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Abstract
In the era of highly active antiretroviral therapy (HAART), patients with human
immunodeficiency virus (HIV) have reduced morbidity and mortality of AIDS-related
complications. However, there is an increase in the prevalence of AIDS-defining and non-AIDS-
defining cancers. This article provides an up-to-date review of management of HAART
pharmacotherapy in the context of cytotoxic chemotherapy or targeted antineoplastic agents.
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Introduction
Treatment of patients with human immunodeficiency virus (HIV) infection with highly
active antiretroviral therapy (HAART) substantially restores immune function, reduces
opportunistic infections, lowers plasma viral RNA load, and reduces morbidity and mortality
of AIDS-related complications.1,2 However, cancer remains a significant problem in patients
with HIV/AIDS. Kaposi's sarcoma, non-Hodgkin's lymphoma, and invasive cervical cancer
are not typical in the immunocompetent adult population but are prevalent in those with
HIV/AIDS and have thus been deemed as “AIDS-defining cancers.” Hodgkin's lymphoma,
anal, lung, and testicular germ cell cancers lack the same definitive association with HIV/
AIDS and are being deemed as “non-AIDS-defining cancers” when the patient also has a co-
diagnosis of HIV/AIDS.
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The number of non-AIDS-defining cancers has increased significantly as patients with HIV/
AIDS have increased life expectancies. In the Antiretroviral Therapy Cohort Collaboration
that examined 39,272 patients diagnosed with HIV who initiated antiretroviral therapy
during the time period of 1996 until 2006, 1597 patients had a documented cause of death.3

A total of 236 patients (14.8% of 1,597) have died of AIDS-defining cancers from 1996 to
2006 but the proportion has declined from 20.5% (70/341) during 1996-1999 to 12.5%
(78/624) during 2003-2006. While 189 patients (11.8% of 1,597) have died of non-AIDS-
defining cancers during the same time period, the proportion has increased from 7.3%
(25/341) during 1996-1999 to 15.4% (96/624) during 2003-2006. A similar trend was also
noted when assessing the 5-year cumulative incidence of cancer in 472,378 individuals with
HIV or AIDS who were cancer-free at the time of diagnosis from 1980 to 2006 in 3 distinct
timeframes: 83,789 patients from 1980-1989 (prior to antiretroviral use), 213,029 patients
from 1990-1995 (monotherapy/dual therapy with antiretroviral drugs), and 175,560 patients
from 1996-2006 (HAART).4 There was a decline in cumulative incidence of AIDS-defining
cancers from 18% (15,728/83,789) to 11% (23,603/213,029) to 4.2% (7,570/175,560) over
the 3 timeframes and a rise in non-AIDS-defining cancers from 1.1% (1,056/83,789) to
1.5% (4,348/213,029) with no change noted from 1996-2006 (2,911/175,560). While there
was no change noted from 1990-1995 to 1996-2006, the incidence for non-AIDS-defining
cancers such as anal cancer, Hodgkins lymphoma, and liver cancer did have a continued
increase in incidence in all timeframes.

While the type of cancer HIV patients are getting may be changing, the need for treatment
with concurrent antineoplastic agents and HAART is increasingly common. The potential of
HAART to cause drug interactions is well documented.5,6 However, little is known about
the interaction potential of either cytotoxic or targeted antineoplastic agents with HAART.
In addition to pharmacokinetic drug interactions, overlapping toxicities are also possible.
This review will highlight what is known about potential pharmacologic interactions
between antiretroviral and antineoplastic therapy. We will also consider how to combine
antiretroviral and antineoplastic agents in patients with HIV who are on HAART therapy.

Antiretroviral Therapy
Antiretroviral Drug Classes

Current antiretroviral drugs classes include: nucleoside or nucleotide reverse-transcriptase
inhibitors (NRTIs), non-nucleoside reverse-transcriptase inhibitor (NNRTIs), HIV-1
protease inhibitors (PI), integrase strand transfer inhibitors (INSTI), fusion inhibitors, and
entry inhibitors which include chemokine receptor antagonists.7 All recommended HAART
regimens include a minimum of three active drugs to prevent resistance, with initial
regimens including combinations of two NRTIs with an NNRTI, a PI boosted with ritonavir,
or an INSTI.8 Table 1 provides an overview of the potential drug interactions of each
antiretroviral drug class with regards to the primary elimination route and alterations in drug
metabolizing enzymes with emphasis on potential for interactions with anticancer agents.
The potential for overlapping toxicities with anticancer agents and each antiretroviral drug
class will be discussed in the toxicity section.

NRTIs inhibit the activity of HIV reverse transcriptase, an enzyme that copies the viral
single stranded RNA into a double-stranded DNA. Nucleoside NRTIs or nucleotide NRTIs
(NtRTIs) compete for incorporation into DNA with naturally occurring deoxynucleotides.
NRTIs have relatively short plasma half-lives but have longer intracellular half-lives thus
allowing for once daily administration for most NRTIs or NtRTIs. Certain NRTI/NtRTI-
based regimens are associated with anemia, dyslipidemia, gastrointestinal symptoms, insulin
resistance, neutropenia, nephrotoxicity, lactic acidosis associated with hepatic steatosis,
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noncirrhotic portal hypertension, pancreatitis, peripheral neuropathy, and an increased risk
of cardiovascular events.

NNRTIs bind to a pocket distant from the enzyme active site, and inhibit HIV reverse
transcriptase by inducing conformational changes. Single point mutations in reverse
transcriptase can dramatically alter virus susceptibility to first generation NNRTIs.
Etravirine is a second generation NNRTI with the ability to bind to various conformations of
the reverse transcriptase enzyme thus maintaining activity with single point mutations that
confer resistance to first generation NNRTIs. Various NNRTI-based regimens are associated
with rash, central nervous system toxicity, and hepatic transaminase elevations.

PIs block viral replication by preventing the HIV-1 protease from cleaving precursor
proteins necessary to form infectious virions. Multiple mutations in the HIV protease
enzyme are required to develop high level resistance to most PIs. Various PI-based regimens
have been associated with dyslipidemia, fat maldistribution, gastrointestinal symptoms,
insulin resistance, hepatic transaminase elevations, hyperbilirubinemia, and an increased risk
of cardiovascular events.

Integrase strand transfer inhibitors block the final step in integration of viral genes into the
host cell DNA. Single point mutations in integrase have been noted to cause resistance to the
integrase strand transfer inhibitor, raltegravir.66,67 Raltegravir is the first approved integrase
inhibitor and has been associated with creatine kinase laboratory abnormalities, headache,
insomnia, myopathy, rash, and rhabdomyolysis.

Fusion inhibitors interfere with the entry or fusion of HIV-1 to the host cell by blocking one
of several targets including the viral envelope protein or a chemokine co-receptor (i.e.,
chemokine co-receptor 5 (CCR5)). Enfuvirtide, a synthetic peptide, was the first fusion
inhibitor approved is injected twice daily but is currently reserved for heavily treatment-
experienced patients only. Side effects associated with enfuvirtide include diarrhea, fatigue,
injection site reactions, and nausea. Maraviroc is an entry inhibitor which binds the
chemokine receptor CCR5 and is approved for the use in patients who have CCR5-trophic
virus. Maraviroc has been associated with dizziness, hepatotoxicity, pyrexia, rash, and upper
respiratory tract infections.

Initiating and Stopping Antiretroviral Therapy
Guidelines for developed countries now recommend that treatment is offered to HIV
infected patients with: 1) a history of an AIDS-defining illness or 2) a CD4 lymphocyte
count of <500 cells/mm3.8 Resistance testing is recommended for patients with HIV
infection prior to initiating HAART treatment. The ultimate goal of therapy is to preserve or
improve immune function while decreasing HIV-associated morbidity and mortality. Initial
regimens should be selected to allow for maximal compliance while taking into
consideration comorbidities, pretreatment genotypic drug resistance testing, and drug-
specific factors such as convenience, drug interaction potential and side effect profiles. All
NNRTI-based and PI-based regimens are typically administered once or twice daily.

Due to tolerability and viral sensitivity, the initial HAART regimen can change over time
with special considerations being given to starting and stopping any component in the
regimen. New regimens should contain at least two, and preferably three, active drugs from
multiple antiretroviral drug classes. If treatment failure is suspected, compliance,
tolerability, pharmacokinetic related issues, drug resistance, immunologic and virologic
failure should be considered.

Rudek et al. Page 3

Lancet Oncol. Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Caution is warranted when stopping treatment because of the risk of creating a resistant HIV
strain.68 In cases of severe or life-threatening toxicity, all components of the regimen should
be stopped simultaneously. If drugs that have differing half-lives are stopped
simultaneously, this may result in functional monotherapy if the drug with the longest half-
life remains in circulation for a prolonged period after the short half-life drugs are
eliminated (i.e., longer half-life NNRTIs with short half-life NRTIs). In this case, the
strategy varies from either a staggered stop, or an exchange or replacement of an NNRTI
with a PI to decrease the risk of functional monotherapy. The best approach to discontinuing
therapy is unproven.

Drug Interactions with Antiretroviral Therapy
The pharmacokinetic drug interaction potential with the various antiretroviral therapies is
considerable. Since each drug is metabolized by differing metabolic isozymes,
generalizations based on each class are not possible (see Table 1). The drug interaction
potential for NRTIs and NtRTIs is minimal but may occur if another drug alters renal
clearance and/or intracellular phosphorylation. Tenofovir has been shown to cause
unexpected changes in the concentration of other antiretroviral drugs, in some cases
reflecting possible effects on drug transporters.69,70 There is a high potential for
pharmacodynamic interactions with some NRTIs, for example those causing hematologic
toxicity. For PIs and NNRTIs, which are extensively metabolized by and induce or inhibit
the CYP450 system, the drug interaction potential is high. Raltegravir undergoes
glucuronidation by UGT1A1 and has lower drug interaction.60 Maraviroc is a substrate of
the CYP3A enzyme and ABCB1 transporter and susceptible to multiple drug
interactions.62,63

For the majority of antiretroviral drugs that are CYP450 substrates, inducers, or inhibitors,
coadministration with other metabolized drugs could result in drug accumulation and
possible toxicity, or decreased efficacy of one or both drugs. Drug interaction resources
should be consulted when determining interaction potential (see Table 2). For example, with
the benzodiazepam class, PIs should not be coadministered with alprazolam, diazepam, oral
midazolam, and triazolam but can be coadministered with lorazepam, oxazepam, or
temazepam.8 Intravenous midazolam utilized for conscious sedation should be used at a
reduced dose and with caution when combined with ritonavir PI-based therapy.71

Antiretroviral Therapy and Anticancer Treatment
As HIV patients continue to live longer and develop AIDS-related malignancies or non-
AIDS-defining cancers, more information on how to treat patients with anticancer treatment
will be needed. Drug interactions are certainly one aspect, but overlapping toxicities are also
a concern. Several antiretrovirals, including didanosine, stavudine, and zidovudine, have
significant toxicities described below and are therefore not utilized in first-line HAART
regimens in the developed world.

Assessing hepatic function in patients on antiretrovirals
Bilirubin is often used as a guide for dose adjustment for cancer chemotherapy agents such
as docetaxel,72 doxorubicin,73 etoposide,74 imatinib,75 irinotecan,76 paclitaxel,77

sorafenib,78 vincristine,79 and vorinostat.80 Several antiretrovirals, most notably atazanavir
and indinavir are associated with unconjugated hyperbilirubinemia secondary to UGT1A1
inhibition similar to that which occurs in association with Gilbert's syndrome.53,81,82 When
assessing liver function in HIV patients on these antiretroviral agents, it is useful to also
assess transaminases and alkaline phosphatase. Unconjugated hyperbilirubinemia in
association with these agents and in the absence of other evidence of hepatic dysfunction
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may be ignored in dosing chemotherapeutic agents. On the other hand, didanosine,
stavudine, and zidovudine may produce hepatotoxicity associated with lactic acidosis and
steatosis.83 Maraviroc has been noted to rarely produce a hepatotoxicity associated with
allergic features.84 Such hepatotoxicity should not be ignored and didanosine, maraviroc,
stavudine, and zidovudine should be stopped or replaced before initiating cytotoxic
chemotherapy with agents that have hepatic metabolism at standard doses but use reduced
dosing based on the degree of hepatotoxicity. The NRTIs, abacavir, emtricitabine,
lamivudine, and tenofovir, and the NNRTI efavirenz are the less likely to be hepatotoxic and
may often be substituted.

Toxicity-related Concerns
Zidovudine is associated with severe neutropenia in ∼8% of patients with advanced AIDS.85

Since traditional cytotoxic chemotherapy regimens are also associated with neutropenia, this
combination should be avoided and an alternative NRTI should be prescribed. If zidovudine
use cannot be avoided, less myelosuppressive chemotherapy should be administered or the
patient monitored closely for neutropenia.

Didanosine and stavudine have been frequently associated with peripheral neuropathy which
may be irreversible.86 While the onset is typically weeks to months after initiation of
therapy, patients with pre-existing neuropathy may experience this toxicity sooner.
Platinums, taxanes, and vinca-alkaloids are the three classes of chemotherapeutics
frequently associated with peripheral neuropathy. The first proteasome inhibitor,
bortezomib, is associated with a reversible peripheral neuropathy which appears to be a
class-effect.87,88 Chemotherapy-induced neuropathy is generally cumulative or dose related,
with management consisting of dose-reduction or lower dose-intensity. If an HIV patient
develops a malignancy and is on one of the NRTIs listed above, the following options exist:
1) select an alternative chemotherapy regimen without overlapping toxicity; 2) substitute an
alternate NRTI or other appropriate antiretroviral; 3) temporarily discontinue antiretroviral
therapy.

Atazanavir,89 ritonavir boosted lopinavir,90 and saquinavir91 are associated with QT
prolongation. Multiple anticancer agents also are associated with QT prolongation including
cytotoxic agents and the newer molecularly targeted anticancer agents such as
anthracyclines,92 arsenic trioxide,92 dasatninb,93 lapatinib,94 nilotinib,95 sunitinib,96 and
tamoxifen.97 Due to the potential for sudden death, combinations of these agents should be
avoided.

Anticancer Drug Interaction Potential
Since many anticancer agents are also metabolized by CYP450, the potential for drug
interactions with HAART is high. Anthracyclines, antimetabolite agents, antitumor
antibiotics, and platinums undergo non-CYP450 routes of elimination and would be unlikely
to be altered by HAART.98,99 Camptothecins undergo non-enzymatic routes of elimination,
are substrates but not inhibitors or inducers of CYP450 and UGT isozymes and therefore are
likely to be altered by HAART.100 Proteasome inhibitors are substrates but not inhibitors or
inducers of CYP450s at clinically relevant drug concentrations.101 Bidirectional drug
interactions could be anticipated by other classes of anticancer agents including alkylating
agents,102 corticosteroids, epipodophyllotoxins,102 taxanes,102,103 tyrosine kinase
inhibitors,104 and vinca alkaloids.102 Antoniou and Tseng recently reviewed the potential
drug interactions between antiretroviral and anticancer therapy.105 As recently reviewed by
Deeken and colleagues, some molecularly targeted agents may have pharmacokinetic-based
drug interactions with HAART.106There is little information available from prospective
drug interaction trials and so the review was largely predicted from metabolic fate of the
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combinations. Several case reports, small series, and clinical trials have suggested
antiretroviral drug interactions with several anticancer agents including bexarotene,107

cyclophosphamide,108 docetaxel,109 irinotecan,110 and vinblastine.111 It is possible that
newer classes of antiretrovirals, such as the integrase strand transfer inhibitor raltegravir,112

will have reduced interaction potential than NNRTIs and PIs.

When trying to address patient specific cancer regimens in patients with HIV/AIDS on
HAART, the oncologist should partner with an infectious diseases specialist to review
anticipated changes in the HAART regimen. At the current time, there is no guidance on
dose adjustments of either HAART or chemotherapy. This is in part the consequence of HIV
patients being excluded from early cancer drug development studies.113 In 2006, the Cancer
Therapy Evaluation Program (CTEP) of the National Cancer Institute (NCI) advised that
“Individuals known to be HIV-positive should not be arbitrarily excluded from participation
in clinical cancer treatment trials,” without scientific justification for exclusion.114

Therefore, it will take several years before guidelines provide scientifically sound
recommendations for novel agents still undergoing development.

The dilemma for the clinician becomes how to treat patients who require anticancer drug
treatment given the propensity of drug interactions. Since the advent of HAART, HIV has
become a chronic disease. There has been no such success with the majority of cancers
especially with the deadliest forms such as esophageal, lung, metastatic melanoma, and
pancreatic cancers. The maintenance of dose-schedule and dose-intensity are the primary
principals which are thought to contribute to cancer cure. In some cases, cancer treatment
should take priority over HIV treatment, despite the risk associated with stopping
HAART.115,116 However, the oncologist must also recognize that continuous HAART
therapy is recommended in order to prevent resistant HIV strains, opportunistic infections,
and eventual death.116

When cancer occurs in patients with HIV who are not yet on antiretroviral therapy, many
clinicians opt to initiate cancer chemotherapy first, and only to add antiretroviral therapy
after side effects (e.g., nausea, vomiting, and mucositis) associated with chemotherapy are
adequately managed. This avoids starting and stopping antiretroviral therapy in a way that
might engender antiretroviral resistance. For some chemotherapy regimens, notably
continuous infusion regimens and high dose/ablative regimens such as are used in the setting
of autologous transplant, concerns with possible adverse drug interactions are such that it is
routine to stop antiretroviral therapy before initiating such treatment. For example, Little and
colleagues were able to successfully treat AIDS–related lymphomas (ARLs) with dose-
adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin)
with suspension of antiretroviral therapy.117 The choice to stop antiretroviral therapy was to
ensure that the maximum intensity of the dose-adjusted EPOCH regimen could be achieved
while minimizing drug interactions and preserving immune function. The majority (74%) of
patients achieved a complete remission with viral loads decreased below baseline by 3
months and CD4+ counts recovered by 12 months after HAART was reinstituted. When
EPOCH was studied by ECOG, institutional investigators were allowed to determine
whether to administer or hold HAART therapy.118 No clear adverse effects were noted in
patients who received combined HAART and EPOCH chemotherapy, and so it would
appear that for many patients and many regimens, either approach is allowable. Most
clinicians would avoid the combination of zidovudine with any myelosuppressive regimen,
many would interrupt HAART for continuous or high dose chemotherapy regimens, and
most would search for alternatives to ritonavir-based regimens when combination
chemotherapy regimens are being administered since no clear consensus exists.
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Future of Antiretroviral Therapy and Targeted Anticancer Treatment
The trend in anticancer drug development is to move from the use of cytotoxic
chemotherapy which is indiscriminate to molecularly targeted agents which are more
selective at killing cancer cells.119 Since molecularly targeted agents tend to have less
myelosuppression and peripheral neuropathy, there may be fewer concerns about
overlapping toxicity with HAART. However, the newer anticancer agents are not without
toxicity such as QT prolongation or hypertension.

The AIDS Malignancy Consortium, a National Cancer Institute-supported clinical trials
group, is starting to address some of these issues by conducting prospective clinical trials
with molecularly targeted agents in patients on HAART. Patients are stratified according to
HAART regimens: NNRTI-based HAART therapy, efavirenz- based HAART therapy, non-
ritonavir-based PI therapy, and ritonavir-based PI therapy. Patients on NNRTI-based,
efavirenz- based, or non-ritonavir-based PI therapy commence treatment at the FDA-
approved dose of the anticancer drug, while patients on ritonavir-based PI therapy will start
at a reduced dose and escalate according to a standard ‘3+3’ dose escalation. Patients on
efavirenz-based therapy may be escalated above the FDA-approved dose while cautiously
monitoring both drug concentrations and toxicity. As standard of care in HAART regimen
change over time8, this stratification schema may shift, but in general will include
considerations of drug interaction potential. This design was modeled after organ
dysfunction studies conducted in cancer patients.120 A translational approach may be
warranted to aid in prioritizing anticancer agents for the next clinical trials based on their
propensity to interact with HAART in vitro and in animals models.

Conclusion
Detailed guidelines for dose adjustment based on clinical trials data are generally not
available for anticancer and antiretroviral drugs used concurrently. We look forward to a
time when the results of prospective clinical trial data will be available to guide clinical
decision making. For the time being, clinicians and clinical investigators must be cognizant
of the potential for interactions that may be inferred from knowledge of drug metabolism
and make judicious treatment decisions. The importance of oncologists and infectious
disease specialists partnering in the management of these patients and discussing the
particulars of strategies that involve combinations of drugs cannot be overstressed. As
patients with HIV live longer, and more develop malignancies whether HIV related or not, a
better understanding of cancer chemotherapy and antiretroviral drug interactions will grow
in importance.
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