Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):o1144–o1145. doi: 10.1107/S1600536812009075

N′-[(1E,2E)-3,7-Dimethyl­octa-2,6-dien-1-yl­idene]pyridine-4-carbohydrazide

Mashooq A Bhat a, Hatem A Abdel-Aziz a, Hazem A Ghabbour a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,
PMCID: PMC3344089  PMID: 22606092

Abstract

In the title compound, C16H21N3O, the mol­ecule adopts an E conformation about the central C=N double bond. The 2-methyl­pent-2-ene group is disordered over two sets of sites, with a refined occupancy ratio of 0.785 (8):0.215 (8). The dihedral angle between the essentially planar [the r.m.s. value for the major component is 0.021 (7) and its maximum deviation is 0.025 (4) Å; the r.m.s. value for the minor component is 0.03 (4) and its maximum deviation is 0.05 (3) Å] major and minor components of the 2-methyl­but-2-ene group is 35.9 (13)°. In the crystal, C—H⋯O and N—H⋯O hydrogen bonds link the molecules, with the same O atom acting as the acceptor. This results in C 1 1(4) and C 1 1(5) [001] chains.

Related literature  

For details and the biological activity of isoniazide, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Hearn et al. (2009); Tripathi et al. (2011). For related structures, see: Naveenkumar et al. (2010); Jiang et al. (2009); Khan et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1144-scheme1.jpg

Experimental  

Crystal data  

  • C16H21N3O

  • M r = 271.36

  • Monoclinic, Inline graphic

  • a = 17.5415 (8) Å

  • b = 12.0708 (6) Å

  • c = 7.8430 (4) Å

  • β = 101.854 (3)°

  • V = 1625.26 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 296 K

  • 0.90 × 0.27 × 0.17 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.633, T max = 0.912

  • 16548 measured reflections

  • 2978 independent reflections

  • 2376 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.154

  • S = 1.03

  • 2978 reflections

  • 239 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009075/lh5421sup1.cif

e-68-o1144-sup1.cif (29.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009075/lh5421Isup2.hkl

e-68-o1144-Isup2.hkl (143.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009075/lh5421Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1i 0.873 (17) 2.052 (17) 2.9167 (18) 170.8 (16)
C4—H4A⋯O1i 0.93 2.53 3.251 (2) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

MAB, HAA and HAG thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000; Hearn et al., 2009; Tripathi et al., 2011). The crystal structures of (E)-N'- (2-Benzyloxybenzylidene)isonicotinohydrazide methanol solvate monohydrate (Naveenkumar et al., 2010), N'-(1-Phenylethylidene)isonicotino hydrazide (Jiang et al., 2009) and N'-(4-Bromophenylsulfonyl) isonicotinohydrazide (Khan et al., 2009) have been reported in the literature. Here, we present the crystal structure of the title compound, (I).

The asymmetric unit of the title compound is shown in Fig. 1. The molecule adopts an E configuration about the central C7═N2 double bond. The 2-methylpent-2-ene group is disordered over two sets of sites, with a refined occupancy ratio of 0.785 (8):0.215 (8). The dihedral angles between the major and minor components of the 2-methylbut-2-ene (C11–C15:C11A–C15A) group is 35.9 (13)°.

In the crystal, Fig. 2, the adjacent molecules are connected via bifurcated N—H···O and C—H···O hydrogen bonds (Table 1), generating R12(7) ring motifs (Bernstein et al., 1995), resulting in supramolecular [001] chains.

Experimental

The title compound was prepared by the reaction of citral, 3,7-dimethylocta- 2,6-dienal (0.15 g, 1 mmol) with isoniazid (0.14 g, 1 mmol) in ETOH/H2O (3:1, v/v, 10 mL). After stirring for 3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue washed with cold ethyl alcohol and then with ethyl ether to afford the title compound. Colorless blocks of the latter compound suitable for X-ray structure determination were recrystallized from ETOH by the slow evaporation of the solvent at room temperature.

Refinement

Atom H1N3 was located from a difference Fourier maps and refined freely [N–H = 0.873 (18) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The 2-methylpent-2-ene group is disordered over two sets of sites, with a refined occupancy ratio of 0.785 (8):0.215 (8).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Open bonds represent disordered components.

Fig. 2.

Fig. 2.

The crystal packing of the title compound (I). Hydrogen bonds are shown as dashed lines. The disorder is not shown.

Crystal data

C16H21N3O F(000) = 584
Mr = 271.36 Dx = 1.109 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 1053 reflections
a = 17.5415 (8) Å θ = 11.3–69.5°
b = 12.0708 (6) Å µ = 0.56 mm1
c = 7.8430 (4) Å T = 296 K
β = 101.854 (3)° Block, colourless
V = 1625.26 (14) Å3 0.90 × 0.27 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2978 independent reflections
Radiation source: fine-focus sealed tube 2376 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
φ and ω scans θmax = 69.7°, θmin = 5.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→21
Tmin = 0.633, Tmax = 0.912 k = −14→14
16548 measured reflections l = −9→7

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.2272P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2978 reflections Δρmax = 0.13 e Å3
239 parameters Δρmin = −0.14 e Å3
12 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0032 (6)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.30512 (6) 0.61845 (10) 0.31148 (14) 0.0640 (3)
N1 0.06078 (9) 0.62725 (17) 0.5444 (3) 0.0897 (5)
N2 0.40983 (7) 0.76093 (12) 0.49025 (19) 0.0656 (4)
N3 0.33659 (7) 0.74425 (12) 0.52777 (18) 0.0602 (4)
C1 0.09771 (12) 0.54801 (19) 0.4767 (3) 0.0905 (7)
H1A 0.0724 0.4805 0.4511 0.109*
C2 0.17110 (10) 0.55920 (16) 0.4418 (3) 0.0746 (5)
H2A 0.1942 0.5007 0.3941 0.090*
C3 0.20985 (8) 0.65855 (13) 0.47852 (19) 0.0558 (4)
C4 0.17217 (9) 0.74139 (15) 0.5489 (2) 0.0686 (5)
H4A 0.1959 0.8099 0.5756 0.082*
C5 0.09864 (10) 0.72159 (19) 0.5792 (3) 0.0822 (6)
H5A 0.0742 0.7785 0.6274 0.099*
C6 0.28809 (8) 0.67137 (13) 0.43211 (19) 0.0534 (4)
C7 0.45447 (9) 0.82229 (15) 0.6011 (2) 0.0645 (4)
H7A 0.4366 0.8509 0.6957 0.077*
C8 0.53221 (10) 0.84735 (17) 0.5801 (3) 0.0746 (5)
H8A 0.5485 0.8169 0.4846 0.089*
C9 0.58251 (11) 0.91090 (18) 0.6876 (3) 0.0837 (6)
C10 0.66541 (16) 0.9344 (4) 0.6696 (6) 0.0871 (10) 0.785 (8)
H10A 0.6713 1.0139 0.6600 0.105* 0.785 (8)
H10B 0.7002 0.9109 0.7762 0.105* 0.785 (8)
C11 0.69190 (18) 0.8806 (3) 0.5187 (5) 0.0900 (11) 0.785 (8)
H11A 0.6929 0.8008 0.5341 0.108* 0.785 (8)
H11B 0.6550 0.8975 0.4118 0.108* 0.785 (8)
C12 0.77113 (18) 0.9196 (3) 0.5033 (6) 0.0828 (10) 0.785 (8)
H12A 0.7710 0.9863 0.4439 0.099* 0.785 (8)
C13 0.8396 (4) 0.8782 (5) 0.5571 (15) 0.0811 (19) 0.785 (8)
C14 0.9134 (3) 0.9352 (6) 0.5393 (11) 0.1003 (15) 0.785 (8)
H14A 0.9011 1.0045 0.4798 0.150* 0.785 (8)
H14B 0.9416 0.8891 0.4739 0.150* 0.785 (8)
H14C 0.9448 0.9486 0.6529 0.150* 0.785 (8)
C15 0.8582 (5) 0.7702 (6) 0.6537 (11) 0.162 (3) 0.785 (8)
H15A 0.8121 0.7420 0.6863 0.242* 0.785 (8)
H15B 0.8977 0.7823 0.7564 0.242* 0.785 (8)
H15C 0.8766 0.7175 0.5797 0.242* 0.785 (8)
C10A 0.6475 (6) 0.9475 (14) 0.5992 (19) 0.0871 (10) 0.215 (8)
H10C 0.6314 0.9371 0.4743 0.105* 0.215 (8)
H10D 0.6577 1.0258 0.6210 0.105* 0.215 (8)
C11A 0.7184 (8) 0.8848 (17) 0.663 (4) 0.169 (13) 0.215 (8)
H11C 0.7112 0.8104 0.6156 0.203* 0.215 (8)
H11D 0.7257 0.8787 0.7887 0.203* 0.215 (8)
C12A 0.7911 (7) 0.9321 (12) 0.620 (4) 0.123 (7) 0.215 (8)
H12B 0.7971 1.0081 0.6089 0.148* 0.215 (8)
C13A 0.8464 (13) 0.8625 (17) 0.599 (5) 0.080 (8) 0.215 (8)
C14A 0.9212 (14) 0.901 (3) 0.562 (6) 0.170 (16) 0.215 (8)
H14D 0.9258 0.9793 0.5797 0.255* 0.215 (8)
H14E 0.9232 0.8837 0.4434 0.255* 0.215 (8)
H14F 0.9633 0.8641 0.6388 0.255* 0.215 (8)
C15A 0.8294 (13) 0.7391 (13) 0.588 (4) 0.137 (8) 0.215 (8)
H15D 0.7743 0.7273 0.5742 0.206* 0.215 (8)
H15E 0.8562 0.7036 0.6925 0.206* 0.215 (8)
H15F 0.8468 0.7084 0.4895 0.206* 0.215 (8)
C16 0.56438 (16) 0.9641 (3) 0.8453 (4) 0.1287 (12)
H16A 0.5169 0.9337 0.8683 0.193*
H16B 0.5584 1.0424 0.8265 0.193*
H16C 0.6061 0.9505 0.9432 0.193*
H1N3 0.3250 (10) 0.7786 (15) 0.617 (2) 0.063 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0566 (6) 0.0690 (7) 0.0683 (7) −0.0046 (5) 0.0170 (5) −0.0065 (5)
N1 0.0508 (8) 0.1053 (13) 0.1165 (14) −0.0154 (8) 0.0259 (8) −0.0068 (10)
N2 0.0505 (7) 0.0773 (9) 0.0744 (8) −0.0136 (6) 0.0255 (6) −0.0094 (7)
N3 0.0465 (7) 0.0721 (9) 0.0658 (8) −0.0116 (6) 0.0201 (6) −0.0093 (6)
C1 0.0625 (10) 0.0804 (13) 0.1331 (18) −0.0218 (10) 0.0307 (11) −0.0046 (12)
C2 0.0580 (9) 0.0658 (10) 0.1026 (13) −0.0102 (8) 0.0223 (9) −0.0010 (9)
C3 0.0449 (7) 0.0622 (9) 0.0593 (8) −0.0041 (6) 0.0088 (6) 0.0055 (7)
C4 0.0483 (8) 0.0737 (11) 0.0836 (11) −0.0076 (7) 0.0132 (7) −0.0115 (8)
C5 0.0489 (9) 0.0978 (14) 0.1012 (14) −0.0048 (9) 0.0183 (9) −0.0194 (11)
C6 0.0462 (7) 0.0559 (8) 0.0584 (8) −0.0027 (6) 0.0113 (6) 0.0051 (6)
C7 0.0512 (8) 0.0720 (10) 0.0741 (10) −0.0121 (7) 0.0217 (7) −0.0097 (8)
C8 0.0554 (9) 0.0845 (12) 0.0895 (12) −0.0165 (8) 0.0281 (8) −0.0174 (9)
C9 0.0561 (10) 0.0823 (13) 0.1158 (15) −0.0172 (9) 0.0251 (10) −0.0202 (11)
C10 0.0477 (14) 0.0936 (18) 0.117 (3) −0.0193 (15) 0.0097 (16) −0.015 (2)
C11 0.0575 (16) 0.111 (2) 0.107 (2) −0.0183 (15) 0.0294 (15) −0.0033 (18)
C12 0.0540 (15) 0.0843 (19) 0.113 (2) −0.0069 (13) 0.0249 (15) 0.0191 (18)
C13 0.078 (3) 0.077 (3) 0.093 (4) 0.007 (2) 0.026 (2) 0.018 (3)
C14 0.0549 (18) 0.110 (4) 0.140 (3) 0.004 (2) 0.030 (2) 0.001 (3)
C15 0.162 (6) 0.127 (5) 0.209 (7) 0.022 (4) 0.068 (5) 0.075 (5)
C10A 0.0477 (14) 0.0936 (18) 0.117 (3) −0.0193 (15) 0.0097 (16) −0.015 (2)
C11A 0.081 (9) 0.146 (15) 0.29 (3) 0.031 (9) 0.064 (14) 0.12 (2)
C12A 0.064 (7) 0.086 (8) 0.22 (2) −0.013 (6) 0.039 (11) 0.026 (12)
C13A 0.072 (8) 0.069 (9) 0.11 (2) 0.023 (6) 0.037 (10) 0.034 (8)
C14A 0.095 (14) 0.12 (2) 0.28 (4) 0.012 (12) 0.001 (16) −0.03 (2)
C15A 0.121 (14) 0.070 (9) 0.20 (2) 0.029 (9) −0.008 (12) −0.009 (10)
C16 0.0951 (17) 0.160 (3) 0.137 (2) −0.0471 (18) 0.0378 (15) −0.071 (2)

Geometric parameters (Å, º)

O1—C6 1.2283 (18) C12—C13 1.290 (7)
N1—C5 1.318 (3) C12—H12A 0.9300
N1—C1 1.326 (3) C13—C14 1.497 (6)
N2—C7 1.280 (2) C13—C15 1.510 (7)
N2—N3 1.3903 (17) C14—H14A 0.9600
N3—C6 1.341 (2) C14—H14B 0.9600
N3—H1N3 0.873 (18) C14—H14C 0.9600
C1—C2 1.377 (2) C15—H15A 0.9600
C1—H1A 0.9300 C15—H15B 0.9600
C2—C3 1.379 (2) C15—H15C 0.9600
C2—H2A 0.9300 C10A—C11A 1.454 (14)
C3—C4 1.375 (2) C10A—H10C 0.9700
C3—C6 1.4985 (18) C10A—H10D 0.9700
C4—C5 1.380 (2) C11A—C12A 1.497 (13)
C4—H4A 0.9300 C11A—H11C 0.9700
C5—H5A 0.9300 C11A—H11D 0.9700
C7—C8 1.439 (2) C12A—C13A 1.320 (16)
C7—H7A 0.9300 C12A—H12B 0.9300
C8—C9 1.331 (3) C13A—C14A 1.474 (16)
C8—H8A 0.9300 C13A—C15A 1.518 (17)
C9—C16 1.485 (3) C14A—H14D 0.9600
C9—C10 1.516 (2) C14A—H14E 0.9600
C9—C10A 1.517 (3) C14A—H14F 0.9600
C10—C11 1.505 (4) C15A—H15D 0.9600
C10—H10A 0.9700 C15A—H15E 0.9600
C10—H10B 0.9700 C15A—H15F 0.9600
C11—C12 1.496 (4) C16—H16A 0.9600
C11—H11A 0.9700 C16—H16B 0.9600
C11—H11B 0.9700 C16—H16C 0.9600
C5—N1—C1 116.07 (15) C12—C13—C15 126.1 (5)
C7—N2—N3 113.78 (13) C14—C13—C15 110.0 (6)
C6—N3—N2 118.96 (13) C13—C14—H14A 109.5
C6—N3—H1N3 122.3 (12) C13—C14—H14B 109.5
N2—N3—H1N3 118.6 (12) H14A—C14—H14B 109.5
N1—C1—C2 124.24 (18) C13—C14—H14C 109.5
N1—C1—H1A 117.9 H14A—C14—H14C 109.5
C2—C1—H1A 117.9 H14B—C14—H14C 109.5
C1—C2—C3 118.98 (18) C13—C15—H15A 109.5
C1—C2—H2A 120.5 C13—C15—H15B 109.5
C3—C2—H2A 120.5 H15A—C15—H15B 109.5
C4—C3—C2 117.33 (14) C13—C15—H15C 109.5
C4—C3—C6 124.20 (14) H15A—C15—H15C 109.5
C2—C3—C6 118.40 (15) H15B—C15—H15C 109.5
C3—C4—C5 119.13 (17) C11A—C10A—C9 111.1 (10)
C3—C4—H4A 120.4 C11A—C10A—H10C 109.4
C5—C4—H4A 120.4 C9—C10A—H10C 109.4
N1—C5—C4 124.25 (18) C11A—C10A—H10D 109.4
N1—C5—H5A 117.9 C9—C10A—H10D 109.4
C4—C5—H5A 117.9 H10C—C10A—H10D 108.0
O1—C6—N3 123.05 (13) C10A—C11A—C12A 115.6 (10)
O1—C6—C3 120.88 (13) C10A—C11A—H11C 108.4
N3—C6—C3 116.06 (13) C12A—C11A—H11C 108.4
N2—C7—C8 120.42 (15) C10A—C11A—H11D 108.4
N2—C7—H7A 119.8 C12A—C11A—H11D 108.4
C8—C7—H7A 119.8 H11C—C11A—H11D 107.5
C9—C8—C7 124.73 (17) C13A—C12A—C11A 117.9 (14)
C9—C8—H8A 117.6 C13A—C12A—H12B 121.0
C7—C8—H8A 117.6 C11A—C12A—H12B 121.0
C8—C9—C16 123.28 (17) C12A—C13A—C14A 122.2 (17)
C8—C9—C10 124.9 (2) C12A—C13A—C15A 119.4 (16)
C16—C9—C10 111.7 (2) C14A—C13A—C15A 118.0 (18)
C8—C9—C10A 110.0 (7) C13A—C14A—H14D 109.5
C16—C9—C10A 124.4 (7) C13A—C14A—H14E 109.5
C10—C9—C10A 22.7 (5) H14D—C14A—H14E 109.5
C11—C10—C9 116.7 (3) C13A—C14A—H14F 109.5
C11—C10—H10A 108.1 H14D—C14A—H14F 109.5
C9—C10—H10A 108.1 H14E—C14A—H14F 109.5
C11—C10—H10B 108.1 C13A—C15A—H15D 109.5
C9—C10—H10B 108.1 C13A—C15A—H15E 109.5
H10A—C10—H10B 107.3 H15D—C15A—H15E 109.5
C12—C11—C10 111.7 (3) C13A—C15A—H15F 109.5
C12—C11—H11A 109.3 H15D—C15A—H15F 109.5
C10—C11—H11A 109.3 H15E—C15A—H15F 109.5
C12—C11—H11B 109.3 C9—C16—H16A 109.5
C10—C11—H11B 109.3 C9—C16—H16B 109.5
H11A—C11—H11B 107.9 H16A—C16—H16B 109.5
C13—C12—C11 132.1 (4) C9—C16—H16C 109.5
C13—C12—H12A 113.9 H16A—C16—H16C 109.5
C11—C12—H12A 113.9 H16B—C16—H16C 109.5
C12—C13—C14 123.8 (6)
C7—N2—N3—C6 −172.49 (15) C7—C8—C9—C16 0.4 (4)
C5—N1—C1—C2 −0.2 (4) C7—C8—C9—C10 177.8 (3)
N1—C1—C2—C3 0.0 (4) C7—C8—C9—C10A −162.8 (6)
C1—C2—C3—C4 0.0 (3) C8—C9—C10—C11 −0.3 (6)
C1—C2—C3—C6 −177.16 (18) C16—C9—C10—C11 177.4 (4)
C2—C3—C4—C5 0.1 (3) C10A—C9—C10—C11 −54.2 (19)
C6—C3—C4—C5 177.14 (16) C9—C10—C11—C12 173.7 (3)
C1—N1—C5—C4 0.3 (3) C10—C11—C12—C13 96.6 (9)
C3—C4—C5—N1 −0.3 (3) C11—C12—C13—C14 −175.3 (6)
N2—N3—C6—O1 −0.3 (2) C11—C12—C13—C15 1.4 (15)
N2—N3—C6—C3 −179.34 (13) C8—C9—C10A—C11A −103 (2)
C4—C3—C6—O1 −149.52 (17) C16—C9—C10A—C11A 94 (2)
C2—C3—C6—O1 27.5 (2) C10—C9—C10A—C11A 31.7 (18)
C4—C3—C6—N3 29.5 (2) C9—C10A—C11A—C12A −165.1 (17)
C2—C3—C6—N3 −153.47 (16) C10A—C11A—C12A—C13A −149 (3)
N3—N2—C7—C8 −179.95 (16) C11A—C12A—C13A—C14A −178 (3)
N2—C7—C8—C9 179.4 (2) C11A—C12A—C13A—C15A 10 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···O1i 0.873 (17) 2.052 (17) 2.9167 (18) 170.8 (16)
C4—H4A···O1i 0.93 2.53 3.251 (2) 135

Symmetry code: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5421).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppinsa, R., Davis, J., Joo-On Kang, H., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson. R. (2009). Eur. J. Med. Chem. 44, 4169–4178. [DOI] [PMC free article] [PubMed]
  4. Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513. [DOI] [PubMed]
  5. Jiang, J., Chen, J., Yang, J. & Jian, F.-F. (2009). Acta Cryst. E65, o3125. [DOI] [PMC free article] [PubMed]
  6. Khan, I. U., Ashfaq, M., Arshad, M. N., Ahmad, H. & Mustafa, G. (2009). Acta Cryst. E65, o1991. [DOI] [PMC free article] [PubMed]
  7. Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513. [DOI] [PubMed]
  8. Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1337–o1338. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Tripathi, L., Singh, R. & Stables, J. P. (2011). Eur. J. Med. Chem. 46, 509–518. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009075/lh5421sup1.cif

e-68-o1144-sup1.cif (29.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009075/lh5421Isup2.hkl

e-68-o1144-Isup2.hkl (143.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812009075/lh5421Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES