Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Nov 11;20(21):5607–5615. doi: 10.1093/nar/20.21.5607

Structure determination of two new amino acid-containing derivatives of adenosine from tRNA of thermophilic bacteria and archaea.

D M Reddy 1, P F Crain 1, C G Edmonds 1, R Gupta 1, T Hashizume 1, K O Stetter 1, F Widdel 1, J A McCloskey 1
PMCID: PMC334393  PMID: 1280806

Abstract

Two new nucleosides have been identified in unfractionated transfer RNA of two thermophilic bacteria, Thermodesulfobacterium commune, and Thermotoga maritima, six hyperthermophilic archaea, including Pyrobaculum islandicum, Pyrococcus furiosus and Thermococcus sp. and two mesophilic archaea, Methanococcus vannielii and Methanolobus tindarius. Structures were determined primarily by mass spectrometry, as 3-hydroxy-N-[[(9-beta-D-ribofuranosyl-9H-purin-6- yl)amino]carbonyl]norvaline, (hn6A), structure 1, and 3-hydroxy-N-[[(9-beta-D-ribofuranosyl-9H-2-methylthiopurin-6- yl)amino]carbonyl]norvaline (ms2hn6A), 2. The amino acid side chain was characterized as 3-hydroxynorvaline (3) by gas chromatography-mass spectrometry of the trimethylsilyl derivative after cleavage from 1 and 2 by alkaline hydrolysis. Evidence for the amino acid-purine carbamoyl linkage was obtained from the collision-induced dissociation mass spectrum of trimethylsilylated 1, and the total structure was confirmed by chemical synthesis of 1.

Full text

PDF
5612

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achenbach-Richter L., Gupta R., Stetter K. O., Woese C. R. Were the original eubacteria thermophiles? Syst Appl Microbiol. 1987;9:34–39. doi: 10.1016/s0723-2020(87)80053-x. [DOI] [PubMed] [Google Scholar]
  2. Agris P. F., Koh H., Söll D. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys. 1973 Jan;154(1):277–282. doi: 10.1016/0003-9861(73)90058-1. [DOI] [PubMed] [Google Scholar]
  3. Annan R. S., Giese R. W., Vouros P. Detection and structural characterization of amino polyaromatic hydrocarbon-deoxynucleoside adducts using fast atom bombardment and tandem mass spectrometry. Anal Biochem. 1990 Nov 15;191(1):86–95. doi: 10.1016/0003-2697(90)90392-m. [DOI] [PubMed] [Google Scholar]
  4. Björk G. R., Ericson J. U., Gustafsson C. E., Hagervall T. G., Jönsson Y. H., Wikström P. M. Transfer RNA modification. Annu Rev Biochem. 1987;56:263–287. doi: 10.1146/annurev.bi.56.070187.001403. [DOI] [PubMed] [Google Scholar]
  5. Buck M., Ames B. N. A modified nucleotide in tRNA as a possible regulator of aerobiosis: synthesis of cis-2-methyl-thioribosylzeatin in the tRNA of Salmonella. Cell. 1984 Feb;36(2):523–531. doi: 10.1016/0092-8674(84)90245-9. [DOI] [PubMed] [Google Scholar]
  6. Buck M., Connick M., Ames B. N. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem. 1983 Feb 15;129(1):1–13. doi: 10.1016/0003-2697(83)90044-1. [DOI] [PubMed] [Google Scholar]
  7. Chheda G. B., Hall R. H., Mozejko J., Magrath D. I., Schweizer M. P., Stasiuk L., Taylor P. R. Aminoacyl nucleosides. VI. Isolation and preliminary characterization of threonyladenine derivatives from transfer ribonucleic acid. Biochemistry. 1969 Aug;8(8):3278–3282. doi: 10.1021/bi00836a022. [DOI] [PubMed] [Google Scholar]
  8. Chheda G. B., Hong C. I., Piskorz C. F., Harmon G. A. Biosynthesis of N-(purin-6-ylcarbamoyl)-L-threonine riboside. Incorporation of L-threonine in vivo into modified nucleoside of transfer ribonucleic acid. Biochem J. 1972 Apr;127(3):515–519. doi: 10.1042/bj1270515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crain P. F. Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry. Methods Enzymol. 1990;193:782–790. doi: 10.1016/0076-6879(90)93450-y. [DOI] [PubMed] [Google Scholar]
  10. Edmonds C. G., Crain P. F., Gupta R., Hashizume T., Hocart C. H., Kowalak J. A., Pomerantz S. C., Stetter K. O., McCloskey J. A. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol. 1991 May;173(10):3138–3148. doi: 10.1128/jb.173.10.3138-3148.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edmonds C. G., Pomerantz S. C., Hsu F. F., McCloskey J. A. Thermospray liquid chromatography/mass spectrometry in deuterium oxide. Anal Chem. 1988 Oct 15;60(20):2314–2317. doi: 10.1021/ac00171a034. [DOI] [PubMed] [Google Scholar]
  12. Edmonds C. G., Vestal M. L., McCloskey J. A. Thermospray liquid chromatography-mass spectrometry of nucleosides and of enzymatic hydrolysates of nucleic acids. Nucleic Acids Res. 1985 Nov 25;13(22):8197–8206. doi: 10.1093/nar/13.22.8197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elkins B. N., Keller E. B. The enzymatic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid. Biochemistry. 1974 Oct 22;13(22):4622–4628. doi: 10.1021/bi00719a024. [DOI] [PubMed] [Google Scholar]
  14. Horie N., Hara-Yokoyama M., Yokoyama S., Watanabe K., Kuchino Y., Nishimura S., Miyazawa T. Two tRNAIle1 species from an extreme thermophile, Thermus thermophilus HB8: effect of 2-thiolation of ribothymidine on the thermostability of tRNA. Biochemistry. 1985 Oct 8;24(21):5711–5715. doi: 10.1021/bi00342a004. [DOI] [PubMed] [Google Scholar]
  15. Kimura-Harada F., Von Minden D. L., McCloskey J. A., Nishimura S. N-((9- -D-ribofuranosylpurin-6-yl)-N-methylcarbamoyl) threonine, a modified nucleoside isolated from Escherichia coli threonine transfer ribonucleic acid. Biochemistry. 1972 Oct 10;11(21):3910–3915. doi: 10.1021/bi00771a012. [DOI] [PubMed] [Google Scholar]
  16. Körner A., Söll D. N-(purin-6-ylcarbamoyl)threonine: biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli. FEBS Lett. 1974 Mar 1;39(3):301–306. doi: 10.1016/0014-5793(74)80135-3. [DOI] [PubMed] [Google Scholar]
  17. McCloskey J. A., Crain P. F., Edmonds C. G., Gupta R., Hashizume T., Phillipson D. W., Stetter K. O. Structure determination of a new fluorescent tricyclic nucleoside from archaebacterial tRNA. Nucleic Acids Res. 1987 Jan 26;15(2):683–693. doi: 10.1093/nar/15.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller J. P., Hussain Z., Schweizer M. P. The involvement of the anticodon adjacent modified nucleoside N-(9-(BETA-D-ribofuranosyl) purine-6-ylcarbamoyl)-threonine in the biological function of E. coli tRNAile. Nucleic Acids Res. 1976 May;3(5):1185–1201. doi: 10.1093/nar/3.5.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parthasarathy R., Ohrt J. M., Chheda G. B. Conformation and possible role of hypermodified nucleosides adjacent to 3'-end of anticodon in tRNA: N-(purin-6-ylcarbamoyl)-L-threonine riboside. Biochem Biophys Res Commun. 1974 Sep 9;60(1):211–218. doi: 10.1016/0006-291x(74)90193-4. [DOI] [PubMed] [Google Scholar]
  20. Phillipson D. W., Edmonds C. G., Crain P. F., Smith D. L., Davis D. R., McCloskey J. A. Isolation and structure elucidation of an epoxide derivative of the hypermodified nucleoside queuosine from Escherichia coli transfer RNA. J Biol Chem. 1987 Mar 15;262(8):3462–3471. [PubMed] [Google Scholar]
  21. Pomerantz S. C., McCloskey J. A. Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry. Methods Enzymol. 1990;193:796–824. doi: 10.1016/0076-6879(90)93452-q. [DOI] [PubMed] [Google Scholar]
  22. Powers D. M., Peterkofsky A. Biosynthesis and specific labeling of N-(purin-6-ylcarbamoyl)threonine of Escherichia coli transfer RNA. Biochem Biophys Res Commun. 1972 Jan 31;46(2):831–838. doi: 10.1016/s0006-291x(72)80216-x. [DOI] [PubMed] [Google Scholar]
  23. Schram K. H. Preparation of trimethylsilyl derivatives of nucleic acid components for analysis by mass spectrometry. Methods Enzymol. 1990;193:791–796. doi: 10.1016/0076-6879(90)93451-p. [DOI] [PubMed] [Google Scholar]
  24. Schweizer M. P., Chheda G. B., Baczynskyj L., Hall R. H. Aminoacyl nucleosides. VII. N-(Purin-6-ylcarbamoyl)threonine. A new component of transfer ribonucleic acid. Biochemistry. 1969 Aug;8(8):3283–3289. doi: 10.1021/bi00836a023. [DOI] [PubMed] [Google Scholar]
  25. Schweizer M. P., De N., Pulsipher M., Brown M., Reddy P. R., Petrie C. R., 3rd, Chheda G. B. Quantitative aspects of metal ion binding to certain transfer RNA anticodon loop modified nucleosides. Biochim Biophys Acta. 1984 Nov 28;802(2):352–361. doi: 10.1016/0304-4165(84)90183-1. [DOI] [PubMed] [Google Scholar]
  26. Schweizer M. P., McGrath K., Baczynskyj L. The isolation and characterization of N-[9-(beta-D-ribofuranosyl)-purin-6-ylcarbamoyl]glycine from yeast transfer RNA. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1046–1052. doi: 10.1016/0006-291x(70)90899-5. [DOI] [PubMed] [Google Scholar]
  27. Stalling D. L., Gehrke C. W., Zumwalt R. W. A new silylation reagent for amino acids bis(trimethylsilyl)trifluoroacetamide (BSTFA). Biochem Biophys Res Commun. 1968 May 23;31(4):616–622. doi: 10.1016/0006-291x(68)90523-8. [DOI] [PubMed] [Google Scholar]
  28. Watanabe K., Oshima T., Hansske F., Ohta T. Separation and comparison of 2-thioribothymidine-containing transfer ribonucleic acid and the ribothymidine-containing counterpart from cells of Thermus thermophilus HB 8. Biochemistry. 1983 Jan 4;22(1):98–102. doi: 10.1021/bi00270a014. [DOI] [PubMed] [Google Scholar]
  29. Watanabe K., Oshima T., Iijima K., Yamaizumi Z., Nishimura S. Purification and thermal stability of several amino acid-specific tRNAs from an extreme thermophile, Thermus thermophilus HB8. J Biochem. 1980 Jan;87(1):1–13. doi: 10.1093/oxfordjournals.jbchem.a132713. [DOI] [PubMed] [Google Scholar]
  30. Watts M. T., Tinoco I., Jr Role of hypermodified bases in transfer RNA. Solution properties of dinucleoside monophosphates. Biochemistry. 1978 Jun 13;17(12):2455–2463. doi: 10.1021/bi00605a033. [DOI] [PubMed] [Google Scholar]
  31. Weng Q. M., Hammargren W. M., Slowikowski D., Schram K. H., Borysko K. Z., Wotring L. L., Townsend L. B. Low nanogram detection of nucleotides using fast atom bombardment-mass spectrometry. Anal Biochem. 1989 Apr;178(1):102–106. doi: 10.1016/0003-2697(89)90363-1. [DOI] [PubMed] [Google Scholar]
  32. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yokoyama S., Watanabe K., Miyazawa T. Dynamic structures and functions of transfer ribonucleic acids from extreme thermophiles. Adv Biophys. 1987;23:115–147. doi: 10.1016/0065-227x(87)90006-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES