Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):o944. doi: 10.1107/S1600536812008343

5-Cyclo­hexyl-2-(3-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3343925  PMID: 22590006

Abstract

In the title compound, C21H21FO2S, the cyclo­hexyl ring adopts a chair conformation. The 3-fluoro­phenyl ring makes a dihedral angle of 38.38 (6)° with the mean plane [r.m.s. deviation = 0.010 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds.

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2011a ,b ).graphic file with name e-68-0o944-scheme1.jpg

Experimental  

Crystal data  

  • C21H21FO2S

  • M r = 356.44

  • Orthorhombic, Inline graphic

  • a = 12.7767 (10) Å

  • b = 13.0764 (10) Å

  • c = 10.7711 (8) Å

  • V = 1799.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.34 × 0.24 × 0.20 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.935, T max = 0.961

  • 17893 measured reflections

  • 4503 independent reflections

  • 4036 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.096

  • S = 1.03

  • 4503 reflections

  • 227 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 2131 Friedel pairs

  • Flack parameter: −0.07 (7)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008343/bh2416sup1.cif

e-68-0o944-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008343/bh2416Isup2.hkl

e-68-0o944-Isup2.hkl (220.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008343/bh2416Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯O2i 0.98 2.30 3.276 (3) 176

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by a Dongeui University Foundation grant (2011).

supplementary crystallographic information

Comment

As a part of our ongoing study of 5-cyclohexyl-3-methylsulfinyl-1-benzofuran derivatives containing either 2-phenyl (Choi et al., 2011a) or 2-(4-fluorophenyl) (Choi et al., 2011b) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.010 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The dihedral angle between the 3-fluorophenyl ring and the mean plane of the benzofurn fragment is 38.38 (6)°. The crystal packing is stabilized by weak intermolecular C–H···O hydrogen bonds (Table 1).

Experimental

77% 3-Chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-2-(3-fluorophenyl)-3-methylsulfanyl-1-benzofuran (306 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4 h., the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 443-444 K; Rf = 0.55 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 1.0 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine, and methylene, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Crystal data

C21H21FO2S Dx = 1.316 Mg m3
Mr = 356.44 Melting point: 443 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 4473 reflections
a = 12.7767 (10) Å θ = 2.5–28.1°
b = 13.0764 (10) Å µ = 0.20 mm1
c = 10.7711 (8) Å T = 173 K
V = 1799.6 (2) Å3 Block, colourless
Z = 4 0.34 × 0.24 × 0.20 mm
F(000) = 752

Data collection

Bruker SMART APEXII CCD diffractometer 4503 independent reflections
Radiation source: rotating anode 4036 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.058
Detector resolution: 10.0 pixels mm-1 θmax = 28.4°, θmin = 2.2°
φ and ω scans h = −17→17
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −17→16
Tmin = 0.935, Tmax = 0.961 l = −14→14
17893 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.2167P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4503 reflections Δρmax = 0.33 e Å3
227 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack (1983), 2131 Friedel pairs
0 constraints Flack parameter: −0.07 (7)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.56575 (3) 0.02701 (3) 0.35040 (5) 0.02691 (11)
F1 0.77633 (15) 0.11534 (12) −0.03264 (18) 0.0792 (6)
O1 0.46206 (10) 0.30803 (10) 0.29361 (13) 0.0277 (3)
O2 0.56405 (11) −0.00184 (12) 0.48474 (14) 0.0390 (4)
C1 0.49571 (12) 0.14257 (13) 0.33717 (18) 0.0234 (3)
C2 0.40393 (13) 0.17197 (14) 0.40656 (17) 0.0231 (3)
C3 0.33673 (13) 0.12486 (14) 0.49109 (16) 0.0254 (4)
H3 0.3475 0.0555 0.5143 0.031*
C4 0.25446 (14) 0.17975 (15) 0.54083 (17) 0.0257 (4)
C5 0.24014 (14) 0.28249 (15) 0.5060 (2) 0.0296 (4)
H5 0.1833 0.3196 0.5408 0.036*
C6 0.30589 (14) 0.33145 (15) 0.42275 (19) 0.0287 (4)
H6 0.2957 0.4009 0.3997 0.034*
C7 0.38672 (13) 0.27399 (14) 0.37531 (16) 0.0260 (4)
C8 0.52756 (14) 0.22666 (14) 0.27291 (16) 0.0256 (4)
C9 0.17818 (14) 0.12816 (16) 0.62864 (17) 0.0287 (4)
H9 0.2064 0.0585 0.6469 0.034*
C10 0.16664 (19) 0.1834 (2) 0.7521 (2) 0.0443 (5)
H10A 0.1439 0.2547 0.7367 0.053*
H10B 0.2354 0.1858 0.7943 0.053*
C11 0.08727 (19) 0.1306 (2) 0.8365 (2) 0.0554 (7)
H11A 0.1153 0.0634 0.8625 0.067*
H11B 0.0767 0.1725 0.9121 0.067*
C12 −0.01698 (19) 0.1153 (2) 0.7722 (3) 0.0573 (8)
H12A −0.0642 0.0761 0.8273 0.069*
H12B −0.0495 0.1827 0.7564 0.069*
C13 −0.00474 (18) 0.0591 (2) 0.6512 (3) 0.0494 (6)
H13A −0.0736 0.0540 0.6095 0.059*
H13B 0.0206 −0.0112 0.6676 0.059*
C14 0.07219 (16) 0.1139 (2) 0.5661 (2) 0.0405 (5)
H14A 0.0434 0.1816 0.5431 0.049*
H14B 0.0813 0.0737 0.4890 0.049*
C15 0.61838 (13) 0.24653 (16) 0.19341 (17) 0.0269 (4)
C16 0.65392 (17) 0.17134 (18) 0.1135 (2) 0.0389 (5)
H16 0.6172 0.1086 0.1051 0.047*
C17 0.74380 (18) 0.18950 (19) 0.0462 (2) 0.0457 (6)
C18 0.79812 (17) 0.27964 (19) 0.0536 (2) 0.0421 (5)
H18 0.8604 0.2896 0.0069 0.051*
C19 0.76030 (16) 0.35559 (19) 0.1303 (2) 0.0376 (5)
H19 0.7957 0.4194 0.1349 0.045*
C20 0.67083 (14) 0.33938 (16) 0.20081 (19) 0.0306 (4)
H20 0.6455 0.3917 0.2541 0.037*
C21 0.47422 (18) −0.05631 (16) 0.2771 (2) 0.0378 (5)
H21A 0.5009 −0.1266 0.2794 0.057*
H21B 0.4644 −0.0352 0.1905 0.057*
H21C 0.4071 −0.0530 0.3209 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02477 (19) 0.0252 (2) 0.0307 (2) 0.00363 (16) 0.00124 (19) 0.0016 (2)
F1 0.0930 (12) 0.0564 (10) 0.0883 (13) 0.0007 (9) 0.0641 (10) −0.0086 (9)
O1 0.0257 (6) 0.0243 (7) 0.0332 (7) −0.0006 (5) 0.0024 (5) 0.0051 (6)
O2 0.0457 (9) 0.0377 (8) 0.0335 (8) 0.0094 (7) −0.0076 (7) 0.0065 (7)
C1 0.0219 (7) 0.0237 (8) 0.0246 (9) −0.0008 (6) 0.0011 (7) 0.0004 (8)
C2 0.0207 (7) 0.0243 (9) 0.0243 (8) 0.0011 (7) −0.0022 (6) 0.0010 (7)
C3 0.0255 (8) 0.0236 (9) 0.0272 (9) 0.0014 (7) 0.0001 (7) 0.0023 (7)
C4 0.0246 (9) 0.0267 (10) 0.0256 (9) 0.0020 (7) 0.0008 (7) 0.0007 (7)
C5 0.0248 (9) 0.0291 (10) 0.0350 (10) 0.0042 (7) 0.0020 (7) −0.0021 (8)
C6 0.0279 (9) 0.0232 (9) 0.0352 (10) 0.0026 (7) −0.0013 (8) 0.0013 (8)
C7 0.0219 (8) 0.0262 (9) 0.0301 (10) −0.0030 (7) −0.0022 (7) 0.0023 (7)
C8 0.0244 (8) 0.0264 (10) 0.0260 (9) 0.0005 (7) −0.0019 (7) 0.0011 (7)
C9 0.0284 (9) 0.0306 (10) 0.0271 (9) 0.0055 (7) 0.0042 (7) 0.0033 (8)
C10 0.0440 (12) 0.0575 (15) 0.0315 (11) −0.0056 (11) 0.0084 (9) −0.0057 (10)
C11 0.0643 (15) 0.0647 (17) 0.0373 (13) −0.0022 (12) 0.0242 (12) −0.0026 (13)
C12 0.0434 (13) 0.0520 (15) 0.077 (2) 0.0069 (12) 0.0309 (13) 0.0186 (14)
C13 0.0353 (11) 0.0559 (16) 0.0571 (15) −0.0109 (11) 0.0033 (10) 0.0208 (12)
C14 0.0383 (12) 0.0457 (14) 0.0376 (11) −0.0115 (10) −0.0014 (9) 0.0124 (10)
C15 0.0250 (8) 0.0297 (10) 0.0261 (9) 0.0002 (7) 0.0008 (7) 0.0066 (7)
C16 0.0445 (12) 0.0335 (12) 0.0387 (12) −0.0035 (9) 0.0140 (9) 0.0040 (9)
C17 0.0474 (13) 0.0440 (14) 0.0457 (13) 0.0073 (11) 0.0228 (11) 0.0087 (11)
C18 0.0297 (10) 0.0564 (15) 0.0402 (12) 0.0000 (10) 0.0101 (9) 0.0163 (11)
C19 0.0295 (10) 0.0448 (13) 0.0386 (11) −0.0125 (9) −0.0027 (9) 0.0095 (10)
C20 0.0289 (9) 0.0315 (11) 0.0312 (10) −0.0024 (8) −0.0044 (8) 0.0049 (8)
C21 0.0447 (12) 0.0281 (10) 0.0406 (12) −0.0025 (9) −0.0070 (9) −0.0039 (9)

Geometric parameters (Å, º)

S1—O2 1.4954 (15) C11—C12 1.515 (4)
S1—C1 1.7620 (17) C11—H11A 0.9900
S1—C21 1.783 (2) C11—H11B 0.9900
F1—C17 1.355 (3) C12—C13 1.505 (4)
O1—C8 1.372 (2) C12—H12A 0.9900
O1—C7 1.378 (2) C12—H12B 0.9900
C1—C8 1.361 (3) C13—C14 1.523 (3)
C1—C2 1.443 (2) C13—H13A 0.9900
C2—C7 1.393 (3) C13—H13B 0.9900
C2—C3 1.395 (2) C14—H14A 0.9900
C3—C4 1.381 (2) C14—H14B 0.9900
C3—H3 0.9500 C15—C16 1.383 (3)
C4—C5 1.407 (3) C15—C20 1.389 (3)
C4—C9 1.516 (3) C16—C17 1.378 (3)
C5—C6 1.385 (3) C16—H16 0.9500
C5—H5 0.9500 C17—C18 1.370 (3)
C6—C7 1.376 (3) C18—C19 1.379 (3)
C6—H6 0.9500 C18—H18 0.9500
C8—C15 1.465 (2) C19—C20 1.389 (3)
C9—C10 1.520 (3) C19—H19 0.9500
C9—C14 1.524 (3) C20—H20 0.9500
C9—H9 1.0000 C21—H21A 0.9800
C10—C11 1.527 (3) C21—H21B 0.9800
C10—H10A 0.9900 C21—H21C 0.9800
C10—H10B 0.9900
O2—S1—C1 106.69 (9) C10—C11—H11B 109.3
O2—S1—C21 105.37 (10) H11A—C11—H11B 107.9
C1—S1—C21 98.93 (9) C13—C12—C11 111.69 (19)
C8—O1—C7 106.23 (14) C13—C12—H12A 109.3
C8—C1—C2 106.92 (15) C11—C12—H12A 109.3
C8—C1—S1 125.59 (13) C13—C12—H12B 109.3
C2—C1—S1 126.83 (13) C11—C12—H12B 109.3
C7—C2—C3 118.91 (16) H12A—C12—H12B 107.9
C7—C2—C1 104.97 (15) C12—C13—C14 111.0 (2)
C3—C2—C1 136.11 (17) C12—C13—H13A 109.4
C4—C3—C2 119.48 (17) C14—C13—H13A 109.4
C4—C3—H3 120.3 C12—C13—H13B 109.4
C2—C3—H3 120.3 C14—C13—H13B 109.4
C3—C4—C5 119.46 (17) H13A—C13—H13B 108.0
C3—C4—C9 120.00 (17) C13—C14—C9 111.42 (18)
C5—C4—C9 120.51 (16) C13—C14—H14A 109.3
C6—C5—C4 122.35 (17) C9—C14—H14A 109.3
C6—C5—H5 118.8 C13—C14—H14B 109.3
C4—C5—H5 118.8 C9—C14—H14B 109.3
C7—C6—C5 116.31 (17) H14A—C14—H14B 108.0
C7—C6—H6 121.8 C16—C15—C20 119.90 (18)
C5—C6—H6 121.8 C16—C15—C8 119.84 (18)
C6—C7—O1 125.82 (17) C20—C15—C8 120.22 (18)
C6—C7—C2 123.48 (17) C17—C16—C15 118.6 (2)
O1—C7—C2 110.69 (15) C17—C16—H16 120.7
C1—C8—O1 111.19 (15) C15—C16—H16 120.7
C1—C8—C15 132.60 (17) F1—C17—C18 119.79 (19)
O1—C8—C15 116.14 (16) F1—C17—C16 117.5 (2)
C4—C9—C10 113.34 (18) C18—C17—C16 122.7 (2)
C4—C9—C14 110.48 (16) C17—C18—C19 118.5 (2)
C10—C9—C14 111.02 (18) C17—C18—H18 120.8
C4—C9—H9 107.2 C19—C18—H18 120.8
C10—C9—H9 107.2 C18—C19—C20 120.4 (2)
C14—C9—H9 107.2 C18—C19—H19 119.8
C9—C10—C11 111.7 (2) C20—C19—H19 119.8
C9—C10—H10A 109.3 C19—C20—C15 119.9 (2)
C11—C10—H10A 109.3 C19—C20—H20 120.0
C9—C10—H10B 109.3 C15—C20—H20 120.0
C11—C10—H10B 109.3 S1—C21—H21A 109.5
H10A—C10—H10B 107.9 S1—C21—H21B 109.5
C12—C11—C10 111.8 (2) H21A—C21—H21B 109.5
C12—C11—H11A 109.3 S1—C21—H21C 109.5
C10—C11—H11A 109.3 H21A—C21—H21C 109.5
C12—C11—H11B 109.3 H21B—C21—H21C 109.5
O2—S1—C1—C8 133.15 (16) C7—O1—C8—C15 −176.61 (15)
C21—S1—C1—C8 −117.75 (17) C3—C4—C9—C10 125.5 (2)
O2—S1—C1—C2 −36.29 (18) C5—C4—C9—C10 −56.7 (2)
C21—S1—C1—C2 72.81 (18) C3—C4—C9—C14 −109.2 (2)
C8—C1—C2—C7 1.11 (19) C5—C4—C9—C14 68.6 (2)
S1—C1—C2—C7 172.15 (13) C4—C9—C10—C11 178.61 (19)
C8—C1—C2—C3 −177.8 (2) C14—C9—C10—C11 53.6 (3)
S1—C1—C2—C3 −6.8 (3) C9—C10—C11—C12 −53.3 (3)
C7—C2—C3—C4 0.6 (3) C10—C11—C12—C13 54.5 (3)
C1—C2—C3—C4 179.4 (2) C11—C12—C13—C14 −55.9 (3)
C2—C3—C4—C5 −0.4 (3) C12—C13—C14—C9 56.4 (3)
C2—C3—C4—C9 177.44 (16) C4—C9—C14—C13 178.2 (2)
C3—C4—C5—C6 0.0 (3) C10—C9—C14—C13 −55.2 (3)
C9—C4—C5—C6 −177.75 (18) C1—C8—C15—C16 39.0 (3)
C4—C5—C6—C7 0.0 (3) O1—C8—C15—C16 −144.42 (19)
C5—C6—C7—O1 −178.59 (17) C1—C8—C15—C20 −139.0 (2)
C5—C6—C7—C2 0.2 (3) O1—C8—C15—C20 37.6 (2)
C8—O1—C7—C6 178.97 (17) C20—C15—C16—C17 2.5 (3)
C8—O1—C7—C2 0.04 (19) C8—C15—C16—C17 −175.5 (2)
C3—C2—C7—C6 −0.5 (3) C15—C16—C17—F1 −179.1 (2)
C1—C2—C7—C6 −179.67 (17) C15—C16—C17—C18 −1.3 (4)
C3—C2—C7—O1 178.43 (15) F1—C17—C18—C19 176.9 (2)
C1—C2—C7—O1 −0.7 (2) C16—C17—C18—C19 −0.9 (4)
C2—C1—C8—O1 −1.1 (2) C17—C18—C19—C20 1.8 (3)
S1—C1—C8—O1 −172.33 (13) C18—C19—C20—C15 −0.6 (3)
C2—C1—C8—C15 175.59 (19) C16—C15—C20—C19 −1.6 (3)
S1—C1—C8—C15 4.4 (3) C8—C15—C20—C19 176.39 (18)
C7—O1—C8—C1 0.71 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C21—H21B···O2i 0.98 2.30 3.276 (3) 176

Symmetry code: (i) −x+1, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2416).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o281. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o470. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008343/bh2416sup1.cif

e-68-0o944-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008343/bh2416Isup2.hkl

e-68-0o944-Isup2.hkl (220.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812008343/bh2416Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES