Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 28;68(Pt 4):o1198. doi: 10.1107/S1600536812012433

5-Amino-1,3,4-thia­diazol-2(3H)-one

Sung Kwon Kang a,*, Nam Sook Cho a, Siyoung Jang a
PMCID: PMC3344135  PMID: 22606138

Abstract

The asymmetric unit of the title compound, C2H3N3OS, contains three independent mol­ecules which are essentially planar, with r.m.s. deviations of 0.011 (2)–0.027 (2) Å from the mean plane defined by the seven non-H atoms. In the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a sheet parallel to the (111) plane.

Related literature  

For the structures and reactivity of thia­diazole derivatives, see: Parkanyi et al. (1989); Cho, Cho et al. (1996); Cho, Ra et al. (1996). For the biological activity of thia­diazole derivatives, see: Castro et al. (2008); Ra, Cho & Cho (1998); Ra, Cho, Moon & Kang (1998).graphic file with name e-68-o1198-scheme1.jpg

Experimental  

Crystal data  

  • C2H3N3OS

  • M r = 117.13

  • Triclinic, Inline graphic

  • a = 7.2860 (2) Å

  • b = 10.2982 (3) Å

  • c = 10.7727 (3) Å

  • α = 63.721 (3)°

  • β = 73.122 (2)°

  • γ = 76.737 (2)°

  • V = 688.74 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.15 × 0.1 × 0.05 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.93, T max = 0.97

  • 23857 measured reflections

  • 3433 independent reflections

  • 2526 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.080

  • S = 0.94

  • 3433 reflections

  • 226 parameters

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012433/is5096sup1.cif

e-68-o1198-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012433/is5096Isup2.hkl

e-68-o1198-Isup2.hkl (164.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012433/is5096Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N18 0.854 (19) 2.004 (19) 2.8516 (19) 171.9 (18)
N7—H7A⋯O20i 0.87 (2) 2.07 (2) 2.907 (2) 160 (2)
N10—H10⋯N4 0.98 (2) 1.88 (2) 2.8558 (19) 175.7 (18)
N14—H14A⋯O6ii 0.83 (2) 2.10 (2) 2.897 (2) 162 (2)
N17—H17⋯N11 0.88 (2) 1.97 (2) 2.8424 (18) 179 (4)
N21—H21A⋯O13iii 0.80 (3) 2.10 (3) 2.878 (2) 163 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

5-Amino-2H-1,2,4-thiadiazolin-3-one heterocycle is an analog of cytosine (Parkanyi et al., 1989). Derivatives of 5-amino-2H-1,2,4-thiadiazolin-3-one have recently attracted attention on the antibacterial activity, potential carcinogenicity, and kinase inhibitor activity (Castro et al., 2008; Cho, Ra et al., 1996; Ra, Cho, Moon & Kang, 1998). 5-Amino-3H-1,3,4-thiadiazolin-2-one is an isomer of 5-amino-2H-1,2,4-thiadiazolin-3-one, which has become an attractive moiety due to potential biological activities (Cho, Cho, Ra, Moon et al., 1996; Ra, Cho & Cho 1998).

In (I), three independent but similar molecules, which are linked by the intermolecular N—H···N hydrogen bonds (Fig. 1), comprise the asymmetric unit. The 1,3,4-thiadiazolin-2-one units are almost planar with r.m.s. deviations of 0.011 (2)–0.027 (2) Å from the corresponding least-squares plane defined by the seven constituent atoms. The bond distance of N4—C5 [1.291 (2) Å; N11—C12, 1.287 (2) Å; N18—C19, 1.282 (2) Å] is shorter than that of C2—N3 [1.333 (2) Å; C9—N10, 1.336 (2) Å; C16—N17, 1.327 Å], which is consistent with double bond character. The crystal structure is stabilized by the intermolecular N—H···N and N—H···O hydrogen bonds, which link the molecules into a two-dimensional sheet parallel to the (111) plane (Table 1 and Fig. 2).

Experimental

Synthesis of 5-amino-2-ethoxy-1,3,4-thiadiazole: Ethyl thiocarbazate (4.8 g, 0.04 mol) was dissolved in 24 ml of 2 N NaOH at 10 °C. Cyanogen bromide (4.2 g, 0.04 mol) dissolved in 20 ml of ethanol was added to the above solution keeping the temperature below 10 °C during 45 minutes. The solid product (4.1 g, 71%) was collected by filtration. To obtain the analytical sample the product was recrystallized from ethanol. m.p. 200–202 °C; IR (KBr, cm-1) 3300 (NH), 3150 (NH), 3000 (CH), 2950 (CH), 1620 (C=O), 1580 (C=N); 1H NMR (DMSO-d6, p.p.m.) 6.65 (2H, b, NH2), 4.25 (2H, q, CH2), 1.29 (3H, t, CH3); 13C NMR (DMSO-d6, p.p.m.) 164.85 (C=N), 162.18 (C—O), 67.48 (CH2), 14.35 (CH3); Anal. Calcd. For C4H7N3OS: C 33.09, H 4.86, N 28.94. Found: C 33.71, H 4.94, N 28.50.

Synthesis of title compound: 5-Amino-2-ethoxy-1,3,4-thiadiazole (5 g, 34.5 mmol) was dissolved in 50 ml of dioxane and 3.5 ml of c-HCl was added. The reaction mixture was refluxed for 4.5 h. The solvent was distilled off under reduced pressure. The residue product was washed with ether (3.7 g, 92.5%). To obtain the analytical sample the product was recrystallized from water. Recrystallization from DMSO afforded the colorless crystals suitable for X-ray diffraction. m.p. 176–178 °C; IR (KBr, cm-1) 3450 (NH), 3150 (NH), 3100, 3000, 2900 (CH), 1700 (C=O), 1610, 1500 (C=N); 1H NMR (DMSO-d6, p.p.m.) 11.3 (1H, b, NH), 6.4 (2H, b, NH2; 13C NMR (DMSO-d6, p.p.m.) 169.4 (C=N), 153.0 (C=O); Anal. Calcd. For C2H3N3OS: C 20.51, H 2.58, N 35.88, S 27.37. Found: C 20.19, H 2.65, N 34.28, S 27.22.

Refinement

H atoms of the NH and NH2 groups were located in a difference Fourier map and refined freely [refined distances = 0.79 (2)–0.94 (2) Å].

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Intermolecular N—H···N hydrogen bonds are indicated by dashed lines.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing molecules linked by intermolecular N—H···N and N—H···O hydrogen bonds (dashed lines).

Crystal data

C2H3N3OS Z = 6
Mr = 117.13 F(000) = 360
Triclinic, P1 Dx = 1.694 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2860 (2) Å Cell parameters from 5437 reflections
b = 10.2982 (3) Å θ = 2.2–26.1°
c = 10.7727 (3) Å µ = 0.57 mm1
α = 63.721 (3)° T = 296 K
β = 73.122 (2)° Block, colourless
γ = 76.737 (2)° 0.15 × 0.1 × 0.05 mm
V = 688.74 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2526 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −9→9
Tmin = 0.93, Tmax = 0.97 k = −13→13
23857 measured reflections l = −14→14
3433 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 All H-atom parameters refined
S = 0.94 w = 1/[σ2(Fo2) + (0.0423P)2] where P = (Fo2 + 2Fc2)/3
3433 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.86165 (6) −0.07773 (5) −0.06572 (4) 0.03647 (13)
C2 0.7587 (2) 0.10880 (18) −0.13554 (16) 0.0339 (4)
N3 0.6466 (2) 0.13649 (15) −0.02585 (14) 0.0329 (3)
H3 0.580 (3) 0.219 (2) −0.0362 (19) 0.044 (5)*
N4 0.62764 (19) 0.02538 (14) 0.10886 (13) 0.0303 (3)
C5 0.7333 (2) −0.09181 (17) 0.10313 (16) 0.0289 (3)
O6 0.7853 (2) 0.19397 (15) −0.26078 (12) 0.0517 (4)
N7 0.7416 (3) −0.21857 (17) 0.21825 (17) 0.0472 (4)
H7A 0.825 (3) −0.291 (3) 0.210 (2) 0.072 (7)*
H7B 0.672 (3) −0.224 (2) 0.297 (2) 0.052 (6)*
S8 0.15828 (7) 0.02436 (5) 0.59226 (4) 0.03889 (13)
C9 0.3260 (2) −0.05097 (18) 0.47618 (16) 0.0338 (4)
N10 0.3484 (2) 0.05559 (15) 0.34594 (14) 0.0353 (3)
H10 0.439 (3) 0.047 (2) 0.262 (2) 0.065 (6)*
N11 0.2481 (2) 0.19183 (14) 0.32756 (13) 0.0354 (3)
C12 0.1437 (2) 0.19073 (18) 0.44702 (16) 0.0348 (4)
O13 0.40594 (19) −0.17651 (13) 0.51031 (13) 0.0485 (3)
N14 0.0375 (3) 0.3114 (2) 0.4619 (2) 0.0592 (5)
H14A −0.048 (3) 0.297 (2) 0.536 (3) 0.070 (7)*
H14B 0.019 (3) 0.387 (2) 0.386 (2) 0.050 (6)*
S15 0.23799 (7) 0.66689 (5) −0.15169 (5) 0.04302 (14)
C16 0.1723 (2) 0.55543 (18) 0.03347 (17) 0.0363 (4)
N17 0.2688 (2) 0.42407 (15) 0.05437 (15) 0.0353 (3)
H17 0.262 (3) 0.352 (2) 0.138 (2) 0.053 (6)*
N18 0.3933 (2) 0.40035 (14) −0.06009 (13) 0.0354 (3)
C19 0.3895 (2) 0.51734 (17) −0.17336 (17) 0.0356 (4)
O20 0.0594 (2) 0.59341 (14) 0.12439 (14) 0.0537 (4)
N21 0.4930 (3) 0.5249 (2) −0.30232 (18) 0.0651 (6)
H21A 0.492 (4) 0.606 (3) −0.363 (3) 0.081 (8)*
H21B 0.566 (3) 0.455 (3) −0.304 (2) 0.071 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0365 (2) 0.0374 (2) 0.0315 (2) 0.00386 (18) 0.00096 (17) −0.01947 (18)
C2 0.0319 (9) 0.0371 (9) 0.0289 (8) −0.0040 (7) −0.0003 (7) −0.0139 (7)
N3 0.0386 (8) 0.0250 (7) 0.0254 (6) 0.0032 (6) −0.0008 (6) −0.0089 (6)
N4 0.0345 (7) 0.0262 (7) 0.0233 (6) 0.0000 (6) −0.0004 (5) −0.0091 (5)
C5 0.0290 (8) 0.0292 (8) 0.0274 (7) −0.0007 (7) −0.0024 (6) −0.0139 (7)
O6 0.0631 (9) 0.0485 (8) 0.0246 (6) −0.0049 (7) 0.0027 (6) −0.0064 (6)
N7 0.0625 (12) 0.0306 (9) 0.0324 (8) 0.0104 (8) −0.0046 (8) −0.0096 (7)
S8 0.0458 (3) 0.0368 (2) 0.02102 (19) −0.00454 (19) 0.00086 (17) −0.00531 (17)
C9 0.0375 (9) 0.0317 (9) 0.0270 (8) −0.0028 (7) −0.0059 (7) −0.0084 (7)
N10 0.0412 (8) 0.0293 (7) 0.0241 (6) 0.0039 (6) −0.0013 (6) −0.0080 (6)
N11 0.0412 (8) 0.0276 (7) 0.0224 (6) 0.0029 (6) 0.0011 (6) −0.0052 (6)
C12 0.0366 (9) 0.0310 (9) 0.0261 (8) −0.0022 (7) 0.0009 (7) −0.0078 (7)
O13 0.0601 (9) 0.0290 (7) 0.0423 (7) 0.0049 (6) −0.0128 (6) −0.0056 (6)
N14 0.0692 (13) 0.0386 (10) 0.0393 (10) 0.0088 (9) 0.0126 (9) −0.0111 (8)
S15 0.0533 (3) 0.0232 (2) 0.0365 (2) 0.00734 (19) −0.0052 (2) −0.00628 (18)
C16 0.0386 (10) 0.0298 (9) 0.0342 (9) 0.0008 (7) −0.0040 (7) −0.0121 (7)
N17 0.0417 (9) 0.0258 (7) 0.0255 (7) 0.0029 (6) −0.0009 (6) −0.0061 (6)
N18 0.0423 (8) 0.0241 (7) 0.0267 (7) 0.0036 (6) 0.0006 (6) −0.0074 (6)
C19 0.0428 (10) 0.0240 (8) 0.0305 (8) 0.0000 (7) −0.0020 (7) −0.0083 (7)
O20 0.0561 (9) 0.0453 (8) 0.0474 (7) 0.0072 (6) 0.0046 (6) −0.0238 (6)
N21 0.0938 (16) 0.0328 (10) 0.0314 (9) 0.0067 (10) 0.0134 (9) −0.0036 (8)

Geometric parameters (Å, º)

S1—C5 1.7449 (15) N10—H10 0.98 (2)
S1—C2 1.7905 (17) N11—C12 1.2874 (19)
C2—O6 1.2270 (19) C12—N14 1.354 (2)
C2—N3 1.333 (2) N14—H14A 0.83 (2)
N3—N4 1.3857 (18) N14—H14B 0.86 (2)
N3—H3 0.854 (19) S15—C19 1.7419 (17)
N4—C5 1.2905 (19) S15—C16 1.7876 (17)
C5—N7 1.349 (2) C16—O20 1.2298 (19)
N7—H7A 0.87 (2) C16—N17 1.327 (2)
N7—H7B 0.84 (2) N17—N18 1.3853 (18)
S8—C12 1.7419 (16) N17—H17 0.88 (2)
S8—C9 1.7874 (17) N18—C19 1.2821 (19)
C9—O13 1.2264 (19) C19—N21 1.352 (2)
C9—N10 1.336 (2) N21—H21A 0.80 (3)
N10—N11 1.3817 (18) N21—H21B 0.79 (2)
C5—S1—C2 88.70 (7) C12—N11—N10 110.16 (13)
O6—C2—N3 126.79 (16) N11—C12—N14 123.00 (15)
O6—C2—S1 126.30 (13) N11—C12—S8 115.37 (12)
N3—C2—S1 106.90 (12) N14—C12—S8 121.53 (13)
C2—N3—N4 119.16 (14) C12—N14—H14A 116.1 (16)
C2—N3—H3 122.2 (13) C12—N14—H14B 117.8 (13)
N4—N3—H3 118.5 (13) H14A—N14—H14B 118 (2)
C5—N4—N3 109.74 (12) C19—S15—C16 88.49 (8)
N4—C5—N7 122.96 (15) O20—C16—N17 126.47 (16)
N4—C5—S1 115.48 (12) O20—C16—S15 126.48 (13)
N7—C5—S1 121.54 (12) N17—C16—S15 107.05 (12)
C5—N7—H7A 118.8 (15) C16—N17—N18 119.02 (14)
C5—N7—H7B 119.4 (14) C16—N17—H17 122.9 (13)
H7A—N7—H7B 122 (2) N18—N17—H17 118.0 (13)
C12—S8—C9 88.73 (7) C19—N18—N17 109.75 (13)
O13—C9—N10 126.70 (16) N18—C19—N21 122.74 (16)
O13—C9—S8 126.29 (13) N18—C19—S15 115.68 (12)
N10—C9—S8 107.01 (12) N21—C19—S15 121.57 (13)
C9—N10—N11 118.72 (13) C19—N21—H21A 113.9 (17)
C9—N10—H10 125.0 (12) C19—N21—H21B 116.2 (17)
N11—N10—H10 116.1 (12) H21A—N21—H21B 128 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···N18 0.854 (19) 2.004 (19) 2.8516 (19) 171.9 (18)
N7—H7A···O20i 0.87 (2) 2.07 (2) 2.907 (2) 160 (2)
N10—H10···N4 0.98 (2) 1.88 (2) 2.8558 (19) 175.7 (18)
N14—H14A···O6ii 0.83 (2) 2.10 (2) 2.897 (2) 162 (2)
N17—H17···N11 0.88 (2) 1.97 (2) 2.8424 (18) 179 (4)
N21—H21A···O13iii 0.80 (3) 2.10 (3) 2.878 (2) 163 (2)

Symmetry codes: (i) x+1, y−1, z; (ii) x−1, y, z+1; (iii) x, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5096).

References

  1. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Castro, A., Encinas, A., Gil, C., Brase, S., Porcal, W., Perez, C., Moreno, F. J. & Martinez, A. (2008). Bioorg. Med. Chem. 16, 495–510. [DOI] [PubMed]
  3. Cho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170–1174.
  4. Cho, N. S., Ra, C. S., Ra, D. Y., Song, J. S. & Kang, S. K. (1996). J. Heterocycl. Chem. 33, 1201–1206.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Parkanyi, C., Yuan, H. L., Cho, N. S., Jaw, J. J., Woodhouse, T. E. & Aung, T. L. (1989). J. Heterocycl. Chem. 26, 1331–1334.
  8. Ra, D. Y., Cho, N. S. & Cho, J. J. (1998). J. Heterocycl. Chem. 35, 525–530.
  9. Ra, D. Y., Cho, N. S., Moon, J. H. & Kang, S. K. (1998). J. Heterocycl. Chem. 35, 1435–1439.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812012433/is5096sup1.cif

e-68-o1198-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812012433/is5096Isup2.hkl

e-68-o1198-Isup2.hkl (164.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812012433/is5096Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES