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Gene-to-gene coexpression analysis provides fundamental information and is a promising approach for predicting unknown
gene functions in plants. We investigated various associations in the gene expression of tomato (Solanum lycopersicum) to
predict unknown gene functions in an unbiased manner. We obtained more than 300 microarrays from publicly available
databases and our own hybridizations, and here, we present tomato coexpression networks and coexpression modules. The
topological characteristics of the networks were highly heterogenous. We extracted 465 total coexpression modules from the
data set by graph clustering, which allows users to divide a graph effectively into a set of clusters. Of these, 88% were assigned
systematically by Gene Ontology terms. Our approaches revealed functional modules in the tomato transcriptome data; the
predominant functions of coexpression modules were biologically relevant. We also investigated differential coexpression
among data sets consisting of leaf, fruit, and root samples to gain further insights into the tomato transcriptome. We now
demonstrate that (1) duplicated genes, as well as metabolic genes, exhibit a small but significant number of differential
coexpressions, and (2) a reversal of gene coexpression occurred in two metabolic pathways involved in lycopene and flavonoid
biosynthesis. Independent experimental verification of the findings for six selected genes was done using quantitative real-time
polymerase chain reaction. Our findings suggest that differential coexpression may assist in the investigation of key regulatory
steps in metabolic pathways. The approaches and results reported here will be useful to prioritize candidate genes for further
functional genomics studies of tomato metabolism.

One of the major challenges of plant systems biology
is in understanding genotype-phenotype associations.
In that context, biological networks can increase our
understanding of how biomolecules interact to function
in plants (Fukushima et al., 2009b; Stitt et al., 2010).
Large-scale data from genome-wide gene expression
profiling with DNA microarrays are publicly available
for many species, including Arabidopsis (Arabidopsis
thaliana), rice (Oryza sativa), poplar (Populus spp.), and

some crops (Ogata et al., 2010; Tohge and Fernie, 2010).
These data make it possible to use gene coexpression
analyses to predict unknown gene functions (Aoki et al.,
2007; Usadel et al., 2009). Using pairwise measures (e.g.
Pearson’s correlation coefficient), it is possible to gener-
ate a coexpression network in which nodes represent
genes and edges represent significant correlations be-
tween expression patterns. Network representation fa-
cilitates the prioritization of candidate genes for further
functional genomics studies based on the so-called
“guilt-by-association” principle (Saito et al., 2008).

Generally, graph clustering algorithms include hier-
archical clustering, density-based and local searches,
and other optimization-based clustering, as summa-
rized by Wang et al. (2010). In Arabidopsis and rice
microarray data sets, such algorithms, including Mar-
kov clustering (VanDongen, 2000) andDPClus (Altaf-Ul-
Amin et al., 2006), were applied to find coexpression
modules, which are clusters consisting of densely
connected coexpressed genes (Ma et al., 2007; Mentzen
and Wurtele, 2008; Fukushima et al., 2009a; Mao et al.,
2009). These types of network-module-based ap-
proaches are now widely used in attempts to predict
new genes involved in biological processes (Saito et al.,
2008; Usadel et al., 2009; Mutwil et al., 2011). Other
network-based approaches have been applied to
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annotate unknown genes (Horan et al., 2008), to explore
possible genes involved in carbon/nitrogen-responsive
machineries (Gutiérrez et al., 2007), and to prioritize
candidate genes for a wide variety of traits (Lee et al.,
2010).

Subsets of highly coexpressed genes in tomato (Sola-
num lycopersicum) have been studied.Miozzi et al. (2010),
who investigated conserved coexpression in the Solana-
ceae family, including tomato, tobacco (Nicotiana taba-
cum), and potato (Solanum tuberosum), used ESTs for
tomato and compared transcriptional presence/absence
patterns with those of other species to explore functional
relationships between genes. Aoki and colleagues (Ozaki
et al., 2010) demonstrated that coexpression modules
extracted by network-based clustering across various
developmental stages and organs facilitated the func-
tional analysis of genes encoding flavonoid biosynthesis
in tomato.

Coexpression patterns also change based on different
conditions, such as the genotype and tissue type; this
has been termed differential coexpression (Choi et al.,
2005; Gillis and Pavlidis, 2009). Differential coexpression
identifies the rewired edges of coexpression networks
and may reflect changes in transcriptome organization
(Watson, 2006; Chia and Karuturi, 2010). For example,
this feature has been used to identify disease-specific
networks (de la Fuente, 2010). Differential metabolo-
mic correlations were utilized in some metabolomics
studies (Weckwerth et al., 2004; Morgenthal et al.,
2006; Fukushima et al., 2011; Kusano et al., 2011).
While the differential expression of genes and gene
coexpression in plants have been addressed in earlier
microarray studies, their differential coexpression has
not been addressed.

Here, we present tomato coexpression modules ex-
tracted by graph clustering from over 300 microarrays
obtained from publicly available databases and 20 of our
own hybridizations in our efforts to unravel associations
between gene expression patterns in the tomato. We
assessed the clustered modules systematically by Gene
Ontology (GO) enrichment analysis.We also investigated
differential coexpression among data sets of leaf, fruit,
and root samples, based on Fisher’s Z-transformation, to
gain insight into the tomato transcriptome. The aims of
our study were to (1) characterize coexpression modules
in tomato by using graph clustering and GO enrichment
analysis, (2) identify significant differential coexpression
between organs, and (3) provide clues for elucidating key
regulatory networks in a given metabolism. The expres-
sion levels of the obtained gene pairs were validated by
quantitative real-time (qRT)-PCR.

RESULTS

Construction of a Gene Coexpression Network in Tomato

We collected 307 tomato GeneChips from publicly
available databases and 20 of our own microarray data
sets. A statistical quality check of all microarrays (see

“Materials and Methods”) detected 307 high-quality
GeneChips; these were used for further analyses (Fig.
1). After normalization, we manually classified them
according to meta-data (Supplemental Data S1); 307
arrays included 17 experiments, with 23.5% involving
a stress condition, 23.5% a genotype, and 17.6% a
pathogen (Fig. 2A). They also corresponded to differ-
ent organs, including fruits (44%), leaves (25.1%), and
roots (11.7%; Fig. 2B). Based on the organ type in the
meta-data, we divided the original expression data
matrix (307 arrays 3 9,989 probe sets, defined as “all
data”) into three submatrices that we called “leaves,”
“fruits,” and “roots.” We used these matrices, as well
as all data, in further analyses (Fig. 1). The distribution
of the three expression matrices appeared normal
(Supplemental Fig. S1A). To construct the coexpres-
sion networks, we calculated correlation matrices us-
ing Pearson’s correlation coefficients. The correlation
coefficients for each organ were also in normal distri-
bution (Supplemental Fig. S1B).

The Topological Characteristics of Tomato Coexpression
Networks Are Highly Heterogenous

We next constructed tomato coexpression networks.
To evaluate whether they manifested the common
properties of a complex network, such as power-law
degree distribution, we investigated the topological

Figure 1. Work flow for extracting coexpression modules and for
differential coexpression analyses among organs. Coexpression mod-
ules for each gene were generated by graph clustering without regard to
functional properties. 1, Quality checks of microarrays were performed
with robust regression techniques and the Kolmogorov-Smirnov good-
ness-of-fit statistic D (see “Materials and Methods”). We discarded 20
arrays with low-quality scores (D $ 0.15). Probe sets with the prefix
AFFX and RPTR were excluded. 2, We rejected 220 probes with the
detection call “absent” across all samples.

Fukushima et al.

1488 Plant Physiol. Vol. 158, 2012



characteristics of the network (e.g. degree distribution
and average path length; Table I). We found that the
degree distribution of the coexpression network fol-
lowed a power law (Fig. 3A). In the case of the
coexpression network with r $ 0.6 (P , 2.1e-31,
Pearson’s correlation statistical test), the degree distri-
bution of the all-data network followed a power law
with a degree exponent of g = 1.67. Here, P(k) w k2g,
where g represents the degree exponent. The average
path length and the average clustering coefficient of
this network were 2.65 and 0.45, respectively, implying
small-world properties and high modularity in the
network (for review, see Barabási and Oltvai, 2004).
Figure 3B shows a partial coexpression network gen-
erated using all data; it was based on the list of first-
order genes that neighbored and were coexpressed
with the LeMADS-Rin gene, which encodes a MADS
box transcriptional factor regulating fruit ripening-
related genes (Giovannoni et al., 1995; Vrebalov et al.,
2002). The network shows how the neighboring genes
of LeMADS-Rin correlate with each other.

Graph Clustering and GO Enrichment Analyses Reveal
Functional Modules in the Tomato Transcriptome
Data Set

To efficiently identify densely connected nodes in
the coexpression network (i.e. a coexpression module),
we used the graph clustering algorithm IPCA (Li et al.,
2008). We detected 465 modules with at least five gene
members in the tomato coexpression network con-
structed from all data, consisting of 9,797 nodes and
1,754,361 edges; they ranged in size from five to 68
genes (Table II; Supplemental Table S1). We counted
the number of unknown genes per module (Fig. 4;
Supplemental Table S2). The distribution of the per-
centage of unknown genes within a module showed a
bimodal curve at 50% and 70%.

We then subjected the modules to GO enrichment
analysis; for simplicity, we selected a GO termwith the
best P value within the Biological Process (BP), Cellu-
lar Component (CC), and Molecular Function (MF)
domains. For overrepresented GO terms, Table III lists
the top 10 modules repeatedly assigned by the same
functional term (Supplemental Tables S1 and S3). Of
the modules extracted, 88% had significantly enriched
GO terms in BP, CC, and MF. The distribution of GO
terms for each module in tomato is shown in Supple-
mental Table S3. There were 150, 110, and 51 modules
in the specific functional categories of “negative reg-
ulation of ligase activity,” “DNA endoreduplication,”
and “photosynthesis,” respectively.

Predominant Functions of Coexpression Modules Show
Biological Relevance

Below, we focus on the details of the extracted
modules in Table II. The modules selected for our
analysis follow (Supplemental Table S1).

DNA Endoreduplication

Module 1, consisting of 63 genes, was involved in
DNA endoreduplication (false discovery rate [FDR] =
3.1e-2). It contained genes encoding cyclin A1 and A2,
histone H4, B1-type cyclin-dependent kinase, ripen-
ing-regulated protein (differential display tomato fruit
ripening 18), copper transport protein 1-like protein
kinase 2, jasmonic acid 1 and 2, cytosolic Gln synthe-
tase 1, and 12-oxophytodienoate reductase 3.

Photosynthesis

Module 4 (54 genes) was associated with photosyn-
thesis (FDR = 1.5e-2). It included genes encoding the

Table I. Topological statistics of tomato coexpression networks (r $ 0.6)

Data Sets No. of Nodes No. of Edges Average Path Length Clustering Coefficient Average Degree Degree Exponent

Leaves 9,952 2,644,732 2.81 0.59 531.5 2.37
Fruits 9,867 1,782,674 2.92 0.50 361.3 2.07
Roots 9,924 5,997,644 2.62 0.70 1208.7 2.29
All data 9,797 1,754,361 2.65 0.45 358.1 1.67

Figure 2. Pie charts with a classification of the
experiments and organs collected in this study.
GeneChips (n = 327) were from publicly available
databases including the GEO, ArrayExpress,
TFGD, and our own data (see “Materials and
Methods”). The 17 experiments contained in the
data set were classified into nine experimental (A)
and 10 organ (B) categories. [See online article for
color version of this figure.]
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PSI subunit II protein precursor, PSII 23-kD protein,
chlorophyll a/b-binding protein precursor, ribulose-
1,5-bisphosphate carboxylase, ADP-Glc pyrophos-
phorylase large subunit, PSI reaction center protein

subunit 2, and zeaxanthin epoxidase, an enzyme im-
portant in the xanthophyll cycle and in abscisic acid
biosynthesis.

Response to Cold

Module 435, consisting of 33 genes, was related to
“response to cold” (FDR = 4.3e-2). This module in-
cluded genes encoding cytosolic ascorbate peroxidase
2 and dehydroascorbate reductase 2. These genes are
involved in the ascorbate-glutathione cycle that scav-
enges reactive oxygen species, particularly hydrogen
peroxide.

Jasmonic Acid Metabolic Process

Module 457 (eight genes) was involved in the
“jasmonic acid metabolic process” (FDR = 8.7e-3). It
contained the LeMTS1 gene encoding tomato mono-
terpene synthase. A homeobox knotted-1-like gene,
LeT6 (Chen et al., 1997), was also included in this
module. The LeT6 gene is essential for meristem
maintenance and the process of leaf initiation (see
“Discussion”).

Comparative Analyses of Topological Characteristics in
Tomato Transcriptome Coexpression in Different Organ
Data Sets

To obtain further insight into the tomato transcrip-
tome, we employed a comparative approach to organ-
specific coexpression. Using three subdata sets, leaves,
fruits, and roots, we first assessed the topological
characteristics of each coexpression network. As
shown in Figure 5A, the degree distribution of each
network (r $ 0.6) was indicative of a typical power-
law distribution in a wide range of values for the
degree k. We also calculated several graph-theoretic
statistics, including the number of edges, average path
length, and clustering coefficient (Barabási and Oltvai,
2004; Table I). In the roots data set, we observed that
the highest number of edges and the highest clustering
coefficient were 5,997,644 and 0.70, respectively. The
average path length in three organs was smaller than
three, indicating that these networks are characterized
by a small-network property. To assess the degree of
node overlap among the three data sets, we investi-
gated similarity scores for nodes based on their con-
nection partners using the Jaccard coefficient, which
assesses the interaction between two graphs by assess-
ing the tendency that links are present simultaneously
in both graphs. Figure 5B shows the relationship
between the average of the Jaccard coefficient and
the correlation coefficient, and it indicates that the
larger the cutoff of the correlation coefficient, the
smaller the average similarity. In this graph, we ob-
served that the roots data set had the highest Jaccard
coefficient in all ranges.

Figure 3. Topological overview of the tomato coexpression network. A,
Degree distribution of the network P(k) at various correlation thresholds
(r ranging from 0.5 to 0.95); k indicates connectivity, and P(k) indicates
the connectivity distribution. B, Partial coexpression network (r $ 0.6,
P , 2.1e-31) in all data. The network shows how genes neighboring
LeMADS-Rin (orange circle) correlate with each other. This undirected
graph consists of nodes (black circles) and links (gray edges), indicating
genes and positive correlations between genes.
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Direct Measures of Differential Coexpression in the
Tomato Transcriptome

We next focused on changes in coexpression patterns
between gene expression levels. We posited that a
significant coexpression between given genes may be
found under one condition but not another and that the
changes elicited under one condition may be reversed
under the other condition. An example of changed
coexpression is shown in Figure 6. The correlation
coefficient between Les.107.1.S1_at (SGN-U565450; cy-
clin A2) and Les.1081.1.S1_at (SGN-U577270; putative
ribosomal protein) was negative (r = 20.66) in leaves
but positive (r = 0.71) in fruits. To compare coexpression
patterns among organs, we first visualized the three
correlation matrices using pseudo-heat maps (Supple-
mental Fig. S2).While genes involved in photosynthesis
were highly coexpressed in leaves and fruits, in roots
they showed no remarkable coexpression within the
pathway. For other pathways, root data displayed
overall positive coexpression.
To obtain the difference between coexpression in the

three organs, we used Fisher’s Z-transformation. This
approach can test directly for differential coexpression
by testing, for example, the null hypothesis H0: r

L = rF.
Here, rL and rF indicate that coexpression is calculated
over the leaf and fruit samples, respectively (see
“Materials and Methods”). In three comparisons,
fruits versus roots, leaves versus fruits, and leaves
versus roots, the numbers of significantly different
correlation pairs were 753,133, 826,190, and 395,814,
respectively (FDR , 1e-10; Fig. 7). Full lists of the
differential coexpressions are shown in Supplemental
Data S2. Using GO terms, we characterized the gene
pairs with significant differential coexpression (Table
IV; Supplemental Table S4). For example, in the tran-
sition from r . 0.7 in leaves to r , 20.7 in fruits, the
differential coexpression included genes associated
with cell wall modifications (FDR = 7.37e-3), while in

the opposite transition (r , 20.7 in leaves to r . 0.7 in
fruits), it included genes involved in flower develop-
ment (FDR = 5.32e-4). In the case of the GO term
“flower development,” we observed 17 annotated
probes including LeMADS-Rin and other genes encod-
ing the MADS box protein (Supplemental Table S4).

Duplicated Genes Show a Small but Significant Number

of Differential Coexpressions

We further investigated whether differential coex-
pression exists between duplicated genes. We first
classified the all-probe-set “target” sequences into
similarity clusters (referred to as gene families; see
“Materials and Methods”). Consequently, 1,677 ob-
tained clusters were regarded as gene families in this
analysis. For 1,677 gene families including duplicated

Table II. Postulated physiological functions of coexpression modules

We show 15 selected modules with five or more genes. Annotations are based on GO functional
categories (FDR , 0.05). See also Supplemental Table S1.

Module No. No. of Genes
Predominant Function in Biological

Process (Best P Value)

1 63 DNA endoreduplication (2.9e-2)
4 54 Photosynthesis (1.6e-3)
52 65 Response to organic substance (2.8e-2)
90 54 Protein metabolic process (2.2e-2)
107 57 Response to GA stimulus (1.3e-2)
126 36 Cell cycle process (9.2e-3)
174 64 Pathogenesis (4.7e-2)
219 47 Protein farnesylation (4.6e-2)
291 49 Response to organic substance (3.6e-2)
309 19 Apoptosis (3.0e-2)
340 7 Jasmonic acid metabolic process (4.1e-3)
354 37 Response to ethylene stimulus (1.1e-2)
435 33 Response to cold (4.3e-2)
441 5 Primary root development (1.2e-4)
457 8 Jasmonic acid metabolic process (8.7e-3)

Figure 4. Distribution of the number of unknown genes within a
module.
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genes, we calculated the number of significantly differ-
ent coexpressions (FDR , 1e-10). The numbers of du-
plicated genes that were differentially coexpressed
among organs is listed in Table V and Supplemental
Table S5. Overall, we were able to observe a small but
significant number of differential coexpression relation-
ships (Table V). For example, a gene family, Markov
Cluster (MC) 100, was characterized by the GO terms
“photosynthesis, light harvesting (FRD = 6.1e-5)” and
“protein-chromophore linkage (FDR = 6.1e-5)”. In
MC100, there were 19 differentially coexpressed pairs
between leaves and roots, while there were 41 pairs
between fruits and roots.

To gain further insights into genes with significant
differential coexpression, we investigated the number
of significant differential coexpressions (FDR , 1e-10)
for each of the 256 metabolic pathways from the
LycoCyc (Bombarely et al., 2011; Table VI; Supplemen-
tal Table S6). For example, there were 15 differential
coexpressions in “glycolysis IV (plant cytosol)” be-
tween fruits and roots but only three differential
coexpressions between leaves and roots. The coex-
pression patterns in biosynthetic pathways associated
with the Calvin cycle, sugar degradation, photorespir-
ation, and the tricarboxylic acid (TCA) cycle, as well as
glycolysis, were usually different among organs. In

comparisons between leaves and fruits, but not in
other comparisons, there were three differentially co-
expressed pairs in anthocyanin biosynthesis. On the
other hand, gene pairs in flavonoid biosynthesis were
different when compared with roots. We also studied
duplicated genes encoding isozymes that were pri-
marily derived from LycoCyc. Most of these genes
were inferred from computational analysis without
any human curation. As shown in Supplemental Table
S7, we observed quite a few pairs with significantly
different coexpression (FDR , 1e-10) between dupli-
cated genes (isoforms). For example, the number of
significantly different coexpression genes encoding
b-fructofuranosidasewas four of 528 possible gene pairs.

Differential Coexpression Provides Clues of Key
Regulatory Steps in Metabolic Pathways

To interpret differential coexpression in metabolic path-
ways, we investigated, in detail, two biosynthetic path-
ways, lycopene and flavonoid, in a proof-of-concept study.

Lycopene Biosynthesis

The changes in coexpression between organs in-
volved in carotenoid biosynthesis are of particular

Table III. Distribution of GO terms for each module in the tomato data set

Significance levels are set at FDR , 0.05. This list shows only the top 10 occurrences in this study. Frequency represents occurrences of the
modules with specific GO terms. Detailed information is shown in Supplemental Table S3.

BP Terms Frequency CC Terms Frequency MF Terms Frequency

Negative regulation of ligase activity 150 Chloroplast thylakoid
membrane

59 Water channel activity 33

DNA endoreduplication 111 PSI 5 Peptidase activity 21
Photosynthesis, light harvesting 51 Chloroplast stroma 4 Two-component sensor activity 10
Pathogenesis 5 Plant-type cell wall 3 Protein binding, bridging 9
Response to organic substance 4 Cytosolic part 3 Nucleocytoplasmic transporter activity 8
Generation of precursor metabolites

and energy
4 Cytosolic ribosome 2 RNA glycosylase activity 8

Cellular protein metabolic process 3 Chloroplast part 2 Glc-1-P adenylyltransferase activity 6
Response to symbiont 2 Chloroplast 2 4-Hydroxyphenylacetaldehyde oxime

monooxygenase activity
4

Response to GA stimulus 2 Telomeric heterochromatin 1 rRNA binding 3
Response to cold 2 Protein farnesyltransferase

complex
1 Water transmembrane transporter activity 2

Figure 5. Topological overview of organ-specific
coexpression networks. A, Degree distribution of
the coexpression network (r $ 0.6) for three
organs: leaves, fruits, and roots. B, Relationship
between the average of the Jaccard coefficient
and the correlation coefficient. The former can
measure the degree overlap between two net-
works as the ratio of the intersection to the union
of the networks.
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interest because this pathway contributes to the pro-
duction of lycopene and b-carotene, which can be
utilized as indicators of tomato quality. The mapping
of differential coexpression between leaves and fruits
onto a lycopene biosynthesis pathway (Fig. 8) revealed
significantly different coexpression in this pathway.
The coexpression of genes encoding phytoene syn-
thase (PSY1; Les.3171.4.A1_at; SGN-U580527) and
abscisic acid stress ripening 1 (Les.4930.1.A1_at;
SGN-U581076) was significantly different between
leaves and fruits (Fig 8, I). In leaves, their expression
was positively correlated (r = 0.75); there was no
correlation in fruits (r = 20.09). The expression of the
PSY1 gene (Les.3171.4.A1_at; SGN-U580527) and that
of the gene encoding z-carotene desaturase (ZDS;
Les.20.1.S1_a; SGN-U568537) exhibited a highly posi-
tive correlation (r = 0.82) in fruits and a weak negative
correlation in leaves (r = 20.22; Fig. 8, II). The ZDS
gene (Les.20.1.S1_at; SGN-U568537) and the gene en-
coding LELYCOCYC lycopene «-cyclase (Les.3771.1.
S1_at; SGN-U567885) were mildly coexpressed in
leaves (r = 0.58); in fruits, the coexpression was mildly
negative (r = 20.49; Fig. 8, III). We also observed
differential coexpression in genes associated with
lutein biosynthesis and abscisic acid biosynthesis
pathways (Fig. 8, IV). The coexpression between the
gene encoding «-ring hydroxylase (Les.4915.1.S1_at;
SGN-U562951) and the short-chain dehydrogenase/
reductase (SDR) homolog (LesAffx.68802.1.S1_at;
SGN-U580225) was highly positive (r = 0.72) in fruits
and mildly negative (r = 20.31) in leaves.

Flavonoid Biosynthesis

There were three differential coexpression patterns
in flavonoid biosynthesis (Fig. 9). The gene encoding
flavanone 3-hydroxylase (Les.2278.1.S1_at; SGN-
U563669) and the gene encoding 4-coumarate-CoA
ligase (Les.5848.1.A1_at; SGN-U579683) exhibited a
highly positive correlation (r = 0.89) in fruits and a
weak negative correlation in roots (r =20.23; Fig. 9, I).
Similarly, the gene encoding flavanone 3-hydroxylase
(Les.2278.1.S1_at; SGN-U563669) and the gene for
naringenin-chalcone synthase (Les.3649.1.S1_at; SGN-

U580856) showed a highly positive correlation (r = 0.89)
in fruits and a weak negative correlation in roots (r =
20.16; Fig. 9, II). The last pair manifested a pattern that
was in direct contrast to the one observed between the
gene encoding chalcone isomerase (Les.3218.1.S1_at;
SGN-U579009) and putative naringenin-chalcone syn-
thase (Les.4911.1.S1_at; SGN-U581366), which showed
a positive correlation (r = 0.50) in fruits and a highly
negative correlation (r = 20.72) in roots (Fig. 9, III).

Independent Experimental Verification of the Microarray
Data Sets Using qRT-PCR

To independently confirm the expression profiling
data, six expressed genes identified in our microarray
results were assayed with qRT-PCR at seven experi-
mental conditions using the same RNA sample that
was used for our original experiment consisting of 20
microarrays (see “Materials and Methods”). We chose
six genes that were involved in photosynthesis, flavo-
noid biosynthesis, and carotenoid biosynthesis, which
corresponded with three types of expression pattern:
(1) leaf specific, (2) fruit specific, and (3) moderate (Fig.
10A). We verified that the expression patterns were
consistent between microarray and qRT-PCR analyses
and showed very good reproducibility (Supplemental
Fig. S3). Thus, we can state the following: (1) the
significant coexpression in module 4, which includes
the genes ZEP and psaD, was reproducible (r = 0.84,
P = 3.63e-6; Fig. 10), and (2) regarding flavonoid genes,
the calculation based on fruit samples resulted in
significant coexpression (r = 0.84, P = 0.0343). This
result supports, at least in part, our approach (Fig. 9).
These verification results suggest that the resulting
coexpressions derived from 307 collected data sets, as
well as each subdata set (leaves, fruits, and roots), are
relevant, although we must note coexpression be-
tween genes with low-level expression.

DISCUSSION

We present a comprehensive coexpression network
analysis based on over 300 tomato microarrays and

Figure 6. A typical example of differentially
coexpressed genes in different data sets. The
correlation between the expression levels of two
genes was significantly different in leaves and
fruits (FDR = 9.27e-14). The axes represent
relative gene expression. Note that differential
coexpression was completely different from dif-
ferential expression, and the mean level of given
genes was significantly different between the two
organs (see “Materials andMethods”). [See online
article for color version of this figure.]
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investigate the topological properties of the network.
The degree distribution of the coexpression network
followed the heterogeneous power law. The subdata
sets from three organs, leaf, fruit, and root samples,
also exhibited high heterogeneity and modularity (e.g.
power-law degree distributions and small-world
properties). This result indicates that the properties
of the network are consistent with earlier reports on
typical coexpression networks (Stuart et al., 2003). We
constructed genome-wide tomato coexpression net-
works with a correlation cutoff value of r $ 0.6 (P ,
2.1e-31, Pearson’s correlation statistical test) using all
data. Our threshold selection was supported, at least
partially, by earlier studies. Aoki et al. (2007) showed
that the Arabidopsis coexpression network had a
minimal network density at a cutoff r value ranging

from 0.55 to 0.60. Using simulated data sets, Elo et al.
(2007) demonstrated that a cutoff value of r = 0.6
yielded both low error and high reproducibility.

We clustered densely coexpressed genes by graph
clustering, a nontargeted approach that divides the
tomato coexpression network into gene modules. We
detected 465 coexpression modules and assessed them
by GO term enrichment analysis. A coexpression
module-based approach applied to 67 microarrays
from 24 different tissues in tomato provided strong
predictions for gene functions, such as the pathways
involved in flavonoid biosynthesis (Ozaki et al., 2010).
Based on the evolutionary conservation of coexpres-
sion in the Solanaceae family, Miozzi et al. (2010)
developed the data-mining tool, ORTom, which pre-
dicts functional relationships among tomato genes.
The Tomato Functional Genomics Database (TFGD)
offers aWeb-based retrieval tool for coexpressed genes
(Fei et al., 2011). There are several differences between
our approach and these previous studies. First, our
study involved a much larger number of microarrays
(more than 300) and covered wider experimental
conditions, including various stress experiments. Sec-
ond, we introduced differential coexpression into our
plant transcriptome study. In addition, the extracted
modules carried many unknown genes (Fig. 4). Fi-
nally, the expression profiles of six selected genes were
independently verified by qRT-PCR (Fig. 10; Supple-
mental Fig. S3).

The coexpression module-based approach by graph
clustering is an important approach to facilitate pre-
dictions (Mentzen andWurtele, 2008; Atias et al., 2009;
Fukushima et al., 2009a; Mao et al., 2009). In our
previous works (Fukushima et al., 2009a, 2011), we
used DPClus-based graph clustering to characterize
gene coexpression networks and metabolomic corre-
lation networks. Although we believe that DPClus is
also useful for gene coexpression networks, it has a
limitation on the number of nodes (limitation: n ,
5,000). To this end, we chose IPCA (Li et al., 2008),
which enables us to perform the graph clustering for
larger scale networks in this study. We demonstrated
that 88% of all coexpression modules in the tomato
were assigned by GO terms, although the modules to
which we assigned GO terms overlapped markedly.
The tomato genome sequencing project and enhanced
genomic annotations in tomato (Barone et al., 2008;
Bombarely et al., 2011) will improve such characteri-
zations of coexpression modules. We highlighted four
modules, module 1, module 4, module 435, and mod-
ule 457 (Table II). The coexpression between genes
encoding cyclin B1 and histone H4 in module 1 (GO
term DNA endoreduplication) has been observed in
Arabidopsis (see the ATTED-II database; Obayashi
et al., 2011). Module 4 (GO term photosynthesis) is
consistent with previous reports in Arabidopsis and
rice (Mentzen and Wurtele, 2008; Fukushima et al.,
2009a). Genes in module 435 (GO term response to
cold) are reasonable in the sense that abiotic stresses,
including cold stress, are related to oxidative stress

Figure 7. Distribution of significantly differentially coexpressed genes
between leaves and fruits (A), leaves and roots (B), and fruits and roots
(C). This calculation was based on Fisher’s Z-transformation (see
“Materials and Methods”). Thresholds correspond to Pearson’s corre-
lation coefficient (PCC). Black and gray bars show the number of
transitions from positive to negative correlations and from negative to
positive correlations, respectively.

Fukushima et al.

1494 Plant Physiol. Vol. 158, 2012



that perturbs almost all functions in a plant cell.
Module 457 (GO term jasmonic acid metabolic pro-
cess) was also relevant because it included the LeMTS1

gene. According to van Schie et al. (2007), the expres-
sion of the gene in tomato leaves was induced by
jasmonic acid treatment, and this gene encoded a

Table IV. Significantly overrepresented GO terms associated with differential coexpression among organs (FDR , 0.05) when the threshold is r = 0.7

Numbers in parentheses indicate FDR. Detailed information is shown in Supplemental Table S4. n.s., Not significant.

Domain Leaves versus Fruits Leaves versus Roots Fruits versus Roots

Positive to negative
BP Cell wall modification (7.37e-3) n.s. n.s.
CC n.s. n.s. n.s.
MF Enzyme inhibitor activity (4.03e-7) Calcium ion binding (3.15e-2) n.s.

Negative to positive
BP Flower development (5.32e-4) n.s. n.s.
CC n.s. Thylakoid (6.28e-3) n.s.
MF Enzyme inhibitor activity (4.21e-4) n.s. n.s.

Table V. Number of coexpressions of duplicated genes with significant differences among organs

See also Supplemental Table S5. n.s., Not significant.

No. of Significantly

Different Pairs

No. of Genes within

Duplicated Gene Cluster (MC)
MC No.

GO Terms Biological

Process (P Value)

Leaves versus fruits
9 12 MC665 n.s.
5 21 MC7 Cellular amino acid derivative biosynthetic process

(1.7e-12)
4 12 MC893 Regulation of transporter activity (3.3e-2)
4 9 MC141 Brassinosteroid metabolic process (2.0e-6)
4 16 MC584 Cellular response to auxin stimulus (6.7e-28);

auxin-mediated signaling pathway (6.7e-28)
4 10 MC533 Cellular cell wall organization (1.1e-15)
3 5 MC1117 Oxidation reduction (1.6e-4)
3 13 MC813 Ciliary or flagellar motility (1.6e-5)
3 7 MC310 n.s.

Leaves versus roots
19 16 MC100 Photosynthesis, light harvesting (6.1e-5);

protein-chromophore linkage (6.1e-5)
6 21 MC7 Cellular amino acid derivative biosynthetic process

(1.7e-12)
4 8 MC10 Cellular response to auxin stimulus (2.4e-9);

auxin-mediated signaling pathway (2.4e-9)
3 7 MC596 Response to cold (2.0e-3)
3 6 MC748 Regulation of epidermal cell division (1.8e-2)
3 7 MC1622 Ethylene metabolic process (4.5e-13)
3 12 MC786 Phenylpropanoid biosynthetic process (1.3e-4)
3 15 MC493 Regulation of protein metabolic process (1.6e-5)
3 6 MC19 Cellular response to auxin stimulus (1.2e-6);

auxin-mediated signaling pathway (1.2e-6)
Fruits versus roots

41 16 MC100 Photosynthesis, light harvesting (6.1e-5);
protein-chromophore linkage (6.1e-5)

8 21 MC7 Cellular amino acid derivative biosynthetic process
(1.7e-12)

7 15 MC493 Regulation of protein metabolic process (1.6e-5)
5 5 MC134 Ubiquitin-dependent protein catabolic process (5.0e-3)
4 14 MC296 Response to chitin (3.9e-15)
4 12 MC181 Cellular response to hydrogen peroxide (4.4e-21);

hydrogen peroxide catabolic process (4.4e-21)
4 9 MC141 Brassinosteroid metabolic process (2.0e-6)
4 9 MC189 Gluconeogenesis (4.2e-3)
4 6 MC19 Cellular response to auxin stimulus (1.2e-6);

auxin-mediated signaling pathway (1.2e-6)
3 7 MC1622 Ethylene metabolic process (4.5e-13)
3 8 MC641 Gluconeogenesis (1.9e-3)
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linalool synthase. We also observed the LeT6 gene
(Chen et al., 1997) in this module. Although both genes
were highly coexpressed, their relationship is currently
unclear. Using the arf6arf8 double mutant, Tabata et al.

(2010) showed that Arabidopsis auxin response factors
6 and 8 regulate jasmonic acid biosynthesis and floral
organ development via class 1 KNOX genes. This
mutant is similar to that found in plants harboring a

Table VI. Number of coexpressed pairs with significant differences between leaves and fruits in metabolic
pathway-related genes

FDR , 1e-10. We used the LycoCyc database for classification of genes. See also Supplemental
Table S6.

No. of Pairs No. of Pathway Genes Pathway

19 134 Suc degradation to ethanol and lactate (anaerobic)
15 100 Glycolysis IV (plant cytosol)
14 105 Fru degradation to pyruvate and lactate (anaerobic)
13 103 Calvin cycle
12 93 Glycolysis I
12 90 Glycolysis V
8 71 Gluconeogenesis
8 78 Glc heterofermentation to lactate I
7 78 Glycolysis II
6 71 Glc fermentation to lactate II
6 62 Photorespiration
5 35 Entner-Doudoroff pathway II nonphosphorylative
5 35 Entner-Doudoroff pathway III semiphosphorylative
5 38 UDP-Glc conversion
4 15 Folate transformations
4 26 FormylTHF biosynthesis I
4 38 FormylTHF biosynthesis II
4 55 Salvage pathways of purine and pyrimidine nucleotides
4 28 TCA cycle
4 25 TCA cycle variation VIII
3 20 Asn degradation I
3 46 Flavonoid biosynthesis
3 69 tRNA charging pathway
2 37 Chlorophyllide a biosynthesis
2 11 Gly degradation I
2 41 Jasmonic acid biosynthesis
2 18 Phe degradation I
2 15 Reductive TCA cycle
2 15 Rib degradation
2 38 Triacylglycerol degradation
2 14 Tyr degradation
1 4 g-Glutamyl cycle
1 24 Arg biosynthesis II (acetyl cycle)
1 27 Carotenoid biosynthesis
1 16 Cys biosynthesis I
1 19 dTDP-L-Rha biosynthesis I
1 18 Folate polyglutamylation I
1 17 Formaldehyde assimilation I (Ser pathway)
1 4 Glutathione biosynthesis
1 10 Gly betaine degradation
1 11 Gly biosynthesis I
1 38 Lipoxygenase pathway
1 9 Orn biosynthesis
1 15 Phenylpropanoid biosynthesis
1 72 Purine nucleotides de novo biosynthesis I
1 39 Respiration (anaerobic)
1 12 Salvage pathways of purine nucleosides
1 16 Salvage pathways of purine nucleosides II, plant
1 39 Suberin biosynthesis
1 39 Suc biosynthesis
1 50 Suc degradation I
1 33 Sulfate assimilation III
1 13 Superpathway of Ser and Gly biosynthesis II

Fukushima et al.
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mutation associated with the biosynthetic pathway of
jasmonic acid, which causes morphologic abnormality
in floral organ development. Our clustering results may
suggest a yet unknown transcriptional coordination
between jasmonic acid biosynthesis and KNOX genes
in tomato. The predominant functions of the coexpres-
sion modules detected here show biological relevance.
Our top-down approach revealed good candidates for
functional modules in the tomato transcriptome. That
is, when using the guilt-by-association principle, such a
coexpression module-based approach can help to pre-
dict the function of unknown genes within a module,
although coexpressed genes are not necessarily in-
volved in the same biological process.
We studied differential coexpression among tomato

leaves, fruits, and roots using Fisher’s Z-transformation.
Direct measurements showed that duplicated genes
as well as metabolic genes exhibit a small but signif-
icant number of differential coexpressions. Gene clus-
ters assigned the GO term flower development as an
example of switching coexpression included LeMADS-
Rin (Table IV; Supplemental Table S4). Regarding the
link between the identification of differential coex-
pression and the identification of coexpressed gene
modules, we describe this as a complementary rela-
tionship. The reason for this statement is 2-fold. Be-
cause gene coexpression can be interpreted as a
“fingerprint” of the underlying transcriptional net-
work, it can be used to compare two physiological

states of cellular systems. That is, the differential
coexpression approach leads to a systematic difference
in transcriptomic levels among such organs. Second,
the comparative coexpression study here provides a
way to use the observed coexpression to find addi-
tional information about the plant transcriptome. It is
obvious that identifying coexpressed gene modules is
not sufficient, because differentially coexpressed gene
groups also reflect the changes in underlying tran-
scriptional regulation.

We also demonstrated the existence of several pairs
within the LycoCyc pathway (enzymatic isoforms)
that had significantly different coexpression between
duplicated genes. In our proof-of-concept study, we
investigated various patterns of differential coexpres-
sion in two biosynthetic pathways associated with
lycopene and flavonoid. In the lycopene biosynthesis
pathway, we identified four significant differences in
coexpression between leaves and fruits (Fig. 8). Of the
genes involved, PSY encodes a key regulatory enzyme
(Cazzonelli and Pogson, 2010). Positive coexpression
of the PSY and ZDS genes in tomato fruits is highly
likely from a proof-of-concept point of view regarding
differential coexpression approaches. The differential
coexpression between the two isoforms of the PSY
gene may reflect organ-specific regulation at the tran-
scription level. We found that two genes encoding the
«-ring hydroxylase and the SDR homolog exhibited
markedly different coexpression patterns in leaves
and fruits. In fruits, the high coexpression (r = 0.73)
between the genes encoding «-ring hydroxylase and
SDR was partly consistent with the observation that

Figure 8. Differential coexpressions mapped onto the lycopene bio-
synthesis pathway. Solid arrows show the reaction steps. Orange
dashed lines and green broken lines represent intensified correlations
in fruits (F) and leaves (L), respectively.

Figure 9. Differential coexpression mapping to the flavonoid biosyn-
thesis pathway. Solid arrows represent reaction steps. Orange dashed
lines and green broken lines indicate intensified correlations in fruits (F)
and roots (R), respectively. CHS, Chalcone synthase; CHI, chalcone
isomerase; F3H, flavanone-3-hydroxylase.
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Figure 10. qRT-PCR assessment of microarray results. A, Box plots of expression values measured by qRT-PCR across seven
experimental conditions, including leaf (L) and fruit (F) samples. Six genes associated with biosynthetic pathways were involved
in photosynthesis, photosystem 1 reaction center protein subunit 2 (psaD; SGN-U580167) and zeaxanthin epoxidase (ZEP; SGN-
U569421); flavonoids, flavanone 3-hydroxylase (F3H; SGN-U563669) and chalcone synthase 2 (CHS2; SGN2U580856); and
carotenoids, phytoene synthase 1 (PSY1; SGN2U590947) and z-carotene desaturase (ZDS; SGN-U568537). B, Coexpression
patterns between the genes, as determined by qRT-PCR (blue circles). Correlation between qRT-PCR andmicroarray analyses was
also verified as shown in Supplemental Figure S3. w, Week. [See online article for color version of this figure.]
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two abscisic acid-deficient mutants, sitiens and flacca,
exhibit a decrease in lutein levels (Galpaz et al., 2008).
Our approach suggests that the correlation between
abscisic acid and lutein levels in tomato plants is
attributable to their transcriptional coordination.
Based on transcriptome coexpression analysis, several

flavonoid biosynthetic genes in Arabidopsis were char-
acterized (Luo et al., 2007; Yonekura-Sakakibara et al.,
2007, 2008, 2012). Flavonoids in plants play significant
roles in many biological processes, such as protecting
plants against ultraviolet light, providing pigmentation
in fruits and flowers, and protecting against diseases
and pests in higher plants (Buer et al., 2010). In the
tomato, the total flavonoid concentration in roots is
lower than that in leaves and fruits (Zornoza and
Esteban, 1984); among the three organs, tomato fruits
manifest the highest concentration of total flavonoids.
Earlier studies had detected up to 70 flavonoids, includ-
ing naringenin chalcone, kaempferol, and quercetin, in
tomato fruits (cv Micro-Tom; Moco et al., 2006; Iijima
et al., 2008). Our results showed strong coexpression
patterns among genes encoding chalcone synthase,
chalcone isomerase, and flavanone 3-hydroxylase in
fruits (Fig. 9). However, there was no coexpression
between these genes in roots. In addition, we found a
reversal of coexpression between genes encoding chal-
cone synthase and chalcone isomerase. This suggests a
pronounced change in the underlying transcriptional
regulation of the flavonoid pathway. Taken together,
these observations suggest that at least in the lycopene
and flavonoid pathways, these differential coexpres-
sions reflect a key regulatorymechanism among organs.
Because a marked change in coexpression patterns

among organs may reflect underlying transcriptional
changes directly or indirectly, the genes related to
these differential coexpressions may act distinctly in
those organs. Differential coexpression analysis repre-
sents a good data-mining approach to prioritizing
candidate genes in further functional genomics studies
on computationally assigned genes encoding an en-
zyme, for example. Additional work is needed to
evaluate the conservation of differential coexpression
patterns among species, and more efficient tools for
their assessment in plants would be helpful. For ex-
ample, like Kappa-view 4 (Sakurai et al., 2011), the
mapping of differential coexpressions onto metabolic
pathways is highly useful in the field of plant research.
We offer our extensive analysis of the coexpression
networks to aid researchers in the selection and prior-
itization of candidate genes in studies on tomato
functional genomics.

MATERIALS AND METHODS

Plant Material and Growth Conditions

We developed a plant irradiation system based on applying light-emitting

diodes to a leaf. We used this system to investigate changes in transcript

profiles of leaves and fruits grown under different light conditions. Seeds from

tomato (Solanum lycopersicum ‘Reiyo’) were sown in 72-cell plant trays (Takii

Seed) and grown in a commercial soil mix (Napura Soil Mixes) for 2 weeks in a

growth chamber (MKV DREAM) at 25�C/20�C (light/dark) and 900 mL L21

CO2 concentration with a light/dark cycle of 16 h/8 h for 2 weeks at Chiba

University. Then, seedlings were transferred to pots one by one (final size, 2.4

L) and grown in a growth chamber (Asahi Kogyosha). The photosynthetic

photon flux level in the growth chamber was adjusted to 450 to 500 mmol m22

s21 when we measured at the meristem of each tomato plant (light source,

ceramic metal halide lamps). After plant flowering in summer 2010, we

removed leaves and trusses from each plant, with the exception of the second

truss, a leaf below the second truss, and the meristem. Light-emitting diode

irradiation at 0, 200, and 1,000 mmol m22 s21 was directly applied to the leaf

using a plant irradiation system (humidity, 70%; CO2 concentration, 900 mL

L21). Plant material was harvested after 0, 1, and 2 weeks. Twenty samples

were analyzed (14 leaf samples and six pericarp samples), and two to three

biological replicates were used.

GeneChip Microarray Analysis

Analysis was performed using the Affymetrix GeneChip Tomato Genome

Array according to the manufacturer’s instructions. This microarray includes

more than 9,000 transcripts and does not cover all of the approximately 35,000

genes encoded in the tomato genome, which are located largely in euchro-

matic regions (Van der Hoeven et al., 2002). RNA was extracted using the

standard procedure of Affymetrix. Our own data have been deposited in the

Gene Expression Omnibus (GEO; Barrett et al., 2011) and are accessible

through the GEO series accession number GSE35020.

qRT-PCR Analysis

Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen).

Reverse transcription of each total DNase-treated (Qiagen) RNA sample was

performed using the SuperScript III First-Strand Synthesis System for RT-PCR

(Invitrogen). qRT-PCR with the first-strand cDNA using the Fast SYBR Green

Master Mix (Applied Biosystems) was performed on the ABI StepOnePlus

Real Time PCR system (Applied Biosystems). qRT-PCR primers used in this

study are listed in Supplemental Table S8.

Data Collection and Preprocessing

We collected 307 GeneChips from publicly available databases including

GEO, ArrayExpress (Parkinson et al., 2011), and TFGD (Fei et al., 2011) and

included 20 of our own hybridizations (GEO accession no. GSE35020),

resulting in a total of 327 arrays. The collected data set contains 17 experiments

(Fig. 2; Supplemental Data S1). The raw CEL data were normalized by the

robust multichip average (Irizarry et al., 2003) with Bioconductor (Gentleman

et al., 2004). The resulting values were normalized to the same range by

means-based scale normalization. Probe sets with the prefix RPTR or AFFX

were removed. Using the detection call (present/absent) from the MAS5

algorithm (http://www.affymetrix.com/support/technical/whitepapers/

sadd_whitepaper.pdf) with default settings, we excluded all probe sets with

absent calls in all samples. For the visual inspection of the quality of

microarrays based on chip pseudoimages of residual weights and signed

residuals, we used the R packages affy (Gautier et al., 2004) and affyPLM

(Gentleman et al., 2005). We next performed a quality check of the microarrays

based on the Kolmogorov-Smirnov goodness-of-fit statistic D (Persson et al.,

2005) and discarded all GeneChips withD$ 0.15, resulting in 307 high-quality

data sets for further analyses. This calculation was done with HDBStat!

(Trivedi et al., 2005).

Constructing Coexpression Networks and
Topological Analyses

Using Pearson’s correlation coefficient (r), we calculated correlation

matrices of subdata sets classified by organ names (leaves, fruits, and roots)

as well as all data (Fig. 1). The number of arrays corresponding to the

leaves, fruits, and roots were 77, 135, and 36, respectively. A correlation

matrix was calculated for the remaining 9,989 probe sets. All topological

analyses, such as calculation of the Jaccard coefficient, were performed in R

with the igraph package (Csardi and Nepusz, 2006). Coexpression net-

works were visualized using the Cytoscape software program (Shannon

et al., 2003).
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Graph Clustering and Functional Enrichment Analysis

To extract coexpression modules, we utilized the graph clustering algo-

rithm IPCA (Li et al., 2008), an extension of the original DPClus algorithm

(Altaf-Ul-Amin et al., 2006). DPClus is based on the combined periphery and

density of graphs to extract dense subgraphs. The parameters we used were as

follows: modules with sizes smaller than five (S = 5), a shortest path length of

two (P = 2), and a threshold parameter Tin of 0.6 (T = 0.6).

We used BiNGO (Maere et al., 2005), a tool to assess overrepresentation or

underrepresentation in a set of genes, for the analysis of significantly over-

represented GO categories among coexpression modules detected by graph

clustering. We selected a GO term with the best P value within the BP, CC, and

MF domains. The Benjamini and Hochberg (1995) correction for FDR was

applied in functional enrichment analysis.

Calculating Differential Coexpression

We used the term “differential coexpression” to describe significant

correlations between given genes found under one, but not another, condition.

This definition also included instances in which the correlations were changed

to the opposite direction under two conditions (Fig. 6). It provided a means to

identify associations that were dramatically changed by mutations, organs, or

treatments. For example, the correlation between gene expressions was

calculated over the leaf sample (rL) and over the fruit sample (rF). In this

case, the differential coexpression could be elucidated by testing the null

hypothesis H0: r
L = rF. To test whether two coexpressions were significantly

different from one another, the correlations were transformed by Fisher’s

Z-transformation. If there were two correlations with sample sizes n1 and n2,

they were each transformed into Fisher’s Z values, Z = 1/2[ln(1 + r)/(1 2 r)].

Under the null hypothesis that the population correlations are equal, the Z

value, Z ¼ jZ1 2Z2j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1 2 3 þ 1

n2 2 3

q
, has an approximately normal distribu-

tion. We also calculated the local FDR for all correlation tests with the fdrtool

package (Strimmer, 2008).

Definition of Duplicated Genes

The tomato target sequences from the Affymetrix Web site (http://www.

affymetrix.com/Auth/analysis/downloads/data/Tomato.target.zip) were

utilized in an all-against-all BLASTX search (cutoff threshold, E , 1e-5). We

used the Markov chain clustering algorithm (http://micans.org/mcl/; Van

Dongen, 2000) to assign the target sequences to clusters. The 1,677 obtained

clusters were regarded as gene families in this analysis.

Gene Annotation

Annotation information (release 31) for tomato was downloaded from the

Affymetrix Web site. Gene ontology of tomato genes was based on informa-

tion from TFGD (Fei et al., 2011). To assign the Sol Genomics Network (SGN)

unigene (Mueller et al., 2005; Bombarely et al., 2011), similarity searches

between the Affymetrix probe set identifier and the SGN unigene were per-

formed using BLASTN (Altschul et al., 1990) with a threshold E value of 1e-10.

For functional categories of central metabolism, we used the MapMan flat

file (Thimm et al., 2004) from the Web site (http://mapman.gabipd.org/

web/guest/mapmanstore). We also used the SolCyc (LycoCyc) database

(Bombarely et al., 2011) for the classification of metabolic genes.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. The distribution of the expressionmatrix (A) and

correlation coefficients (B) for the three organs are based on all probe

sets calculated using the robust multichip average algorithm.

Supplemental Figure S2. Correlation heat maps for four data sets: all data,

leaves, fruits, and roots.

Supplemental Figure S3. Correlation of expression values measured by

qRT-PCR and microarray.

Supplemental Table S1. List of 465 coexpression modules in the tomato

all-data data set.

Supplemental Table S2. List of unknown genes for each of the 465

modules in the tomato all-data data set.

Supplemental Table S3. Distribution of GO terms for each module in the

tomato all-data data set.

Supplemental Table S4. Significantly overrepresented GO terms associ-

ated with differential coexpression among organs (FDR , 0.05).

Supplemental Table S5. Number of coexpressions of duplicated genes

with significant differences between leaves and fruits.

Supplemental Table S6. Number of coexpressed pairs with significant

differences between organs (FDR , 1e-10).

Supplemental Table S7. Number of coexpressed pairs with significantly

different coexpression between duplicated genes (isoforms) within the

LycoCyc database version 1.0.

Supplemental Table S8. qRT-PCR primers used in this study.

Supplemental Data S1. Meta-data for the microarrays used in this study.

Supplemental Data S2. List of differential coexpressions between the data

sets of leaves and fruits, leaves and roots, and fruits and roots.
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