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Abstract
There is an urgent need to find effective presymptomatic Alzheimer’s disease (AD) treatments that
reduce the risk of AD symptoms or prevent them completely. It currently takes too many healthy
people, too much money and too many years to evaluate the range of promising presymptomatic
treatments using clinical endpoints. We have used brain imaging and other measurements to track
some of the earliest changes associated with the predisposition to AD. We have proposed the
Alzheimer’s Prevention Initiative (API) to evaluate investigational amyloid-modifying treatments
in healthy people who, based on their age and genetic background, are at the highest imminent risk
of developing symptomatic AD using brain imaging, cerebrospinal fluid (CSF), and cognitive
endpoints. In one trial, we propose to study AD-causing presenilin 1 [PS1] mutation carriers from
the world’s largest early-onset AD kindred in Antioquia, Colombia, close to their estimated
average age at clinical onset. In another trial, we propose to study apolipoprotein E (APOE)ε4
homozygotes (and possibly heterozygotes) close to their estimated average age at clinical onset.
The API has several goals: 1) to evaluate investigational AD-modifying treatments sooner than
otherwise possible; 2) to determine the extent to which the treatment’s brain imaging and other
biomarker effects predict a clinical benefit—information needed to help qualify biomarker
endpoints for use in pivotal prevention trials; 3) to provide a better test of the amyloid hypothesis
than clinical trials in symptomatic patients, when these treatments may be too little too late to
exert their most profound effect; 4) to establish AD prevention registries needed to support these

Please address correspondence to Dr. Reiman at the Banner Alzheimer’s Institute, 901 E. Willetta St., Phoenix, AZ USA 85006;
telephone 602.839.6999, fax 602.839.6523, eric.reiman@bannerhealth.com.

NIH Public Access
Author Manuscript
J Alzheimers Dis. Author manuscript; available in PMC 2012 May 04.

Published in final edited form as:
J Alzheimers Dis. 2011 ; 26(Suppl 3): 321–329. doi:10.3233/JAD-2011-0059.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and other presymptomatic AD trials; and 5) to give those individuals at highest imminent risk of
AD symptoms access to the most promising investigational treatments in clinical trials.
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Introduction
In this article, we note the urgent need to find effective presymptomatic Alzheimer’s disease
(AD) treatments, which we define as an intervention intended to postpone the onset, reduce
the risk of, or completely prevent AD symptoms. We suggest that the greatest roadblock to
the development of effective presymptomatic treatments may be the scientific means and
financial incentives needed to evaluate the range of promising treatments. We briefly
summarize relevant findings from our longitudinal study of cognitively normal people at
three levels of risk for late-onset AD, which led us to propose how brain imaging and other
biomarkers could be used to rapidly evaluate presymptomatic treatments in proof-of-concept
clinical trials. We note the need for humility when it comes to predicting how these
biomarkers will respond to AD-slowing treatments in clinical trials and point out that
regulatory agencies are unlikely to approve a presymptomatic treatment based solely on
biomarker endpoints until evidence is provided to show that a presymptomatic treatment’s
biomarker effects are reasonably likely to predict a clinical benefit. Finally, we describe our
Alzheimer’s Prevention Initiative (API), in which we intend to evaluate investigational
amyloid-modifying treatments in cognitively normal people who, based on their age and
genetic background, are at the highest imminent risk for symptomatic AD. The API is
intended to evaluate treatments sooner than otherwise possible, to provide a better test of the
amyloid hypothesis, to provide the evidence needed to show that an AD-modifying
treatment’s biomarker effects are reasonably likely to predict a clinical benefit, and give
individuals at the highest imminent risk of symptomatic AD access to promising treatments
in prevention trials.

“Presymptomatic (or Preclinical) AD Treatments:” A Proposed Definition
We have recently defined presymptomatic (or preclinical) AD treatments” as those
interventions that are initiated before apparent cognitive decline and are intended to reduce
the chance of developing AD-related symptoms[1]. The proposed term refers to an
intervention whether it is started before or after biological evidence of the underlying
disease (which may be hard to define), and whether it postpones the onset, partially reduces
the risk of, or completely prevents symptomatic AD. We have introduced this term based on
the United States Food and Drug Administration’s (FDA’s) stated view that it would not
approve a treatment for the “prevention” of AD unless trials were able to demonstrate that a
treatment prevented the onset of symptoms for the rest of a person’s life, an impractically
high hurdle to overcome. We believe that it will be easier to show that an intervention meets
our proposed criterion as a presymptomatic or preclinical AD treatment and support
regulatory agency approval. Our definition is also consistent with the research criteria for
“preclinical AD treatment” recently proposed by a working group for the National Institute
on Aging (NIA) and Alzheimer’s Association[2].
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Background
Alzheimer’s disease is an unacceptable problem due to the toll it takes on patients and
family caregivers, and the current and project financial impact on society[3,4]. A large
number of healthy lifestyle interventions have been suggested but not yet proven to postpone
the onset and reduce risk the risk of developing AD symptoms[5,6,7,8,9,10,11,12]. An even
modestly effective therapy could have a significant public health benefit. For instance, a
treatment that postponed the onset of AD symptoms by only five years without increasing
life-expectancy might be able to reduce the number of clinically affected patients by half[4].
Meantime, a growing number of investigational disease-modifying treatments are in
preclinical and clinical development[13], including but not limited to a large number of
medication and immunization therapies intended to interfere with the production and
accumulation of certain amyloid-β (Aβ) species. If, as many but not all researchers believe,
the amyloid hypothesis is correct[14], if the treatment is targeting the Aβ species critically
involved in the predisposition to symptomatic AD, if it is sufficiently safe and well
tolerated, and if it is started sufficiently early, it might be possible to substantially reduce the
risk of symptomatic AD and maybe even prevent it completely.

Unfortunately, it takes too many healthy people, too much money, and too many years—
longer than a drug product’s patent life—to evaluate presymptomatic treatments using
clinical endpoints. For instance, in order to determine whether cholesterol-lowering, blood
pressure-lowering or hormonal treatments reduced the risk of symptomatic AD if they were
started in middle-age, when epidemiological studies suggest that they may have their most
profound effect, nearly 50,000 healthy middle-aged research participants would be needed
for a two-year placebo-controlled randomized clinical trial (RCT), such that a sufficient
number of people developed symptomatic AD to detect a significant treatment effect. While
there have been a small number of large, time-consuming prevention trials in older
people[15,16,17,18], a new paradigm is needed to evaluate the range of presymptomatic
treatments.

We believe that brain imaging or other biomarker measurements of AD are needed to
rapidly evaluate presymptomatic treatments without having to study thousands of healthy
volunteers or wait many years to characterize and compare clinical endpoints in the
investigational and placebo treatment groups. Brain imaging and other biomarker methods
continue to be further developed and used to detect and track changes associated with the
clinical progression of AD, and several of these methods have been used to detect and track
similar changes in the presymptomatic stages of
AD[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]. Based on findings from the AD Neuroimaging
Initiative (ADNI) and other longitudinal studies, researchers have established standardized
procedures for the acquisition of brain imaging data and biological samples, to provide
common data sets that have helped researchers further develop, test and compare their data
analysis methods, and to provide sample size estimates for the use of biomarker endpoints
and enrichment strategies for clinical trials, particularly in patients in the symptomatic stages
of AD[35]. To date, the best established biomarkers of AD are fluorodeoxyglucose positron
emission tomography (FDG PET) measurements of decline in the regional cerebral
metabolic rate for glucose (rCMRgl), volumetric magnetic resonance imaging (MRI)
measurements of regional or whole brain shrinkage, PET measurements of fibrillar amyloid-
β (Aβ) burden, and low cerebrospinal fluid (CSF) Aβ42 levels, alone or in combination with
high CSF total tau or phospho-tau levels[24,1].

As noted below, we have suggested that biomarker endpoints could be used in proof-of-
concept RCTs to rapidly evaluate presymptomatic treatments in cognitively normal people
at increased risk for AD, and we have provided preliminary sample sizes estimates for some
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of these trials[36,20]. Unfortunately industry partners are unlikely to provide financial support
for these studies until the biomarker endpoints are qualified for use in pivotal trials. While
the field needs the scientific means (i.e., biomarker endpoints) to rapidly evaluate
presymptomatic treatments, it also needs the right financial incentive (i.e., regulatory agency
qualification of the biomarker endpoints for use in the accelerated approval of
presymptomatic AD treatments).

Regulatory agencies are unlikely to provide accelerated approval for a presymptomatic
treatment based solely on biomarker (i.e., surrogate marker) endpoints without additional
evidence to show that a treatment’s biomarker effects are “reasonably likely” to predict a
clinical benefit[37,38,39,40,41]. We believe that each of the most promising biomarker
measurements should be included in clinical trials of AD-modifying treatments in order to
show the extent to which an AD-modifying treatment moves the biomarkers, the extent to
which the treatment moves the biomarkers in the right direction, and the extent to which a
treatment’s biomarker effects predict a clinical benefit[24,1].

Regulatory agencies may require evidence from presympomatic AD trials themselves to
demonstrate the presymptomatic AD treatment’s biomarker effects are reasonably likely to
predict a clinical benefit. On one hand, biomarkers are needed to evaluate presymptomatic
treatments in a rapid and cost-effective way. On the other hand, clinically proven treatments
are needed to help qualify biomarkers for use as reasonably likely surrogate endpoints.
Among other things, the API is intended to help resolve this apparent catch-22. We propose
to characterize and compare the effects of an amyloid-modifying treatment on FDG PET,
volumetric MRI, fibrillar amyloid PET and CSF endpoints in cognitively normal people
who, based on their age and genetic background, are at the highest imminent risk of
symptomatic AD. If, after two years, the treatment fails to move one or more of the
biomarkers in the right direction, the Data Safety Monitoring Board (DSMB) would declare
futility and the research participants would be eligible to participate in another trial. If,
however, the treatment does have the predicted biomarker effects, the trial would be
continued long enough to detect an effect on pre-specified cognitive endpoints.

Before we describe the API in more detail, we briefly summarize relevant biomarker and
cognitive findings from our ongoing longitudinal study of cognitively normal people with
two copies, one copy and no copies of the apolipoprotein E (APOE) ε4 allele, the major
late-onset AD susceptibility gene[42].

Preliminary Findings
In 1994, we initiated a longitudinal brain imaging study of cognitively normal, initially late-
middle-aged, cognitively normal APOEε4 homozygotes, heterozygotes, and non-carriers,
reflecting three levels of genetic risk for late-onset AD, who were initially matched for their
gender, age and educational level. Our subjects are followed every two years using FDG
PET, volumetric MRI, and a battery of neuropsychological and clinical tests. In the last few
years, they have begun to be following using fibrillar amyloid-β (Aβ) PET measurements,
additional MRI measurements, and additional cognitive assessments; their DNA has been
used to provide genome-wide association data, and they have begun to provide serum and
plasma samples for use in ongoing and future analyses; and most recently, some have begun
to provide CSF samples.

Of particular relevance to the API, we have demonstrated associations between APOE ε4
gene dose (i.e., three levels of genetic risk for AD) and a) baseline reductions and
longitudinal declines in FDG PET measurements of the regional cerebral metabolic rate for
glucose (rCMRgl)[43,19,44,20,21,22,45,46,47,48,49,50,51], b) longitudinal declines in volumetric
MRI measurements of whole brain shrinkage[52,53,54,45], c) PET measurements of the
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magnitude and spatial extent of fibrillar amyloid burden[23], and d) cross-sectional and
longitudinal measurements of the decline in long-term verbal memory[55,56,57,58,59,60,61,62].
Based on our findings, we have estimated the number of cognitively normal late-middle-
aged APOE ε4 homozygotes or heterozygotes needed to evaluate presymptomatic AD
treatments using the FDG PET, volumetric MRI and cognitive endpoints, and we developed
voxel-based image-analysis algorithms with improved power to detect and track AD while
addressing the Type I error associated with multiple regional comparisons[36,63]. Meantime
our amyloid PET findings suggest that fibrillar Aβ burden is “on the way up” in cognitively
normal APOE ε4 homozygotes and heterozygotes in their 50s and 60s (before fibrillar
amyloid levels reaches the plateau observed in symptomatic patients[64]), that it will be
possible to evaluate the differential effects of amyloid-modifying treatments in those carriers
with more or less fibrillar Aβ (in case a presymptomatic treatment in normal people with
significant Aβ burden is too little too late), and that it will be possible to assess the ability of
these treatments to slow down further fibrillar Aβ deposition.

The Alzheimer’s Prevention Initiative (API)
The API proposes to evaluate investigational amyloid-modifying treatments in healthy
people who, based on their age and genetic background, are at the highest imminent risk of
developing AD symptoms using brain imaging, cerebrospinal fluid (CSF), and cognitive
endpoints[1]. This complements the newly established criteria for preclinical AD[2], as well
as other presymptomatic/preclinical AD treatment trials proposed by the Dominantly
Inherited Alzheimer’s Network (DIAN)[65], the AD Cooperative Study (ADCS), and
others[66,67].

The API has several goals: 1) to evaluate investigational AD-modifying treatments sooner
than otherwise possible; 2) to determine the extent to which the treatment’s effects on brain
imaging and other biomarkers predicts a clinical benefit—information needed to help
qualify biomarker endpoints for use in pivotal prevention trials; 3) to provide a better test of
the amyloid hypothesis than clinical trials in symptomatic patients, when these treatments
may be too little too late to exert their most profound effect; 4) to establish AD prevention
registries needed to support these and other presymptomatic AD trials; and 5) to give those
individuals at highest imminent risk of AD symptoms access to the most promising
investigational treatments in clinical trials.

In one trial, we propose to study cognitively normal AD-causing presenilin 1 [PS1] E280A
mutation carriers, at least 35 years of age (i.e., within 10 years of the carriers’ estimated
median age at clinical onset), from the world’s largest early-onset AD kindred, located in
Antioquia, Colombia[1]. This extraordinary kindred, which has been followed for more than
20 years by Dr. Francisco Lopera and his colleagues, and includes about 5,000
people[68,69,70,71,72,73,74,75,76,77,78,33,79,80,81,82,83], with a sufficient number of
presymptomatic carriers in the targeted age group to make it possible to relate a treatment’s
effects on both biomarker and clinical endpoints within 2–5 years. In the proposed trial, PS1
mutation carriers would be randomized to active treatment or placebo, non-carriers would be
assigned to placebo, and genetic test findings would not be disclosed to the family members
simply because they are participating in this trial[84]. In the other trial, we propose to study
cognitively normal 60–80 year-old APOE ε4 homozygotes (and possibly heterozygotes),
close to their estimated median age of clinical onset[1]. Including heterozygotes would
depend on the safety and tolerability data for the chosen treatment, but would allow for both
an increase in the available samples and an increase in the generalizablity of our
findings[85,86].
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For each subject group, we have proposed to conduct a 24 month double-blind, randomized,
placebo-controlled trial using fibrillar amyloid PET, FDG PET, volumetric MRI, CSF, and
cognitive endpoints[1]. Biological fluids and other MRI measurements would be used to
permit exploratory studies. If after two years, the treatment is not associated with predicted
effects on one or more of the biomarkers, the DSMB would declare futility, the trial would
be discontinued, and the participants would be eligible to participate in a trial of the next
most promising AD-modifying treatment. If, however, the treatment is associated with
predicted biomarker effects, the trial would be continued to assess effects on our compound
cognitive endpoint.

To support these and other presymptomatic AD trials, we plan to establish two AD
prevention registries. We aim to enroll 2,000 members of the PS1 E280A kindred (along
with DNA samples, PS1 E280A mutation testing and baseline cognitive assessments), about
one-third of whom are projected to be mutation carriers, into the Colombian Registry by
2012. We aim to enroll several hundred thousand individuals in the US-based Alzheimer’s
Prevention Registry, some of whom will be invited to provide saliva samples for DNA
acquisition and APOE screening. In anticipation of the Colombian trial, we have begun to
acquire and analyze brain imaging and CSF samples in the PS1 mutation carriers and non-
carriers, a cyclotron/radiochemistry facility is being installed, and we have used data from
the ongoing longitudinal study to estimate the sample sizes needed to detect a clinical effect
using a composite cognitive endpoint.

While we believe that there is an opportunity to advance the evaluation of presymptomatic
AD treatments, there is a responsibility to get it right. In October 2009, we hosted a meeting
of 40 scientific advisors to get their input and help us to refine our proposal. In January
2010, we hosted a meeting with industry representatives to get their input and further refine
our proposal[86]. In January 2011, we again met with industry representatives, academic
advisors, and FDA and European Medicines Agency (EMA) officials, who provided
thoughtful and encouraging feedback[85]. We have been communicating with
pharmaceutical company leaders to explore their interest, the availability and timing of the
most promising amyloid-modifying treatments, and to explore the scientific and logistical
issues needed to prepare for our proposed trials. Selection of the drug will be made with the
assistance of an independent academic advisory board, input from the affected kindred
regarding potential benefits versus known adverse effects and previous use in human
subjects, and will depend on factors such as target engagement, preclinical and clinical
safety and tolerability data, dosing information, availability of the drug product, and in-kind
industry support. We have proposed a mix of industry, philanthropic and federal funding,
and we have indicated our intent to release the data to the public after the study is completed
to help advance the use of biomarker and cognitive enrichment strategies and endpoints in
future presymptomatic AD trials.

The proposed API treatment trials will help further develop the biomarker endpoints needed
to evaluate a range of presymptomatic AD treatments, and will provide critically needed
evidence to support the use of biomarker endpoints in the accelerated approval of
presymptomatic AD treatments (i.e., to suggest that a treatment’s biomarker effects may be
reasonably likely to predict a clinical benefit in these or other populations). We believe that
by helping to determine the extent to which the best established brain imaging and CSF
biomarkers of AD budge in response to treatment, the extent to which they move in the
predicted direction, and the extent to which the treatment’s biomarker effects are associated
with subsequent clinical benefit will help provide regulatory agencies the evidence they
need to begin to consider approving presymptomatic treatments solely on biomarker
endpoints in future trials. Moreover, these presymptomatic treatment trials will not only
provide a better test of the amyloid hypothesis than clinical trials using the same treatment in
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symptomatic AD patient, but will also provide research participants at the highest imminent
risk of symptomatic AD access to the most promising and suitable investigational treatments
sooner than otherwise possible.
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