Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):o1102–o1103. doi: 10.1107/S1600536812009658

(3aR*,6S*,7aR*)-7a-Chloro-6-methyl-2-(4-methyl­phenyl­sulfon­yl)-2,3,3a,6,7,7a-hexa­hydro-3a,6-ep­oxy-1H-isoindole

Ersin Temel a,*, Aydın Demircan b, Gözde Beyazova b, Orhan Büyükgüngör a
PMCID: PMC3344053  PMID: 22589962

Abstract

In the title compound, C16H18ClNO3S, the six-membered ring has a boat conformation. The two five-membered rings with the bridging O atom adopt envelope conformations, whereas the N-containing five-membered ring adopts a twisted conformation. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature  

For background to the intra­molecular Diels–Alder reaction with furan (IMDAF) as diene partner, see: Lipshutz (1986); Heiner et al. (1996); Prajapati et al. (2000); Kappe et al. (1997); Padwa et al. (1997). For our studies of the intra­molecular free radical reaction of furan with a carbon side chain, see: Demircan & Parsons (1998, 2002); Demircan et al. (2006); Karaarslan et al. (2007). For our investigation of whether the protective group on nitro­gen influences the cyclo­addition process, see: Koşar et al. (2006); Arslan et al. (2008); Temel et al. (2011); Demircan et al. (2011). For puckering analysis, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-68-o1102-scheme1.jpg

Experimental  

Crystal data  

  • C16H18ClNO3S

  • M r = 339.82

  • Monoclinic, Inline graphic

  • a = 10.0523 (5) Å

  • b = 15.5135 (6) Å

  • c = 11.2729 (6) Å

  • β = 114.800 (4)°

  • V = 1595.84 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.78 × 0.72 × 0.60 mm

Data collection  

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2001) T min = 0.746, T max = 0.843

  • 18547 measured reflections

  • 3312 independent reflections

  • 2841 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.101

  • S = 1.05

  • 3312 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812009658/zq2155sup1.cif

e-68-o1102-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009658/zq2155Isup2.hkl

e-68-o1102-Isup2.hkl (159.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009658/zq2155Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.48 3.368 (2) 159
C5—H5⋯O3ii 0.93 2.62 3.539 (2) 169
C13—H13⋯O3iii 0.93 2.67 3.601 (2) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund) and also the Scientific & Technological Research Council of Turkey (TÜBİTAK) for the financial support of this work (PN 107 T831).

supplementary crystallographic information

Comment

The intramolecular Diels–Alder reaction with furan (IMDAF) as diene partner provides a facile route to the synthesis of complicated multicyclic structures via oxanobornenes in synthetic organic chemistry (Lipshutz, 1986). However, in many cases, the cyclization process of IMDAF requires high pressure (Heiner et al., 1996) or the employment of Lewis acid catalysis (Prajapati et al., 2000) to proceed, the most extensively studied five-membered heterocycle for this cycloaddition is furan (Kappe et al., 1997; Padwa et al., 1997).

We have been studying intramolecular free radical reaction of furan with carbon side chain (Demircan & Parsons, 1998; 2002; Demircan et al., 2006; Karaarslan et al., 2007) and recently reported that under thermal conditions the bromofurfurylalkenes (1), with heteroatom possessed in a side chain, undergo intramolecular cycloadditions and give heterofused tricycles (2) (32–44% overall) as shown in Figure 4. We have also been researching whether the protective group on nitrogen influences cycloaddition process or not; it is noteworthy that the exchange of the protective group from tert-butoxy (Boc) group to tosyl group increases yield and accelerate the cycloaddition process. We have already reported our findings since 2005 (Koşar et al., 2006; Arslan et al., 2008; Temel et al., 2011; Demircan et al., 2011), now we report the new tricyclic structure, (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-methylphenyl) sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (4), derived from the furan moiety (3) via thermal IMDAF in aqueous media with 73% yield (Figure 5).

The molecular structure of the title compound is shown in Figure 1. The title compound contains non-planar five- and six-membered rings. The six membered ring (C9—C14) has a boat conformation with puckering parameters Q = 0.944 (2) Å, θ = 89.03 (12)°, φ = 119.03 (14)°. The two five-membered rings with bridging oxygen (O3/C11/C10/C9/C14 and O3/C11—C14) adopt envelope configurations, whereas the N-containing five membered ring adopts a twisted conformation with the total puckering parameters of 0.6053 (19)°, 0.502 (2)° and 0.324 (2)°, respectively (Cremer & Pople, 1975). The crystal packing is stabilized by intermolecular C—H···O type hydrogen bonds (Table 1). Atom C13 in the reference molecule acts as a hydrogen bond donor to the bridging oxygen atom O3iii forming a C(4) chain running parallel to the c axis (iii = x, -y + 3/2, z - 1/2). Similarly, atom C5 acts as a hydrogen bond donor to the bridging oxygen atom O3ii forming a C(9) chain running parallel to the a axis (ii = x+1, y, z). The intersection of the C(4) and C(9) chains produce R43(25) rings parallel to the ac plane (Fig. 2). The C2—H2···O1i (i = -x + 1, -y + 1, -z + 1) hydrogen bond produces dimeric R22(10) rings while the combination of C2—H2···O1i and C13—H13···O3iii hydrogen bonds generate R66(38) rings (Fig. 3) (Bernstein et al., 1995).

Experimental

N-(2-chloroprop-2-en-1-yl)-4-methyl-N-[(5-methyl-2-furyl)methyl] benzenesulfonamide (3) (1 g, 2.94 mmol) and 50 ml water were placed in a 100 ml two neck flask, equipped with a condenser. The mixture was stirred at 371 K for 24 h and monitored by thin layer chromatography. The reaction mixture was then poured into 50 ml e thyl acetate; aqueous part was further washed with 3x50 ml ethyl acetate. The combined organic phases were washed with 50 ml brine, dried over magnesium sulfate and concentrated under reduced pressure. Subsequently, the residue was subjected to flash column chromatography to afford the title compound (4) as pale yellow crystals, re-crystallized from dichloromethane - hexane(1:4), (0.73 g, 73%).

Refinement

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97 and 0.93 Å for CH3, CH2 and aromatic CH, respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic or methylene C) or 1.5Ueq (methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing the formation of C(4), C(10) chains and R43(25) rings parallel to ac-plane. Hydrogen bonds are indicated by dashed lines. (Symmetry codes: i; x, -y + 3/2, z - 1/2; ii; x + 1, y, z).

Fig. 3.

Fig. 3.

Part of the crystal structure of the title compound, showing the formation of R22(10) and R66(38) rings. Hydrogen bonds are indicated by dashed lines. (Symmetry codes: i; x, -y + 3/2, z - 1/2; ii; -x + 1, -y + 1, -z + 1).

Fig. 4.

Fig. 4.

Synthesis of fused tricycles (2) from bromofurufurylalkenes (1)

Fig. 5.

Fig. 5.

Synthesis of titled compound (4) in water

Crystal data

C16H18ClNO3S F(000) = 712
Mr = 339.82 Dx = 1.414 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 18547 reflections
a = 10.0523 (5) Å θ = 2.0–28.0°
b = 15.5135 (6) Å µ = 0.38 mm1
c = 11.2729 (6) Å T = 296 K
β = 114.800 (4)° Block, colourless
V = 1595.84 (13) Å3 0.78 × 0.72 × 0.60 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer 3312 independent reflections
Radiation source: fine-focus sealed tube 2841 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 6.67 pixels mm-1 θmax = 26.5°, θmin = 2.2°
rotation method scans h = −12→12
Absorption correction: integration (X-RED; Stoe & Cie, 2001) k = −19→19
Tmin = 0.746, Tmax = 0.843 l = −14→14
18547 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.051P)2 + 0.5399P] where P = (Fo2 + 2Fc2)/3
3312 reflections (Δ/σ)max = 0.001
201 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C10 0.4256 (2) 0.89806 (12) 0.5996 (2) 0.0456 (4)
H10A 0.4404 0.9512 0.5614 0.055*
H10B 0.4544 0.9065 0.6923 0.055*
C11 0.2649 (2) 0.86575 (12) 0.52936 (19) 0.0454 (4)
C12 0.2241 (2) 0.86741 (15) 0.3842 (2) 0.0569 (5)
H12 0.1614 0.9066 0.3244 0.068*
C13 0.2935 (2) 0.80336 (14) 0.35758 (19) 0.0524 (5)
H13 0.2893 0.7876 0.2765 0.063*
C16 0.1574 (3) 0.90085 (17) 0.5776 (3) 0.0670 (6)
H16A 0.0624 0.8764 0.5276 0.101*
H16B 0.1522 0.9624 0.5680 0.101*
H16C 0.1888 0.8862 0.6681 0.101*
O1 0.61916 (15) 0.52146 (9) 0.65522 (14) 0.0526 (3)
O2 0.79916 (16) 0.62551 (11) 0.80370 (14) 0.0587 (4)
O3 0.28849 (13) 0.77360 (8) 0.55435 (12) 0.0413 (3)
C1 0.77799 (19) 0.60653 (11) 0.56803 (19) 0.0411 (4)
C2 0.7250 (2) 0.55616 (12) 0.4569 (2) 0.0460 (4)
H2 0.6428 0.5217 0.4375 0.055*
C3 0.7952 (2) 0.55757 (13) 0.3748 (2) 0.0520 (5)
H3 0.7594 0.5236 0.2999 0.062*
C4 0.9179 (2) 0.60826 (14) 0.4013 (2) 0.0530 (5)
C5 0.9670 (2) 0.65924 (15) 0.5121 (3) 0.0627 (6)
H5 1.0481 0.6945 0.5308 0.075*
C6 0.8985 (2) 0.65894 (14) 0.5953 (2) 0.0562 (5)
H6 0.9331 0.6937 0.6693 0.067*
C7 0.9952 (3) 0.60749 (19) 0.3123 (3) 0.0746 (7)
H7A 1.0581 0.5580 0.3314 0.112*
H7B 1.0526 0.6590 0.3257 0.112*
H7C 0.9241 0.6050 0.2230 0.112*
C8 0.5981 (2) 0.76445 (12) 0.68794 (18) 0.0433 (4)
H8A 0.7017 0.7778 0.7207 0.052*
H8B 0.5676 0.7709 0.7585 0.052*
C9 0.50862 (19) 0.82243 (11) 0.57366 (17) 0.0388 (4)
C14 0.38083 (19) 0.76143 (11) 0.48755 (16) 0.0377 (4)
C15 0.4437 (2) 0.67277 (12) 0.5043 (2) 0.0465 (4)
H15A 0.3726 0.6299 0.5025 0.056*
H15B 0.4764 0.6595 0.4367 0.056*
Cl1 0.61872 (6) 0.85248 (4) 0.48951 (6) 0.06283 (18)
N1 0.56832 (16) 0.67646 (10) 0.63391 (15) 0.0429 (4)
S1 0.69313 (5) 0.60262 (3) 0.67681 (5) 0.04233 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C10 0.0524 (11) 0.0356 (9) 0.0507 (11) −0.0016 (8) 0.0233 (9) −0.0048 (8)
C11 0.0477 (10) 0.0396 (9) 0.0482 (10) 0.0060 (8) 0.0194 (9) −0.0017 (8)
C12 0.0608 (13) 0.0518 (12) 0.0460 (11) 0.0136 (10) 0.0106 (10) 0.0068 (9)
C13 0.0617 (12) 0.0560 (12) 0.0343 (9) 0.0062 (10) 0.0150 (9) −0.0004 (8)
C16 0.0531 (12) 0.0716 (15) 0.0790 (16) 0.0095 (11) 0.0304 (12) −0.0167 (13)
O1 0.0568 (8) 0.0384 (7) 0.0644 (9) −0.0005 (6) 0.0272 (7) 0.0103 (6)
O2 0.0523 (8) 0.0646 (10) 0.0461 (8) 0.0066 (7) 0.0079 (7) 0.0030 (7)
O3 0.0394 (6) 0.0404 (7) 0.0464 (7) −0.0014 (5) 0.0202 (6) 0.0000 (5)
C1 0.0347 (9) 0.0351 (9) 0.0498 (10) 0.0034 (7) 0.0141 (8) 0.0043 (8)
C2 0.0425 (9) 0.0377 (10) 0.0560 (11) −0.0035 (8) 0.0191 (9) 0.0003 (8)
C3 0.0515 (11) 0.0491 (12) 0.0552 (11) 0.0028 (9) 0.0222 (10) −0.0006 (9)
C4 0.0419 (10) 0.0527 (12) 0.0673 (13) 0.0126 (9) 0.0258 (10) 0.0169 (10)
C5 0.0428 (11) 0.0602 (13) 0.0863 (17) −0.0092 (10) 0.0282 (12) 0.0013 (12)
C6 0.0413 (10) 0.0536 (12) 0.0699 (14) −0.0096 (9) 0.0195 (10) −0.0109 (10)
C7 0.0634 (14) 0.0879 (19) 0.0885 (18) 0.0160 (13) 0.0475 (14) 0.0213 (15)
C8 0.0438 (10) 0.0382 (9) 0.0429 (9) −0.0027 (7) 0.0132 (8) −0.0068 (7)
C9 0.0436 (9) 0.0352 (9) 0.0428 (9) −0.0058 (7) 0.0233 (8) −0.0024 (7)
C14 0.0386 (9) 0.0379 (9) 0.0357 (9) −0.0002 (7) 0.0148 (7) −0.0035 (7)
C15 0.0402 (9) 0.0401 (10) 0.0494 (11) 0.0012 (8) 0.0094 (8) −0.0076 (8)
Cl1 0.0688 (3) 0.0623 (3) 0.0770 (4) −0.0109 (3) 0.0498 (3) 0.0005 (3)
N1 0.0385 (8) 0.0383 (8) 0.0441 (8) 0.0008 (6) 0.0097 (7) −0.0032 (6)
S1 0.0401 (2) 0.0385 (2) 0.0444 (3) 0.00261 (18) 0.01385 (19) 0.00562 (19)

Geometric parameters (Å, º)

C10—C9 1.537 (2) C3—C4 1.385 (3)
C10—C11 1.554 (3) C3—H3 0.9300
C10—H10A 0.9700 C4—C5 1.383 (3)
C10—H10B 0.9700 C4—C7 1.505 (3)
C11—O3 1.457 (2) C5—C6 1.377 (3)
C11—C16 1.501 (3) C5—H5 0.9300
C11—C12 1.511 (3) C6—H6 0.9300
C12—C13 1.319 (3) C7—H7A 0.9600
C12—H12 0.9300 C7—H7B 0.9600
C13—C14 1.504 (3) C7—H7C 0.9600
C13—H13 0.9300 C8—N1 1.473 (2)
C16—H16A 0.9600 C8—C9 1.518 (3)
C16—H16B 0.9600 C8—H8A 0.9700
C16—H16C 0.9600 C8—H8B 0.9700
O1—S1 1.4302 (14) C9—C14 1.563 (2)
O2—S1 1.4245 (15) C9—Cl1 1.7952 (17)
O3—C14 1.432 (2) C14—C15 1.492 (2)
C1—C2 1.380 (3) C15—N1 1.473 (2)
C1—C6 1.382 (3) C15—H15A 0.9700
C1—S1 1.7643 (19) C15—H15B 0.9700
C2—C3 1.380 (3) N1—S1 1.6159 (16)
C2—H2 0.9300
C9—C10—C11 100.86 (14) C5—C6—H6 120.3
C9—C10—H10A 111.6 C1—C6—H6 120.3
C11—C10—H10A 111.6 C4—C7—H7A 109.5
C9—C10—H10B 111.6 C4—C7—H7B 109.5
C11—C10—H10B 111.6 H7A—C7—H7B 109.5
H10A—C10—H10B 109.4 C4—C7—H7C 109.5
O3—C11—C16 111.69 (17) H7A—C7—H7C 109.5
O3—C11—C12 100.03 (15) H7B—C7—H7C 109.5
C16—C11—C12 118.48 (19) N1—C8—C9 104.64 (14)
O3—C11—C10 99.65 (14) N1—C8—H8A 110.8
C16—C11—C10 116.82 (17) C9—C8—H8A 110.8
C12—C11—C10 107.31 (17) N1—C8—H8B 110.8
C13—C12—C11 107.74 (18) C9—C8—H8B 110.8
C13—C12—H12 126.1 H8A—C8—H8B 108.9
C11—C12—H12 126.1 C8—C9—C10 117.81 (15)
C12—C13—C14 104.62 (17) C8—C9—C14 102.03 (13)
C12—C13—H13 127.7 C10—C9—C14 102.13 (14)
C14—C13—H13 127.7 C8—C9—Cl1 108.97 (13)
C11—C16—H16A 109.5 C10—C9—Cl1 113.96 (13)
C11—C16—H16B 109.5 C14—C9—Cl1 110.94 (12)
H16A—C16—H16B 109.5 O3—C14—C15 112.85 (15)
C11—C16—H16C 109.5 O3—C14—C13 102.29 (14)
H16A—C16—H16C 109.5 C15—C14—C13 124.43 (16)
H16B—C16—H16C 109.5 O3—C14—C9 97.98 (12)
C14—O3—C11 96.70 (13) C15—C14—C9 106.57 (14)
C2—C1—C6 120.26 (19) C13—C14—C9 109.59 (15)
C2—C1—S1 119.75 (14) N1—C15—C14 103.22 (14)
C6—C1—S1 119.98 (16) N1—C15—H15A 111.1
C3—C2—C1 119.22 (18) C14—C15—H15A 111.1
C3—C2—H2 120.4 N1—C15—H15B 111.1
C1—C2—H2 120.4 C14—C15—H15B 111.1
C2—C3—C4 121.6 (2) H15A—C15—H15B 109.1
C2—C3—H3 119.2 C15—N1—C8 112.74 (14)
C4—C3—H3 119.2 C15—N1—S1 119.98 (12)
C5—C4—C3 117.9 (2) C8—N1—S1 122.37 (12)
C5—C4—C7 121.2 (2) O2—S1—O1 120.46 (9)
C3—C4—C7 120.9 (2) O2—S1—N1 106.49 (9)
C6—C5—C4 121.5 (2) O1—S1—N1 106.87 (8)
C6—C5—H5 119.3 O2—S1—C1 108.24 (9)
C4—C5—H5 119.3 O1—S1—C1 106.29 (9)
C5—C6—C1 119.5 (2) N1—S1—C1 107.98 (8)
C9—C10—C11—O3 34.16 (17) C12—C13—C14—C15 162.03 (19)
C9—C10—C11—C16 154.56 (19) C12—C13—C14—C9 −70.3 (2)
C9—C10—C11—C12 −69.61 (18) C8—C9—C14—O3 83.30 (14)
O3—C11—C12—C13 −30.6 (2) C10—C9—C14—O3 −38.96 (16)
C16—C11—C12—C13 −152.2 (2) Cl1—C9—C14—O3 −160.76 (11)
C10—C11—C12—C13 72.9 (2) C8—C9—C14—C15 −33.50 (18)
C11—C12—C13—C14 −0.8 (2) C10—C9—C14—C15 −155.76 (15)
C16—C11—O3—C14 174.89 (17) Cl1—C9—C14—C15 82.44 (16)
C12—C11—O3—C14 48.62 (16) C8—C9—C14—C13 −170.56 (15)
C10—C11—O3—C14 −61.04 (15) C10—C9—C14—C13 67.19 (17)
C6—C1—C2—C3 1.2 (3) Cl1—C9—C14—C13 −54.62 (17)
S1—C1—C2—C3 −177.82 (15) O3—C14—C15—N1 −80.61 (17)
C1—C2—C3—C4 0.0 (3) C13—C14—C15—N1 154.70 (18)
C2—C3—C4—C5 −1.2 (3) C9—C14—C15—N1 25.80 (18)
C2—C3—C4—C7 178.6 (2) C14—C15—N1—C8 −8.4 (2)
C3—C4—C5—C6 1.1 (3) C14—C15—N1—S1 −164.23 (13)
C7—C4—C5—C6 −178.7 (2) C9—C8—N1—C15 −12.7 (2)
C4—C5—C6—C1 0.1 (3) C9—C8—N1—S1 142.44 (13)
C2—C1—C6—C5 −1.3 (3) C15—N1—S1—O2 178.27 (15)
S1—C1—C6—C5 177.75 (17) C8—N1—S1—O2 24.88 (17)
N1—C8—C9—C10 137.96 (16) C15—N1—S1—O1 −51.77 (16)
N1—C8—C9—C14 27.15 (17) C8—N1—S1—O1 154.84 (15)
N1—C8—C9—Cl1 −90.22 (14) C15—N1—S1—C1 62.21 (16)
C11—C10—C9—C8 −108.28 (17) C8—N1—S1—C1 −91.18 (16)
C11—C10—C9—C14 2.47 (17) C2—C1—S1—O2 153.66 (15)
C11—C10—C9—Cl1 122.17 (14) C6—C1—S1—O2 −25.36 (19)
C11—O3—C14—C15 173.57 (15) C2—C1—S1—O1 22.93 (17)
C11—O3—C14—C13 −50.39 (16) C6—C1—S1—O1 −156.09 (16)
C11—O3—C14—C9 61.76 (14) C2—C1—S1—N1 −91.44 (16)
C12—C13—C14—O3 32.9 (2) C6—C1—S1—N1 89.54 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.48 3.368 (2) 159
C5—H5···O3ii 0.93 2.62 3.539 (2) 169
C13—H13···O3iii 0.93 2.67 3.601 (2) 174

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2155).

References

  1. Arslan, H., Demircan, A. & Göktürk, E. (2008). Spectrochim. Acta Part A, 69, 105–112. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Demircan, A., Karaarslan, M. & Turac, E. (2006). Heterocycl. Commun. 12, 233–240.
  5. Demircan, A. & Parsons, P. J. (1998). Synlett, pp. 1215–1216.
  6. Demircan, A. & Parsons, P. J. (2002). Heterocycl. Commun. 8, 531–536.
  7. Demircan, A., Şahin, E., Beyazova, G., Karaaslan, M. & Hökelek, T. (2011). Acta Cryst. E67, o1085–o1086. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Heiner, T., Kozhushkov, S. I., Noltemeyer, M., Haumann, T., Boese, R. & de Meijere, A. (1996). Tetrahedron, 52, 12185–12196.
  11. Kappe, C. O., Murphree, S. S. & Padwa, A. (1997). Tetrahedron, 53, 14179–14233.
  12. Karaarslan, M., Göktürk, E. & Demircan, A. (2007). J. Chem. Res. 2, 117–120.
  13. Koşar, B., Demircan, A., Karaarslan, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o765–o767.
  14. Lipshutz, B. H. (1986). Chem. Rev. 86, 795–819.
  15. Padwa, A., Dimitroff, M., Waterson, A. G. & Wu, T. (1997). J. Org. Chem. 62, 4088–4096.
  16. Prajapati, D., Laskar, D. D. & Sandhu, J. S. (2000). Tetrahedron Lett. 41, 8639–8643.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Stoe & Cie (2001). X-RED Stoe & Cie, Darmstadt, Germany.
  19. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  20. Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812009658/zq2155sup1.cif

e-68-o1102-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009658/zq2155Isup2.hkl

e-68-o1102-Isup2.hkl (159.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009658/zq2155Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES