PRDM14 is obligatory for the maintenance of pluripotency in

human ESCs, whereas Prdm14 is not expressed in epiSCs

(Chia et al., 2010). Knockdown of PRDM14 induces human
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ESC differentiation (Chia et al., 2010), as also reported for mouse

ESCs (Ma et al., 2011). Furthermore, PRDM14 binds to the prox-

imal Oct4 enhancer in human ESCs, whereas it is the distal

enhancer that is bound by Prdm14 and gets activated during

the reversion of epiSCs to rESCs (Chia et al., 2010; Ma et al.,

2011). Notably, naive human ESCs, with two active X chromo-

somes, have recently been generated by introduction of KLF2

and KLF4 in 2i/LIF conditions (Hanna et al., 2010), and functional

cooperation between PRDM14 and KLF2 should be investigated

in this context.

Reprogramming toward ESCs versus PGCs
Prdm14-Klf2-induced epigenetic changes in epiSCs during

reversion to rESCs show some features in common with germ

cell reprogramming, including X reactivation and DNA demethy-

lation. The different cellular context, together with Blimp1 in

PGCs, may be crucial for germ cell-specific features of reprog-

ramming, especially the erasure of imprints. Indeed, we show

that Prdm14-Klf2-induced reversion occurs efficiently in Blimp1-

knockout epiSCs. In addition, Blimp1 is required neither for

derivation and maintenance of ESCs nor for reversion of epiSCs

to rESCs, but it is required for PGC specification (Ohinata et al.,

2005; S.B., H.G. Leitch, M.A.S., et al., unpublished).

EpiSCs show a significant loss of competence for PGC

specification compared with postimplantation epiblast or ESCs

(Hayashi et al., 2011) and a poor ability to undergo reversion to

rESCs (Bao et al., 2009; Guo et al., 2009). Studies similar to

the effects of Prdm14-Klf2 that promote both induction of

PGC-like cells from epiSCs and reversion to rESCs could also

advance our knowledge of the molecular basis of competence.

Cell culture-based systems that recapitulate events in early

germ cells might be mutually informative for epigenetic reprog-

ramming in general, while increasing our knowledge of the

complex events in early germ cells that are vital for totipotency

and a prerequisite for pluripotency in vivo.

EXPERIMENTAL PROCEDURES

Animal studies were authorized by a UK Home Office Project License and

carried out in a Home Office-designated facility.

EpiSC Reprogramming Assays in Serum and LIF

Pooled stable transfectants were plated at a density of 10,000/30,000/50,000

cells per well of a 6-well tissue culture plate in standard ESC medium supple-

mented with LIF (1000 U/ml; ESGRO; Chemicon) and 20% fetal bovine serum

(GIBCO) on mitomycin C-treated MEFs. The medium was first replaced after

48 hr and subsequently every 24 hr. Unless otherwise indicated, the number

of GFP-positive colony patches per well was counted every day with an

Olympus IX71 inverted microscope and results are shown as mean ± standard

deviation (SD) of three independent experiments.
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