Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o932. doi: 10.1107/S1600536812008124

9-(Dicyano­methyl­idene)fluorene–tetra­thia­fulvalene (1/1)

Amparo Salmerón-Valverde a, Sylvain Bernès b,*
PMCID: PMC3343914  PMID: 22589995

Abstract

The title compound, C16H8N2·C6H4S4, crystallizes with the fluorene derivative placed in a general position and two half tetra­thia­fulvalene (TTF) mol­ecules, each completed to a whole mol­ecule through an inversion center. The fluorene ring system is virtually planar (r.m.s. deviation from the mean plane = 0.027 Å) and the dicyano group is twisted from the fluorene plane by only 3.85 (12)°. The TTF mol­ecules are also planar, and their central C=C bond lengths [1.351 (8) and 1.324 (7) Å] compare well with the same bond length in neutral TTF (ca 1.35 Å). These features indicate that no charge transfer occurs between mol­ecules in the crystal; the compound should thus be considered a cocrystal rather than an organic complex. This is confirmed by the crystal structure, in which no significant stacking inter­actions are observed between mol­ecules.

Related literature  

For organic conductors based on TTF and a π*-acceptor mol­ecule, see: Saito & Ferraris (1980); Wright (1995). For structures of dicyano­fulvenes, see: Andrew et al. (2010). For the accurate structure of TTF, see: Batsanov (2006). For charge-transfer complexes related to the title cocrystal, see: Salmerón-Valverde et al. (2003); Salmerón-Valverde (2008).graphic file with name e-68-0o932-scheme1.jpg

Experimental  

Crystal data  

  • C16H8N2·C6H4S4

  • M r = 432.58

  • Triclinic, Inline graphic

  • a = 7.9919 (11) Å

  • b = 9.3696 (14) Å

  • c = 14.195 (2) Å

  • α = 94.525 (12)°

  • β = 103.687 (12)°

  • γ = 103.252 (12)°

  • V = 995.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.03 mm

Data collection  

  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996) T min = 0.650, T max = 0.688

  • 5766 measured reflections

  • 3493 independent reflections

  • 1541 reflections with I > 2σ(I)

  • R int = 0.062

  • 2 standard reflections every 48 reflections intensity decay: 14%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.119

  • S = 0.95

  • 3493 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL-Plus.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008124/qm2055sup1.cif

e-68-0o932-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008124/qm2055Isup2.hkl

e-68-0o932-Isup2.hkl (171.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008124/qm2055Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812008124/qm2055Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SB thanks ICUAP (Instituto de Ciencias, BUAP, Mexico) for the use of the P4 diffractometer.

supplementary crystallographic information

Comment

There is a vast literature dealing with the organic charge-transfer complexes based on the emblematic π-donor tetrathiafulvalene (TTF) and TTF derivatives. Generally, research in this field is carried out with the hope of obtaining organic materials exhibiting metallic conductivity. It is now known that two essential conditions are required for obtaining such conductivity: i) partial oxidation and reduction of the donor and acceptor molecules, respectively. The difference between the redox potentials of the molecules should be less than ca. 0.34 V (Saito & Ferraris, 1980); ii) molecules must be stacked in the solid state, forming one-dimensional or pseudo one-dimensional crystal structures. The mode of stacking and distances separating molecules along a stack must be suitable for charge-transfer (Wright, 1995). The title compound was formed by mixing TTF and a potential π*-acceptor molecule derived from fluorene, namely 9-(dicyanomethylene)fluorene (DCF hereafter). The X-ray structure of the resulting compound, TTF.DCF, shows that condition ii) is not present in the structure.

The asymmetric unit includes one DCF molecule, placed in a general position, and two half-TTF molecules, each close to an inversion center, generating the TTF.DCF chemical composition (Fig. 1). The DCF moiety is almost planar, with a r.m.s. deviation of 0.027 Å for the mean plane of the fluorene ring (13 C atoms). The dicyanomethylene plane is twisted by 3.85 (12)° from the fluorene ring, and the C═C bond length in this group, 1.352 (5) Å, is similar to those found in other dicyanomethylene derivatives (e.g. Andrew et al., 2010). The same is observed for TTF molecules, giving r.m.s. deviations of 0.037 and 0.020 Å for TTF-1 (S15···C19 and symmetry related atoms) and TTF-2 (S20···C24 and symmetry related atoms), respectively. The central C═C bond lengths are 1.351 (8) and 1.324 (7) Å, no longer that the same bond in neutral TTF, ca. 1.35 Å (Batsanov, 2006). These features indicate that molecules are not involved in charge-transfer in the solid state. This is fully confirmed with the crystal structure (Fig. 2). TTF and DCF are segregated in different layers parallel to the (001) plane (Fig. 2, inset), the separation between planes being c/2 = 7.1 Å. In the TTF layers, molecules are arranged in a herringbone pattern, avoiding π-π interactions. In the DCF layers, two molecules related by inversion are parallel and the separation between mean-planes for each molecule is relatively short, 3.401 Å. However, DCF molecules are slipped along the stack, and the distance between the centroids of two inversion-related DCF is 3.834 (1) Å. Such an arrangement does not favor π-π interactions for this component.

Spectroscopic data (Salmerón-Valverde, 2008) are consistent with the observed crystal structure. In the solid state, the IR vibration of the cyano groups in TTF.DCF is not shifted with respect to the same vibration in pure DCF (2224 cm-1), while a significant shift is expected for an actual charge-transfer complex (Salmerón-Valverde et al., 2003). In the same way, the central C═C bond in TTF, which is known to be sensitive to charge-transfer, is also unaffected when the cocrystal TTF.DCF is formed (νCC: 1527 cm-1). In solution, no charge-transfer band is observed in the visible region for TTF.DCF, at any dilution in CH3CN.

Experimental

Solutions of DCF (7.8 mg, 0.034 mmol) in hot CH3CN (2.5 ml) and TTF (7 mg, 0.034 mmol) in CH3CN (1.8 ml) were mixed and transferred in a test tube (12 × 1.5 cm). Solvent was slowly evaporated in the dark, over 10 days. After all solvent had evaporated, most of the crystals collected on the wall of the test tube were starting components, which present characteristic colors: yellow for TTF and orange for DCF. However, few green crystals of TTF.DCF were produced, with an approximate yield of 25%.

Refinement

All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with C—H bond lengths fixed to 0.93 Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier C atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, with displacement ellipsoids at the 30% probability level. Unlabelled atoms are generated through inversion centers.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed in two orientations. The inset shows two layers of DCF molecules sandwiched by three layers of TTF molecules.

Crystal data

C16H8N2·C6H4S4 Z = 2
Mr = 432.58 F(000) = 444
Triclinic, P1 Dx = 1.443 Mg m3
Hall symbol: -P 1 Melting point: 403 K
a = 7.9919 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.3696 (14) Å Cell parameters from 57 reflections
c = 14.195 (2) Å θ = 4.0–12.2°
α = 94.525 (12)° µ = 0.49 mm1
β = 103.687 (12)° T = 296 K
γ = 103.252 (12)° Plate, green
V = 995.3 (2) Å3 0.22 × 0.20 × 0.03 mm

Data collection

Bruker P4 diffractometer 1541 reflections with I > 2σ(I)
Radiation source: X-ray Rint = 0.062
Graphite monochromator θmax = 25.0°, θmin = 2.3°
2θ/ω scans h = −9→3
Absorption correction: ψ scan (XSCANS; Siemens, 1996) k = −10→10
Tmin = 0.650, Tmax = 0.688 l = −16→16
5766 measured reflections 2 standard reflections every 48 reflections
3493 independent reflections intensity decay: 14%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0414P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95 (Δ/σ)max < 0.001
3493 reflections Δρmax = 0.21 e Å3
254 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXTL-Plus (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.0125 (17)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0179 (5) 0.9147 (5) 0.3451 (3) 0.0587 (11)
H1A −0.0058 0.9988 0.3201 0.070*
C2 −0.0704 (6) 0.7737 (5) 0.2941 (3) 0.0718 (14)
H2A −0.1543 0.7635 0.2345 0.086*
C3 −0.0341 (7) 0.6488 (5) 0.3318 (4) 0.0767 (14)
H3A −0.0935 0.5557 0.2967 0.092*
C4 0.0888 (6) 0.6601 (5) 0.4206 (4) 0.0694 (13)
H4A 0.1116 0.5755 0.4452 0.083*
C4A 0.1776 (5) 0.7992 (5) 0.4723 (3) 0.0538 (11)
C4B 0.3151 (5) 0.8434 (5) 0.5651 (3) 0.0521 (11)
C5 0.3937 (6) 0.7596 (5) 0.6298 (4) 0.0643 (12)
H5A 0.3570 0.6567 0.6188 0.077*
C6 0.5283 (6) 0.8334 (6) 0.7112 (4) 0.0721 (14)
H6A 0.5844 0.7783 0.7541 0.087*
C7 0.5818 (6) 0.9857 (6) 0.7309 (3) 0.0676 (13)
H7A 0.6712 1.0319 0.7869 0.081*
C8 0.5017 (5) 1.0703 (5) 0.6668 (3) 0.0589 (11)
H8A 0.5372 1.1732 0.6799 0.071*
C8A 0.3686 (5) 1.0006 (5) 0.5833 (3) 0.0495 (10)
C9 0.2619 (5) 1.0585 (5) 0.5019 (3) 0.0448 (10)
C9A 0.1426 (5) 0.9265 (4) 0.4344 (3) 0.0485 (10)
C10 0.2732 (5) 1.2023 (5) 0.4915 (3) 0.0489 (10)
C11 0.1603 (6) 1.2507 (4) 0.4121 (3) 0.0545 (11)
N12 0.0739 (5) 1.2952 (4) 0.3509 (3) 0.0719 (11)
C13 0.3997 (6) 1.3228 (5) 0.5590 (3) 0.0577 (12)
N14 0.5000 (5) 1.4216 (4) 0.6109 (3) 0.0782 (12)
S15 0.28023 (18) 0.60731 (16) −0.03391 (10) 0.0884 (5)
C16 0.1970 (7) 0.6242 (6) 0.0666 (4) 0.0943 (17)
H16A 0.0993 0.6633 0.0638 0.113*
C17 0.2751 (7) 0.5805 (6) 0.1473 (4) 0.0866 (16)
H17A 0.2330 0.5867 0.2028 0.104*
S18 0.45887 (18) 0.51072 (15) 0.14801 (9) 0.0832 (5)
C19 0.4457 (5) 0.5248 (5) 0.0235 (3) 0.0636 (13)
S20 0.26100 (15) 1.13111 (14) 0.99343 (9) 0.0784 (4)
C21 0.3288 (6) 1.0451 (6) 0.9025 (3) 0.0742 (14)
H21A 0.4389 1.0845 0.8909 0.089*
C22 0.2207 (6) 0.9222 (5) 0.8498 (3) 0.0693 (13)
H22A 0.2525 0.8725 0.8001 0.083*
S23 0.01752 (15) 0.85519 (14) 0.87520 (8) 0.0661 (4)
C24 0.0573 (5) 0.9972 (4) 0.9734 (3) 0.0517 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.062 (3) 0.048 (3) 0.066 (3) 0.012 (2) 0.016 (3) 0.008 (2)
C2 0.072 (3) 0.063 (3) 0.068 (3) 0.007 (3) 0.010 (3) −0.002 (3)
C3 0.086 (4) 0.050 (3) 0.086 (4) 0.004 (3) 0.024 (3) −0.007 (3)
C4 0.081 (3) 0.051 (3) 0.078 (4) 0.020 (3) 0.022 (3) 0.012 (3)
C4A 0.060 (3) 0.041 (3) 0.068 (3) 0.017 (2) 0.028 (2) 0.008 (2)
C4B 0.050 (3) 0.060 (3) 0.054 (3) 0.018 (2) 0.024 (2) 0.013 (2)
C5 0.072 (3) 0.061 (3) 0.076 (3) 0.031 (3) 0.031 (3) 0.028 (3)
C6 0.068 (3) 0.098 (4) 0.073 (4) 0.042 (3) 0.032 (3) 0.040 (3)
C7 0.062 (3) 0.088 (4) 0.058 (3) 0.025 (3) 0.018 (2) 0.023 (3)
C8 0.057 (3) 0.061 (3) 0.063 (3) 0.017 (2) 0.019 (2) 0.016 (3)
C8A 0.048 (2) 0.054 (3) 0.056 (3) 0.018 (2) 0.022 (2) 0.016 (2)
C9 0.045 (2) 0.048 (3) 0.049 (2) 0.017 (2) 0.020 (2) 0.007 (2)
C9A 0.049 (2) 0.047 (3) 0.053 (3) 0.014 (2) 0.020 (2) 0.006 (2)
C10 0.047 (3) 0.049 (3) 0.049 (3) 0.012 (2) 0.009 (2) 0.004 (2)
C11 0.064 (3) 0.041 (3) 0.059 (3) 0.012 (2) 0.022 (3) −0.002 (2)
N12 0.087 (3) 0.057 (3) 0.066 (3) 0.023 (2) 0.005 (2) 0.004 (2)
C13 0.065 (3) 0.051 (3) 0.062 (3) 0.018 (3) 0.020 (3) 0.015 (2)
N14 0.080 (3) 0.064 (3) 0.077 (3) 0.011 (2) 0.005 (2) 0.002 (2)
S15 0.0775 (9) 0.0981 (11) 0.0898 (10) 0.0303 (8) 0.0098 (8) 0.0282 (8)
C16 0.072 (4) 0.096 (4) 0.103 (4) 0.022 (3) 0.005 (3) 0.002 (4)
C17 0.075 (4) 0.089 (4) 0.086 (4) 0.004 (3) 0.022 (3) −0.005 (3)
S18 0.0863 (10) 0.0853 (10) 0.0709 (9) 0.0159 (8) 0.0105 (7) 0.0185 (7)
C19 0.064 (3) 0.049 (3) 0.063 (3) 0.000 (2) 0.000 (2) 0.015 (2)
S20 0.0612 (8) 0.0889 (10) 0.0702 (9) −0.0083 (7) 0.0218 (7) −0.0093 (7)
C21 0.052 (3) 0.101 (4) 0.069 (3) 0.012 (3) 0.022 (3) 0.012 (3)
C22 0.061 (3) 0.091 (4) 0.065 (3) 0.026 (3) 0.029 (3) 0.013 (3)
S23 0.0628 (8) 0.0728 (9) 0.0583 (7) 0.0136 (6) 0.0153 (6) −0.0042 (6)
C24 0.049 (3) 0.052 (3) 0.052 (3) 0.012 (2) 0.0123 (19) 0.002 (2)

Geometric parameters (Å, º)

C1—C9A 1.394 (5) C9—C10 1.352 (5)
C1—C2 1.395 (5) C9—C9A 1.482 (5)
C1—H1A 0.9300 C10—C13 1.436 (6)
C2—C3 1.386 (6) C10—C11 1.442 (6)
C2—H2A 0.9300 C11—N12 1.144 (5)
C3—C4 1.382 (6) C13—N14 1.147 (5)
C3—H3A 0.9300 S15—C16 1.722 (6)
C4—C4A 1.386 (5) S15—C19 1.752 (4)
C4—H4A 0.9300 C16—C17 1.312 (6)
C4A—C9A 1.404 (5) C16—H16A 0.9300
C4A—C4B 1.460 (6) C17—S18 1.737 (5)
C4B—C5 1.386 (5) C17—H17A 0.9300
C4B—C8A 1.421 (5) S18—C19 1.762 (4)
C5—C6 1.384 (6) C19—C19i 1.351 (8)
C5—H5A 0.9300 S20—C21 1.726 (5)
C6—C7 1.378 (6) S20—C24 1.759 (4)
C6—H6A 0.9300 C21—C22 1.317 (6)
C7—C8 1.392 (5) C21—H21A 0.9300
C7—H7A 0.9300 C22—S23 1.734 (4)
C8—C8A 1.388 (5) C22—H22A 0.9300
C8—H8A 0.9300 S23—C24 1.766 (4)
C8A—C9 1.483 (5) C24—C24ii 1.324 (7)
C9A—C1—C2 118.5 (4) C10—C9—C9A 127.4 (4)
C9A—C1—H1A 120.8 C10—C9—C8A 126.8 (4)
C2—C1—H1A 120.8 C9A—C9—C8A 105.8 (3)
C3—C2—C1 120.4 (4) C1—C9A—C4A 120.6 (4)
C3—C2—H2A 119.8 C1—C9A—C9 130.8 (4)
C1—C2—H2A 119.8 C4A—C9A—C9 108.5 (4)
C4—C3—C2 121.2 (4) C9—C10—C13 123.1 (4)
C4—C3—H3A 119.4 C9—C10—C11 123.8 (4)
C2—C3—H3A 119.4 C13—C10—C11 113.1 (4)
C3—C4—C4A 119.1 (4) N12—C11—C10 177.1 (5)
C3—C4—H4A 120.4 N14—C13—C10 178.0 (5)
C4A—C4—H4A 120.4 C16—S15—C19 94.7 (2)
C4—C4A—C9A 120.1 (4) C17—C16—S15 118.3 (5)
C4—C4A—C4B 130.7 (4) C17—C16—H16A 120.9
C9A—C4A—C4B 109.2 (4) S15—C16—H16A 120.9
C5—C4B—C8A 120.8 (4) C16—C17—S18 118.5 (5)
C5—C4B—C4A 131.0 (4) C16—C17—H17A 120.8
C8A—C4B—C4A 108.2 (4) S18—C17—H17A 120.8
C6—C5—C4B 118.1 (4) C17—S18—C19 93.8 (2)
C6—C5—H5A 120.9 C19i—C19—S15 123.0 (5)
C4B—C5—H5A 120.9 C19i—C19—S18 122.5 (5)
C7—C6—C5 122.2 (4) S15—C19—S18 114.6 (2)
C7—C6—H6A 118.9 C21—S20—C24 94.8 (2)
C5—C6—H6A 118.9 C22—C21—S20 118.2 (4)
C6—C7—C8 119.9 (4) C22—C21—H21A 120.9
C6—C7—H7A 120.1 S20—C21—H21A 120.9
C8—C7—H7A 120.1 C21—C22—S23 118.4 (4)
C8A—C8—C7 119.7 (4) C21—C22—H22A 120.8
C8A—C8—H8A 120.1 S23—C22—H22A 120.8
C7—C8—H8A 120.1 C22—S23—C24 94.4 (2)
C8—C8A—C4B 119.3 (4) C24ii—C24—S20 123.1 (4)
C8—C8A—C9 132.4 (4) C24ii—C24—S23 122.8 (4)
C4B—C8A—C9 108.3 (4) S20—C24—S23 114.1 (2)
C9A—C1—C2—C3 −0.1 (6) C4—C4A—C9A—C1 0.4 (6)
C1—C2—C3—C4 0.5 (7) C4B—C4A—C9A—C1 178.9 (3)
C2—C3—C4—C4A −0.3 (7) C4—C4A—C9A—C9 −177.2 (4)
C3—C4—C4A—C9A −0.1 (6) C4B—C4A—C9A—C9 1.3 (4)
C3—C4—C4A—C4B −178.2 (4) C10—C9—C9A—C1 1.4 (6)
C4—C4A—C4B—C5 −2.0 (7) C8A—C9—C9A—C1 −178.0 (4)
C9A—C4A—C4B—C5 179.7 (4) C10—C9—C9A—C4A 178.7 (4)
C4—C4A—C4B—C8A 176.8 (4) C8A—C9—C9A—C4A −0.7 (4)
C9A—C4A—C4B—C8A −1.4 (4) C9A—C9—C10—C13 −176.9 (4)
C8A—C4B—C5—C6 −1.5 (6) C8A—C9—C10—C13 2.3 (6)
C4A—C4B—C5—C6 177.3 (4) C9A—C9—C10—C11 3.1 (6)
C4B—C5—C6—C7 1.9 (6) C8A—C9—C10—C11 −177.6 (3)
C5—C6—C7—C8 −1.1 (6) C19—S15—C16—C17 1.9 (5)
C6—C7—C8—C8A −0.2 (6) S15—C16—C17—S18 0.8 (6)
C7—C8—C8A—C4B 0.6 (5) C16—C17—S18—C19 −3.0 (5)
C7—C8—C8A—C9 −179.0 (4) C16—S15—C19—C19i 175.8 (5)
C5—C4B—C8A—C8 0.3 (5) C16—S15—C19—S18 −3.9 (3)
C4A—C4B—C8A—C8 −178.7 (3) C17—S18—C19—C19i −175.6 (5)
C5—C4B—C8A—C9 179.9 (3) C17—S18—C19—S15 4.2 (3)
C4A—C4B—C8A—C9 0.9 (4) C24—S20—C21—C22 1.5 (4)
C8—C8A—C9—C10 0.1 (6) S20—C21—C22—S23 0.1 (6)
C4B—C8A—C9—C10 −179.5 (4) C21—C22—S23—C24 −1.5 (4)
C8—C8A—C9—C9A 179.4 (4) C21—S20—C24—C24ii 178.3 (5)
C4B—C8A—C9—C9A −0.2 (4) C21—S20—C24—S23 −2.4 (3)
C2—C1—C9A—C4A −0.3 (6) C22—S23—C24—C24ii −178.3 (5)
C2—C1—C9A—C9 176.7 (4) C22—S23—C24—S20 2.4 (3)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2055).

References

  1. Andrew, T. L., Cox, J. R. & Swager, T. M. (2010). Org. Lett. 12, 5302–5305. [DOI] [PubMed]
  2. Batsanov, A. S. (2006). Acta Cryst. C62, o501–o504. [DOI] [PubMed]
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Saito, G. & Ferraris, J. P. (1980). Bull. Chem. Soc. Jpn, 53, 2141–2145.
  5. Salmerón-Valverde (2008). PhD thesis, Benemérita Universidad Autónoma de Puebla, Mexico.
  6. Salmerón-Valverde, A., Bernès, S. & Robles-Martínez, J. G. (2003). Acta Cryst. B59, 505–511. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Wright, J. D. (1995). Molecular Crystals, 2nd ed., pp. 22–49. Cambridge: Cambridge University Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008124/qm2055sup1.cif

e-68-0o932-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008124/qm2055Isup2.hkl

e-68-0o932-Isup2.hkl (171.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008124/qm2055Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812008124/qm2055Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES