Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):m645. doi: 10.1107/S1600536812016315

Di-μ-bromido-bis­({2-[(4,6-dimethyl­pyrimidin-2-yl)disulfan­yl]-4,6-dimethyl­pyrimidine-κ2 N 1,S 2}copper(I))

Ruthairat Nimthong a, Chaveng Pakawatchai a,*, Yupa Wattanakanjana b
PMCID: PMC3344368  PMID: 22590134

Abstract

The title dinuclear complex, [Cu2Br2(C12H14N4S2)2], is located about an inversion center. The CuI ion is coordinated in a distorted tetra­hedral geometry by two bridging Br atoms in addition to an N and an S atom from the 2-[(4,6-dimethyl­pyrimidin-2-yl)disulfan­yl]-4,6-dimethyl­pyrimidine ligand. In the crystal, π–π stacking inter­actions are observed with a centroid–centroid distance of 3.590 (2) Å.

Related literature  

For potential applications of heterocyclic thio­amides and their metal complexes, see: Battistuzzi & Peyronel (1981); Holm & Solomon (1996); Cox et al. (2006); Falcomer et al. (2006); Sevier & Kaiser (2006); Saxena et al. (2009). For related structures, see: Lemos et al. (2001); Aslanidis et al. (2004); Freeman et al. (2008).graphic file with name e-68-0m645-scheme1.jpg

Experimental  

Crystal data  

  • [Cu2Br2(C12H14N4S2)2]

  • M r = 843.68

  • Monoclinic, Inline graphic

  • a = 15.3351 (7) Å

  • b = 15.3898 (7) Å

  • c = 14.3398 (7) Å

  • β = 109.178 (1)°

  • V = 3196.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.12 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.10 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2003) T min = 0.425, T max = 0.662

  • 12339 measured reflections

  • 2732 independent reflections

  • 2344 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.077

  • S = 1.04

  • 2732 reflections

  • 181 parameters

  • 55 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016315/lh5449sup1.cif

e-68-0m645-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016315/lh5449Isup2.hkl

e-68-0m645-Isup2.hkl (134.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University.

supplementary crystallographic information

Comment

The studies of cooordination multidentate ligands such as heterocyclic thioamides, in complexes of closed-shell d10 metal ions, have been shown attention from a number of researchers (Saxena et al., 2009; Cox et al., 2006; Falcomer et al., 2006) because of their interesting biochemical properties and presence in active sites of many metalloproteins (Holm & Solomon, 1996; Battistuzzi & Peyronel, 1981). Particularly, the formation of disulfide bonds is an essential step in the folding and assembly of the extracellular domains of many membrane and secreted proteins which are important features of the structure of many proteins (Sevier & Kaiser, 2006).

The molecular structure of the title compound is shown in Fig. 1. The complex is dinuclear in which the CuI ions adopt distorted tetrahedral geometries. There is a binuclear µ,µ'-dibromobridged CuBr2Cu core. The Cu—S and Cu—N distances are similar to those reported for other thioamide containing complexes (Aslanidis et al., 2004; Lemos et al., 2001) and the disulfide bond distances is shorter than that reported in a related compound with a disulfide bond (Freeman et al., 2008). The 'bite' angle S—Cu—N angle is 90.77 (7)°. The molecule lies on a crystallographic inversion center which is at the center of the CuBr2Cu core with a Cu···Cu separation of 2.7802 (7) Å. This value is close the sum of the van der Waals radii for two Cu atoms (2.8 Å). In the crystal π–π stacking interactions with a centroid to centroid distance of 3.590 (2) Å are observed (Fig. 2). In addition, fairly short C(sp3)—H···N intermolecular distances (H···N = 2.67 Å, C(sp3)—N = 3.41 Å and C(sp3)—H···N = 134.2°) are observed (Fig. 3).

Experimental

4,6-Dimethyl-2-pyrimidinethiol, dmpymtH, (0.07 g, 0.50 mmol) was dissolved in 30 cm3 of methanol at 343-348K. CuBr (0.1 g, 0.70 mmol) was added and the mixture was stirred for 5 h. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline complex, which was deposited upon standing for several days, was filtered off and dried in vacuo (yield 75%).

Refinement

The H atoms bonded to C atoms were constrained with a riding model of C—H = 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C). The DELU instruction in SHELXL (Sheldrick, 2008) was used without any further parameters. This sets up 'rigid bond' restraints for all non-hydrogen atom. The dafault standard deviation values are 0.01 and 0.01. This appears to have little effect but it does affect the no of restraints (55) listed in the CIF.

Figures

Fig. 1.

Fig. 1.

The molecular structure with displacement ellipsoids drawn at the 50% probability level. Unlabeled atoms are related by (-x+1/2, -y+1/2, -z+1).

Fig. 2.

Fig. 2.

Part of the crystal structure with π–π stacking interactions shown as dashed lines.

Fig. 3.

Fig. 3.

Part of the crystal structure with weak C—H···N hydrogen bonds shown as dashed lines.

Crystal data

[Cu2Br2(C12H14N4S2)2] F(000) = 1680
Mr = 843.68 Dx = 1.753 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 16645 reflections
a = 15.3351 (7) Å θ = 1.9–24.7°
b = 15.3898 (7) Å µ = 4.12 mm1
c = 14.3398 (7) Å T = 293 K
β = 109.178 (1)° Plate, colorless
V = 3196.4 (3) Å3 0.21 × 0.18 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2732 independent reflections
Radiation source: fine-focus sealed tube 2344 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
φ and ω scans θmax = 24.7°, θmin = 1.9°
Absorption correction: integration (SADABS; Bruker, 2003) h = −18→18
Tmin = 0.425, Tmax = 0.662 k = −18→17
12339 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0412P)2 + 3.1838P] where P = (Fo2 + 2Fc2)/3
2732 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.37 e Å3
55 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.12116 (19) 0.06625 (19) 0.6388 (2) 0.0437 (7)
C2A 0.0939 (2) −0.0746 (2) 0.5935 (3) 0.0541 (8)
C3A 0.1153 (2) −0.0561 (2) 0.5100 (3) 0.0559 (8)
H1A 0.1118 −0.0994 0.4637 0.067*
C4A 0.1417 (2) 0.0265 (2) 0.4949 (2) 0.0491 (7)
C5A 0.0690 (3) −0.1640 (2) 0.6172 (4) 0.0806 (12)
H2A 0.0531 −0.1622 0.6766 0.097*
H4A 0.1206 −0.2022 0.6264 0.097*
H3A 0.0172 −0.1849 0.5637 0.097*
C6A 0.1667 (3) 0.0518 (3) 0.4062 (3) 0.0738 (11)
H7A 0.1835 0.1121 0.4107 0.089*
H5A 0.1147 0.0423 0.3477 0.089*
H6A 0.2178 0.0173 0.4033 0.089*
C1B 0.0927 (2) 0.3281 (2) 0.6662 (2) 0.0444 (7)
C2B 0.0657 (2) 0.4721 (2) 0.6545 (2) 0.0535 (8)
C3B −0.0270 (2) 0.4533 (2) 0.6114 (2) 0.0572 (8)
H1B −0.0700 0.4979 0.5910 0.069*
C4B −0.0549 (2) 0.3680 (2) 0.5989 (2) 0.0534 (8)
C5B 0.1020 (3) 0.5630 (2) 0.6741 (3) 0.0741 (11)
H2B 0.1679 0.5614 0.7044 0.089*
H4B 0.0749 0.5914 0.7174 0.089*
H3B 0.0866 0.5943 0.6129 0.089*
C6B −0.1546 (2) 0.3429 (3) 0.5541 (3) 0.0743 (11)
H5B −0.1599 0.2807 0.5516 0.089*
H6B −0.1787 0.3661 0.4885 0.089*
H7B −0.1890 0.3658 0.5937 0.089*
Cu1 0.20241 (3) 0.20852 (2) 0.55473 (3) 0.05128 (14)
N1A 0.09541 (17) −0.01146 (17) 0.65843 (19) 0.0522 (6)
N2A 0.14596 (16) 0.09016 (15) 0.56177 (17) 0.0420 (5)
N1B 0.12747 (18) 0.40741 (17) 0.68337 (19) 0.0515 (6)
N2B 0.00657 (18) 0.30262 (16) 0.62617 (19) 0.0491 (6)
S1A 0.12183 (7) 0.14055 (6) 0.73360 (6) 0.0591 (2)
S1B 0.18435 (6) 0.24973 (5) 0.70698 (6) 0.0506 (2)
Br1 0.13259 (2) 0.31106 (2) 0.42440 (3) 0.05795 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0383 (15) 0.0440 (16) 0.0466 (16) 0.0048 (12) 0.0110 (13) 0.0077 (13)
C2A 0.0375 (17) 0.0438 (17) 0.072 (2) −0.0002 (13) 0.0056 (15) 0.0108 (16)
C3A 0.0514 (19) 0.0434 (17) 0.066 (2) −0.0011 (14) 0.0099 (16) −0.0083 (15)
C4A 0.0506 (18) 0.0460 (17) 0.0482 (17) 0.0027 (14) 0.0127 (14) −0.0042 (14)
C5A 0.070 (3) 0.049 (2) 0.113 (3) −0.0075 (18) 0.017 (2) 0.017 (2)
C6A 0.107 (3) 0.062 (2) 0.063 (2) −0.011 (2) 0.042 (2) −0.0166 (18)
C1B 0.0487 (17) 0.0486 (17) 0.0411 (16) 0.0076 (13) 0.0216 (13) −0.0017 (13)
C2B 0.070 (2) 0.0468 (18) 0.0517 (18) 0.0055 (15) 0.0303 (16) −0.0021 (14)
C3B 0.060 (2) 0.0566 (19) 0.059 (2) 0.0166 (15) 0.0256 (16) 0.0068 (16)
C4B 0.0501 (18) 0.063 (2) 0.0504 (18) 0.0081 (15) 0.0211 (14) 0.0066 (15)
C5B 0.092 (3) 0.051 (2) 0.083 (3) 0.0023 (19) 0.034 (2) −0.0080 (19)
C6B 0.051 (2) 0.090 (3) 0.082 (3) 0.0056 (19) 0.0231 (18) 0.018 (2)
Cu1 0.0570 (3) 0.0424 (2) 0.0616 (3) 0.00037 (16) 0.0292 (2) 0.00422 (17)
N1A 0.0473 (14) 0.0483 (15) 0.0595 (16) −0.0005 (12) 0.0157 (12) 0.0126 (13)
N2A 0.0429 (13) 0.0409 (13) 0.0426 (13) −0.0011 (10) 0.0146 (10) 0.0018 (10)
N1B 0.0565 (16) 0.0476 (15) 0.0552 (15) 0.0014 (12) 0.0249 (12) −0.0074 (12)
N2B 0.0477 (15) 0.0521 (15) 0.0501 (15) 0.0017 (12) 0.0197 (12) 0.0034 (12)
S1A 0.0828 (6) 0.0531 (5) 0.0510 (5) 0.0106 (4) 0.0351 (4) 0.0078 (4)
S1B 0.0495 (4) 0.0485 (5) 0.0521 (4) 0.0070 (3) 0.0142 (3) −0.0062 (4)
Br1 0.0467 (2) 0.0548 (2) 0.0746 (3) 0.01020 (14) 0.02299 (17) 0.02122 (16)

Geometric parameters (Å, º)

C1A—N1A 1.319 (4) C2B—C3B 1.381 (5)
C1A—N2A 1.332 (4) C2B—C5B 1.498 (5)
C1A—S1A 1.774 (3) C3B—C4B 1.375 (5)
C2A—N1A 1.341 (4) C3B—H1B 0.9300
C2A—C3A 1.371 (5) C4B—N2B 1.346 (4)
C2A—C5A 1.496 (4) C4B—C6B 1.501 (5)
C3A—C4A 1.372 (4) C5B—H2B 0.9600
C3A—H1A 0.9300 C5B—H4B 0.9600
C4A—N2A 1.358 (4) C5B—H3B 0.9600
C4A—C6A 1.495 (5) C6B—H5B 0.9600
C5A—H2A 0.9600 C6B—H6B 0.9600
C5A—H4A 0.9600 C6B—H7B 0.9600
C5A—H3A 0.9600 Cu1—N2A 2.033 (2)
C6A—H7A 0.9600 Cu1—S1B 2.3754 (9)
C6A—H5A 0.9600 Cu1—Br1 2.4114 (5)
C6A—H6A 0.9600 Cu1—Br1i 2.4669 (5)
C1B—N2B 1.315 (4) Cu1—Cu1i 2.7801 (7)
C1B—N1B 1.323 (4) S1A—S1B 2.0318 (13)
C1B—S1B 1.798 (3) Br1—Cu1i 2.4668 (5)
C2B—N1B 1.342 (4)
N1A—C1A—N2A 127.9 (3) C3B—C4B—C6B 122.1 (3)
N1A—C1A—S1A 110.3 (2) C2B—C5B—H2B 109.5
N2A—C1A—S1A 121.7 (2) C2B—C5B—H4B 109.5
N1A—C2A—C3A 120.0 (3) H2B—C5B—H4B 109.5
N1A—C2A—C5A 117.2 (3) C2B—C5B—H3B 109.5
C3A—C2A—C5A 122.8 (3) H2B—C5B—H3B 109.5
C2A—C3A—C4A 119.9 (3) H4B—C5B—H3B 109.5
C2A—C3A—H1A 120.0 C4B—C6B—H5B 109.5
C4A—C3A—H1A 120.0 C4B—C6B—H6B 109.5
N2A—C4A—C3A 120.3 (3) H5B—C6B—H6B 109.5
N2A—C4A—C6A 116.5 (3) C4B—C6B—H7B 109.5
C3A—C4A—C6A 123.2 (3) H5B—C6B—H7B 109.5
C2A—C5A—H2A 109.5 H6B—C6B—H7B 109.5
C2A—C5A—H4A 109.5 N2A—Cu1—S1B 90.77 (7)
H2A—C5A—H4A 109.5 N2A—Cu1—Br1 122.47 (7)
C2A—C5A—H3A 109.5 S1B—Cu1—Br1 112.43 (3)
H2A—C5A—H3A 109.5 N2A—Cu1—Br1i 108.72 (7)
H4A—C5A—H3A 109.5 S1B—Cu1—Br1i 110.22 (3)
C4A—C6A—H7A 109.5 Br1—Cu1—Br1i 110.523 (16)
C4A—C6A—H5A 109.5 N2A—Cu1—Cu1i 138.63 (7)
H7A—C6A—H5A 109.5 S1B—Cu1—Cu1i 129.62 (3)
C4A—C6A—H6A 109.5 Br1—Cu1—Cu1i 56.200 (16)
H7A—C6A—H6A 109.5 Br1i—Cu1—Cu1i 54.323 (15)
H5A—C6A—H6A 109.5 C1A—N1A—C2A 116.6 (3)
N2B—C1B—N1B 129.9 (3) C1A—N2A—C4A 115.2 (3)
N2B—C1B—S1B 120.5 (2) C1A—N2A—Cu1 122.05 (19)
N1B—C1B—S1B 109.5 (2) C4A—N2A—Cu1 122.3 (2)
N1B—C2B—C3B 120.1 (3) C1B—N1B—C2B 115.2 (3)
N1B—C2B—C5B 116.9 (3) C1B—N2B—C4B 114.3 (3)
C3B—C2B—C5B 123.0 (3) C1A—S1A—S1B 105.86 (11)
C4B—C3B—C2B 119.3 (3) C1B—S1B—S1A 104.42 (11)
C4B—C3B—H1B 120.4 C1B—S1B—Cu1 101.24 (10)
C2B—C3B—H1B 120.4 S1A—S1B—Cu1 99.01 (4)
N2B—C4B—C3B 121.2 (3) Cu1—Br1—Cu1i 69.476 (16)
N2B—C4B—C6B 116.7 (3)

Symmetry code: (i) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5449).

References

  1. Aslanidis, P., Cox, P. J., Divanidis, S. & Karagiannidis, P. (2004). Inorg. Chim. Acta, 357, 4231–4239.
  2. Battistuzzi, R. & Peyronel, G. (1981). Can. J. Chem. 59, 591–596.
  3. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cox, P. J., Kaltzoglou, A. & Aslanidis, P. (2006). Inorg. Chim. Acta, 359, 3183–3190.
  6. Falcomer, V. A. S., Lemos, S. S., Batista, A. A., Ellena, A. & Castellano, E. E. (2006). Inorg. Chim. Acta, 359, 1064–1070.
  7. Freeman, F., Po, H. N., Ho, T. S. & Wang, X. (2008). J. Phys. Chem. A, 112, 1643–1655. [DOI] [PubMed]
  8. Holm, R. H. & Solomon, E. J. (1996). Chem. Rev. 96, 2239–2341. [DOI] [PubMed]
  9. Lemos, S. S., Camargo, M. A., Cadoso, Z. Z., Deflon, V. M., Försterling, F. H. & Hagenbach, A. (2001). Polyhedron, 20, 849–854.
  10. Saxena, A., Dugan, E. C., Liaw, J., Dembo, M. D. & Pike, R. D. (2009). Polyhedron, 28, 4017–4031.
  11. Sevier, C. S. & Kaiser, C. A. (2006). Antioxid. Redox Signal. 8, 797–811. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016315/lh5449sup1.cif

e-68-0m645-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016315/lh5449Isup2.hkl

e-68-0m645-Isup2.hkl (134.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES