Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 14;68(Pt 4):o1052. doi: 10.1107/S1600536812010203

1,1′-Bis(3-methyl-3-phenyl­cyclo­but­yl)-2,2′-(aza­nedi­yl)diethanol

Fatih Şen a,*, Muharrem Dinçer b, Alaaddin Çukurovalı c, Ibrahim Yılmaz d
PMCID: PMC3344013  PMID: 22589922

Abstract

The title mol­ecule, C26H35NO2, contains two cyclo­butane rings that adopt butterfly conformations and are linked by a –CH(OH)CH2NHCH2CH(OH)– bridge. In the crystal, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds together with C–H⋯π inter­actions link the molecules.

Related literature  

For applications of related compounds, see: Dehmlow & Schmidt (1990); Coghi et al. (1976). For the preparation, see: Zalipsky et al. (1983). For puckering of the cyclo­butane ring, see: Swenson et al. (1997); Allen (1984).graphic file with name e-68-o1052-scheme1.jpg

Experimental  

Crystal data  

  • C26H35NO2

  • M r = 393.55

  • Monoclinic, Inline graphic

  • a = 6.2156 (4) Å

  • b = 33.2505 (15) Å

  • c = 12.1792 (8) Å

  • β = 110.656 (5)°

  • V = 2355.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.63 × 0.34 × 0.09 mm

Data collection  

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.967, T max = 0.994

  • 26921 measured reflections

  • 4737 independent reflections

  • 1740 reflections with I > 2σ(I)

  • R int = 0.105

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.173

  • S = 0.95

  • 4737 reflections

  • 271 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010203/sj5204sup1.cif

e-68-o1052-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010203/sj5204Isup2.hkl

e-68-o1052-Isup2.hkl (227.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010203/sj5204Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.87 (3) 2.38 (3) 3.157 (4) 149 (3)
O1—H1O⋯N1ii 0.97 (2) 1.81 (3) 2.768 (4) 170 (3)
O2—H2O⋯O1)i 0.94 (3) 1.86 (3) 2.681 (4) 146 (3)
C24—H24⋯Cg1iii 0.93 3.86 (1) 2.76 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

It is well known that 3-substituted cyclobutane carboxylic acid derivatives exhibit anti-inflammatory and anti-depressant activity (Dehmlow & Schmidt, 1990), and also liquid crystal properties (Coghi, et al., 1976).

The structure of (I) (Fig. 1) contains two cyclobutane rings (C7—C10),(C16—C19) each with methyl and phenyl substituents in the 3-position. The four-membered rings are linked by a C12,C13,N1,C14,C15 bridge. The best fit meanplanes through the (C7—C10) and (C16—C19) atoms of the cyclobutane rings subtend dihedral angles of 36.69 (24)°, 41.91 (21)° with the planes of the (C1—C6) and (C21—C26) phenyl rings respectively.

Values for the puckering of the cyclobutane has been reported as 23.5-24.3° (Swenson et al.. 1997, Allen, 1984). In this molecule the C7—C8—C9 plane forms a dihedral angle of 25.83 (43)° with the C9—C10—C7 plane and the angle between the C16—C17—C18 and C18—C19—C16 planes is 26.74 (36)°.

In the crystal structure N—H···O, O—H···N and C—H···π interactions stabilize the packing, Table 2, and link the molecules into infinite chains, Fig.2, Fig. 3.

Experimental

The compound was synthesised using a literature method (Zalipsky et al., 1983) with some modification. Colourless plate-like crystals suitable for X-ray analysis were obtained by crystallization from ethanol. Overall yield: 71%. M.p.: 445 K (EtOH).

Refinement

H atoms were positioned geometrically and treated using a riding model, with bond lengths 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH (aromatic), respectively. H atoms bound to the N and O atoms were located in difference maps and refined with DFIX restraints N—H = 0.87 (3) Å and O—H = 0.82 (2) Å. The displacement parameters of the H atoms bound to C were constrained with Uiso(H) = 1.2 (aromatic, methylene or methine C) or 1.5Ueq (methyl C).

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing the N—H···O and O—H···N interactions. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.

Fig. 3.

Fig. 3.

Part of the crystal structure of the title compound, showing the C—H···π interactions.For clarity, only H atoms involved in hydrogen bonding have been included.For symmetry codes, see table 1.

Crystal data

C26H35NO2 F(000) = 856
Mr = 393.55 Dx = 1.110 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 18482 reflections
a = 6.2156 (4) Å θ = 1.2–26.7°
b = 33.2505 (15) Å µ = 0.07 mm1
c = 12.1792 (8) Å T = 296 K
β = 110.656 (5)° Plate, colourless
V = 2355.3 (2) Å3 0.63 × 0.34 × 0.09 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer 4737 independent reflections
Radiation source: fine-focus sealed tube 1740 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.105
Detector resolution: 6.67 pixels mm-1 θmax = 26.3°, θmin = 1.2°
rotation method scans h = −7→7
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −41→41
Tmin = 0.967, Tmax = 0.994 l = −15→15
26921 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0627P)2] where P = (Fo2 + 2Fc2)/3
4737 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.29 e Å3
2 restraints Δρmin = −0.13 e Å3

Special details

Experimental. IR (KBr, ν cm-1): 3416 (–OH), 3288 (–NH–), 3089–3024 (aromatics), 2960–2858 (aliphatics), 1497 (C—N), 1113 (C—O), 1H NMR (CDCl3, TMS, δ p.p.m.): 1.46 (s, 6H,–CH3), 2.08 (d,j = 8.8 Hz, 4H, CH2– in cyclobutane ring), 2.21 (d, j = 8.4 Hz, 4H, –CH2– in cyclobutane ring), 2.32–2.42 (m, 4H, CH2-), 2.59 (dd, j=12.0 Hz, 2H, >CH–), 3.15 (brs, 3H, –OH plus –NH–),3.50 (quint, j1=7.4 Hz, j2=2.4 Hz, 2H, >CH–, in cyclobutane), 7.13–7.20 (m, 6H, aromatics), 7.29–7.33 (m, 4H, aromatics). 13C NMR (CDCl3, TMS, δ p.p.m.): 152.47, 128.20, 125.26, 124.66, 74.27, 53.20, 38.77, 36.80, 36.14, 33.15, 30.70.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8359 (8) 0.20105 (13) −0.1639 (4) 0.1058 (13)
H1 0.7569 0.2015 −0.1117 0.127*
C2 0.7425 (10) 0.21975 (15) −0.2715 (6) 0.140 (2)
H2 0.6004 0.2324 −0.2916 0.168*
C3 0.8559 (17) 0.2198 (2) −0.3480 (6) 0.165 (3)
H3 0.7941 0.2330 −0.4196 0.198*
C4 1.0599 (15) 0.2005 (2) −0.3198 (6) 0.154 (2)
H4 1.1362 0.1997 −0.3731 0.184*
C5 1.1544 (9) 0.18199 (13) −0.2128 (4) 0.1127 (15)
H5 1.2963 0.1693 −0.1942 0.135*
C6 1.0466 (8) 0.18161 (11) −0.1327 (4) 0.0830 (11)
C7 1.1539 (6) 0.16222 (10) −0.0146 (3) 0.0773 (10)
C8 1.2839 (6) 0.12244 (11) −0.0088 (4) 0.0976 (12)
H8A 1.2404 0.1085 −0.0833 0.117*
H8B 1.4496 0.1251 0.0261 0.117*
C9 1.1733 (6) 0.10506 (11) 0.0749 (3) 0.0848 (11)
H9 1.2729 0.1100 0.1563 0.102*
C10 0.9910 (6) 0.13874 (10) 0.0332 (3) 0.0834 (10)
H10A 0.8492 0.1302 −0.0272 0.100*
H10B 0.9604 0.1523 0.0966 0.100*
C11 1.3001 (7) 0.19339 (12) 0.0741 (4) 0.1111 (14)
H11A 1.3692 0.1809 0.1495 0.167*
H11B 1.2038 0.2152 0.0803 0.167*
H11C 1.4183 0.2035 0.0479 0.167*
C12 1.0931 (6) 0.06167 (11) 0.0605 (3) 0.0784 (10)
H12 1.2276 0.0441 0.0781 0.094*
C13 0.9725 (6) 0.05249 (11) 0.1454 (3) 0.0858 (11)
H13A 1.0804 0.0563 0.2246 0.103*
H13B 0.8486 0.0717 0.1329 0.103*
C14 0.7920 (6) 0.00309 (10) 0.2295 (3) 0.0822 (10)
H14A 0.6836 0.0239 0.2311 0.099*
H14B 0.9194 0.0039 0.3038 0.099*
C15 0.6758 (6) −0.03736 (10) 0.2161 (3) 0.0742 (10)
H15 0.7914 −0.0581 0.2221 0.089*
C16 0.5795 (5) −0.04484 (10) 0.3104 (3) 0.0694 (9)
H16 0.4640 −0.0244 0.3076 0.083*
C17 0.7514 (5) −0.04950 (9) 0.4367 (3) 0.0697 (9)
H17A 0.9025 −0.0585 0.4407 0.084*
H17B 0.7628 −0.0258 0.4849 0.084*
C18 0.6036 (5) −0.08305 (9) 0.4600 (3) 0.0644 (9)
C19 0.4902 (6) −0.08705 (11) 0.3251 (3) 0.0842 (11)
H19A 0.5548 −0.1084 0.2922 0.101*
H19B 0.3239 −0.0889 0.2977 0.101*
C20 0.4371 (6) −0.06601 (13) 0.5146 (4) 0.1093 (14)
H20A 0.3630 −0.0426 0.4716 0.164*
H20B 0.5200 −0.0588 0.5947 0.164*
H20C 0.3233 −0.0859 0.5117 0.164*
C21 0.7205 (7) −0.11958 (11) 0.5263 (3) 0.0751 (10)
C22 0.9511 (7) −0.11942 (13) 0.5945 (3) 0.0999 (13)
H22 1.0387 −0.0963 0.6001 0.120*
C23 1.0512 (11) −0.1540 (2) 0.6546 (5) 0.157 (3)
H23 1.2071 −0.1538 0.6996 0.189*
C24 0.9279 (19) −0.1881 (2) 0.6496 (6) 0.183 (4)
H24 0.9979 −0.2111 0.6898 0.220*
C25 0.6985 (17) −0.18775 (16) 0.5840 (6) 0.176 (3)
H25 0.6107 −0.2106 0.5813 0.211*
C26 0.5959 (9) −0.15427 (13) 0.5223 (4) 0.1241 (16)
H26 0.4402 −0.1549 0.4771 0.149*
O1 0.9385 (4) 0.05398 (7) −0.0596 (2) 0.0841 (7)
O2 0.5073 (4) −0.03918 (9) 0.1009 (2) 0.1019 (9)
N1 0.8774 (5) 0.01166 (9) 0.1352 (2) 0.0789 (9)
H1N 0.761 (6) 0.0091 (10) 0.070 (3) 0.095*
H1O 0.986 (6) 0.0304 (9) −0.092 (3) 0.118*
H2O 0.371 (5) −0.0403 (12) 0.117 (3) 0.118*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.107 (3) 0.084 (3) 0.123 (4) −0.010 (3) 0.037 (3) 0.009 (3)
C2 0.137 (5) 0.099 (4) 0.146 (5) −0.023 (3) 0.001 (4) 0.037 (4)
C3 0.227 (9) 0.115 (5) 0.110 (5) −0.072 (5) 0.006 (6) 0.025 (4)
C4 0.230 (8) 0.134 (5) 0.105 (5) −0.055 (5) 0.069 (5) −0.001 (4)
C5 0.148 (4) 0.100 (3) 0.105 (4) −0.019 (3) 0.064 (4) 0.001 (3)
C6 0.099 (3) 0.063 (2) 0.092 (3) −0.022 (2) 0.041 (3) −0.010 (2)
C7 0.079 (2) 0.067 (2) 0.090 (3) −0.019 (2) 0.035 (2) −0.009 (2)
C8 0.083 (2) 0.082 (3) 0.139 (4) −0.001 (2) 0.053 (3) 0.010 (2)
C9 0.075 (2) 0.081 (3) 0.090 (3) −0.013 (2) 0.019 (2) 0.007 (2)
C10 0.084 (2) 0.081 (2) 0.091 (3) 0.000 (2) 0.038 (2) 0.000 (2)
C11 0.117 (3) 0.099 (3) 0.105 (3) −0.027 (3) 0.026 (3) −0.011 (3)
C12 0.069 (2) 0.085 (3) 0.071 (2) −0.0025 (19) 0.012 (2) 0.011 (2)
C13 0.092 (2) 0.079 (3) 0.078 (2) −0.010 (2) 0.020 (2) 0.011 (2)
C14 0.093 (3) 0.080 (3) 0.065 (2) −0.006 (2) 0.018 (2) 0.0078 (19)
C15 0.073 (2) 0.081 (3) 0.055 (2) −0.0028 (19) 0.0054 (19) 0.0093 (18)
C16 0.0628 (19) 0.069 (2) 0.071 (2) 0.0057 (17) 0.0173 (18) 0.0129 (18)
C17 0.071 (2) 0.072 (2) 0.061 (2) −0.0004 (17) 0.0162 (18) 0.0022 (17)
C18 0.0564 (19) 0.070 (2) 0.068 (2) 0.0012 (17) 0.0227 (17) 0.0045 (18)
C19 0.075 (2) 0.090 (3) 0.073 (2) −0.0131 (19) 0.0066 (19) 0.007 (2)
C20 0.093 (3) 0.119 (3) 0.131 (4) 0.022 (2) 0.060 (3) 0.025 (3)
C21 0.096 (3) 0.069 (2) 0.063 (2) 0.011 (2) 0.031 (2) 0.0043 (18)
C22 0.097 (3) 0.122 (3) 0.084 (3) 0.038 (3) 0.036 (2) 0.034 (3)
C23 0.173 (5) 0.194 (7) 0.118 (4) 0.101 (6) 0.068 (4) 0.074 (5)
C24 0.317 (12) 0.146 (6) 0.104 (5) 0.133 (8) 0.096 (6) 0.065 (5)
C25 0.327 (10) 0.069 (4) 0.123 (5) 0.001 (5) 0.069 (6) 0.023 (3)
C26 0.172 (4) 0.077 (3) 0.107 (3) −0.017 (3) 0.030 (3) 0.012 (3)
O1 0.0786 (15) 0.0864 (17) 0.0791 (17) 0.0006 (13) 0.0177 (13) 0.0055 (14)
O2 0.0920 (18) 0.128 (2) 0.0659 (16) −0.0200 (17) 0.0035 (15) 0.0200 (15)
N1 0.090 (2) 0.084 (2) 0.0557 (18) −0.0114 (18) 0.0164 (15) 0.0083 (16)

Geometric parameters (Å, º)

C1—C2 1.381 (6) C14—H14A 0.9700
C1—C6 1.388 (5) C14—H14B 0.9700
C1—H1 0.9300 C15—O2 1.426 (3)
C2—C3 1.352 (9) C15—C16 1.491 (4)
C2—H2 0.9300 C15—H15 0.9800
C3—C4 1.353 (8) C16—C17 1.540 (4)
C3—H3 0.9300 C16—C19 1.543 (4)
C4—C5 1.372 (7) C16—H16 0.9800
C4—H4 0.9300 C17—C18 1.534 (4)
C5—C6 1.365 (5) C17—H17A 0.9700
C5—H5 0.9300 C17—H17B 0.9700
C6—C7 1.500 (5) C18—C21 1.497 (4)
C7—C8 1.538 (5) C18—C20 1.523 (4)
C7—C11 1.541 (4) C18—C19 1.548 (4)
C7—C10 1.546 (4) C19—H19A 0.9700
C8—C9 1.529 (5) C19—H19B 0.9700
C8—H8A 0.9700 C20—H20A 0.9600
C8—H8B 0.9700 C20—H20B 0.9600
C9—C12 1.516 (5) C20—H20C 0.9600
C9—C10 1.546 (4) C21—C22 1.380 (4)
C9—H9 0.9800 C21—C26 1.380 (5)
C10—H10A 0.9700 C22—C23 1.387 (6)
C10—H10B 0.9700 C22—H22 0.9300
C11—H11A 0.9600 C23—C24 1.358 (9)
C11—H11B 0.9600 C23—H23 0.9300
C11—H11C 0.9600 C24—C25 1.367 (9)
C12—O1 1.462 (4) C24—H24 0.9300
C12—C13 1.506 (5) C25—C26 1.368 (7)
C12—H12 0.9800 C25—H25 0.9300
C13—N1 1.469 (4) C26—H26 0.9300
C13—H13A 0.9700 O1—H1O 0.97 (2)
C13—H13B 0.9700 O2—H2O 0.93 (2)
C14—N1 1.453 (4) N1—H1N 0.87 (3)
C14—C15 1.508 (4)
C2—C1—C6 120.6 (5) N1—C14—H14B 109.1
C2—C1—H1 119.7 C15—C14—H14B 109.1
C6—C1—H1 119.7 H14A—C14—H14B 107.8
C3—C2—C1 120.6 (7) O2—C15—C16 113.3 (3)
C3—C2—H2 119.7 O2—C15—C14 107.6 (3)
C1—C2—H2 119.7 C16—C15—C14 111.9 (3)
C2—C3—C4 119.6 (8) O2—C15—H15 108.0
C2—C3—H3 120.2 C16—C15—H15 108.0
C4—C3—H3 120.2 C14—C15—H15 108.0
C3—C4—C5 120.2 (7) C15—C16—C17 117.4 (3)
C3—C4—H4 119.9 C15—C16—C19 120.0 (3)
C5—C4—H4 119.9 C17—C16—C19 86.8 (2)
C6—C5—C4 122.0 (5) C15—C16—H16 110.2
C6—C5—H5 119.0 C17—C16—H16 110.2
C4—C5—H5 119.0 C19—C16—H16 110.2
C5—C6—C1 117.0 (4) C18—C17—C16 90.5 (2)
C5—C6—C7 121.7 (4) C18—C17—H17A 113.6
C1—C6—C7 121.3 (4) C16—C17—H17A 113.6
C6—C7—C8 117.5 (3) C18—C17—H17B 113.6
C6—C7—C11 109.6 (3) C16—C17—H17B 113.6
C8—C7—C11 112.1 (3) H17A—C17—H17B 110.8
C6—C7—C10 116.7 (3) C21—C18—C20 110.0 (3)
C8—C7—C10 87.2 (3) C21—C18—C17 118.8 (3)
C11—C7—C10 112.2 (3) C20—C18—C17 110.7 (3)
C9—C8—C7 90.2 (3) C21—C18—C19 117.1 (3)
C9—C8—H8A 113.6 C20—C18—C19 111.7 (3)
C7—C8—H8A 113.6 C17—C18—C19 86.8 (2)
C9—C8—H8B 113.6 C16—C19—C18 89.9 (2)
C7—C8—H8B 113.6 C16—C19—H19A 113.7
H8A—C8—H8B 110.9 C18—C19—H19A 113.7
C12—C9—C8 119.3 (3) C16—C19—H19B 113.7
C12—C9—C10 118.6 (3) C18—C19—H19B 113.7
C8—C9—C10 87.5 (3) H19A—C19—H19B 110.9
C12—C9—H9 109.9 C18—C20—H20A 109.5
C8—C9—H9 109.9 C18—C20—H20B 109.5
C10—C9—H9 109.9 H20A—C20—H20B 109.5
C7—C10—C9 89.3 (3) C18—C20—H20C 109.5
C7—C10—H10A 113.8 H20A—C20—H20C 109.5
C9—C10—H10A 113.8 H20B—C20—H20C 109.5
C7—C10—H10B 113.8 C22—C21—C26 118.4 (4)
C9—C10—H10B 113.8 C22—C21—C18 121.7 (3)
H10A—C10—H10B 111.0 C26—C21—C18 120.0 (4)
C7—C11—H11A 109.5 C21—C22—C23 119.5 (5)
C7—C11—H11B 109.5 C21—C22—H22 120.3
H11A—C11—H11B 109.5 C23—C22—H22 120.3
C7—C11—H11C 109.5 C24—C23—C22 121.9 (7)
H11A—C11—H11C 109.5 C24—C23—H23 119.1
H11B—C11—H11C 109.5 C22—C23—H23 119.1
O1—C12—C13 109.9 (3) C23—C24—C25 118.3 (6)
O1—C12—C9 110.8 (3) C23—C24—H24 120.8
C13—C12—C9 109.7 (3) C25—C24—H24 120.8
O1—C12—H12 108.8 C24—C25—C26 121.1 (7)
C13—C12—H12 108.8 C24—C25—H25 119.5
C9—C12—H12 108.8 C26—C25—H25 119.5
N1—C13—C12 114.4 (3) C25—C26—C21 120.9 (5)
N1—C13—H13A 108.7 C25—C26—H26 119.5
C12—C13—H13A 108.7 C21—C26—H26 119.5
N1—C13—H13B 108.7 C12—O1—H1O 111 (2)
C12—C13—H13B 108.7 C15—O2—H2O 102 (2)
H13A—C13—H13B 107.6 C14—N1—C13 111.3 (3)
N1—C14—C15 112.6 (3) C14—N1—H1N 106 (2)
N1—C14—H14A 109.1 C13—N1—H1N 110 (2)
C15—C14—H14A 109.1
C6—C1—C2—C3 −0.7 (7) N1—C14—C15—C16 −177.3 (3)
C1—C2—C3—C4 1.7 (9) O2—C15—C16—C17 171.5 (3)
C2—C3—C4—C5 −2.0 (10) C14—C15—C16—C17 −66.6 (4)
C3—C4—C5—C6 1.3 (8) O2—C15—C16—C19 68.5 (4)
C4—C5—C6—C1 −0.3 (6) C14—C15—C16—C19 −169.7 (3)
C4—C5—C6—C7 −178.4 (4) C15—C16—C17—C18 −140.9 (3)
C2—C1—C6—C5 0.0 (6) C19—C16—C17—C18 −18.6 (3)
C2—C1—C6—C7 178.1 (4) C16—C17—C18—C21 137.9 (3)
C5—C6—C7—C8 −39.3 (5) C16—C17—C18—C20 −93.5 (3)
C1—C6—C7—C8 142.6 (3) C16—C17—C18—C19 18.6 (2)
C5—C6—C7—C11 90.2 (4) C15—C16—C19—C18 138.4 (3)
C1—C6—C7—C11 −87.9 (4) C17—C16—C19—C18 18.5 (2)
C5—C6—C7—C10 −140.9 (4) C21—C18—C19—C16 −139.4 (3)
C1—C6—C7—C10 41.1 (5) C20—C18—C19—C16 92.5 (3)
C6—C7—C8—C9 −136.8 (3) C17—C18—C19—C16 −18.5 (2)
C11—C7—C8—C9 94.8 (3) C20—C18—C21—C22 −110.3 (4)
C10—C7—C8—C9 −18.1 (3) C17—C18—C21—C22 18.7 (5)
C7—C8—C9—C12 139.7 (3) C19—C18—C21—C22 120.7 (3)
C7—C8—C9—C10 18.1 (3) C20—C18—C21—C26 68.1 (4)
C6—C7—C10—C9 137.4 (3) C17—C18—C21—C26 −162.9 (4)
C8—C7—C10—C9 17.9 (3) C19—C18—C21—C26 −60.8 (4)
C11—C7—C10—C9 −94.9 (3) C26—C21—C22—C23 1.3 (6)
C12—C9—C10—C7 −140.3 (4) C18—C21—C22—C23 179.7 (4)
C8—C9—C10—C7 −18.0 (3) C21—C22—C23—C24 −0.8 (8)
C8—C9—C12—O1 −53.6 (4) C22—C23—C24—C25 −0.6 (11)
C10—C9—C12—O1 50.8 (5) C23—C24—C25—C26 1.7 (11)
C8—C9—C12—C13 −175.1 (3) C24—C25—C26—C21 −1.2 (9)
C10—C9—C12—C13 −70.7 (4) C22—C21—C26—C25 −0.3 (7)
O1—C12—C13—N1 55.1 (4) C18—C21—C26—C25 −178.8 (4)
C9—C12—C13—N1 177.2 (3) C15—C14—N1—C13 175.4 (3)
N1—C14—C15—O2 −52.2 (4) C12—C13—N1—C14 172.2 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.87 (3) 2.38 (3) 3.157 (4) 149 (3)
O1—H1O···N1ii 0.97 (2) 1.81 (3) 2.768 (4) 170 (3)
O2—H2O···O1)i 0.94 (3) 1.86 (3) 2.681 (4) 146 (3)
C24—H24···Cg1iii 0.93 3.86 (1) 2.76 156

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y, −z; (iii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5204).

References

  1. Allen, F. H. (1984). Acta Cryst. B40, 64–72.
  2. Coghi, L., Lanfredi, A. M. M. & Tiripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808–1810.
  3. Dehmlow, E. V. & Schmidt, S. (1990). Liebigs Ann. Chem 5, 411–414.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  9. Swenson, D. C., Yamamoto, M. & Burton, D. J. (1997). Acta Cryst. C53, 1445–1447.
  10. Zalipsky, S., Gilon, C. & Zilkha, A. (1983). Eur. Polym. J. 19, 1177–1183.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010203/sj5204sup1.cif

e-68-o1052-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010203/sj5204Isup2.hkl

e-68-o1052-Isup2.hkl (227.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812010203/sj5204Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES