Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1481. doi: 10.1107/S1600536812016509

2,4,6,8-Tetra­kis(4-chloro­phen­yl)-3,7-diaza­bicyclo­[3.3.1]nonan-9-one O-benzyl­oxime acetone monosolvate

Dong Ho Park a, V Ramkumar b, P Parthiban a,*
PMCID: PMC3344591  PMID: 22590353

Abstract

In the title compound, C38H31Cl4N3O·C3H6O, the 3,7-diaza-bicycle exists in a chair–boat conformation. The 4-chloro­phenyl groups attached to the chair form are equatorially oriented at an angle of 18.15 (3)° with respect to each other, whereas the 4-chloro­phenyl groups attached to the boat form are oriented at an angle of 32.64 (3)°. In the crystal, mol­ecules are linked by N—H⋯π and C—H⋯O inter­actions.

Related literature  

For the synthesis and stereochemistry of 3,7-diaza­bicyclo­[3.3.1]nonan-9-one derivatives, see: Parthiban et al. (2008). For the biological activity of 3,7-diaza­bicyclo­[3.3.1]nonan-9-one derivatives and related structures, see: Parthiban et al. (2009, 2010); Asakawa (1995); Jayaraman & Avila (1981). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983); Luger & Bülow (1983).graphic file with name e-68-o1481-scheme1.jpg

Experimental  

Crystal data  

  • C38H31Cl4N3O·C3H6O

  • M r = 745.54

  • Monoclinic, Inline graphic

  • a = 14.9237 (5) Å

  • b = 10.5064 (3) Å

  • c = 24.6015 (7) Å

  • β = 93.116 (1)°

  • V = 3851.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.16 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.934, T max = 0.947

  • 35931 measured reflections

  • 7173 independent reflections

  • 4263 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.188

  • S = 1.03

  • 7173 reflections

  • 475 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812016509/hb6689sup1.cif

e-68-o1481-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016509/hb6689Isup2.hkl

e-68-o1481-Isup2.hkl (343.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016509/hb6689Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2 0.93 2.52 3.441 (6) 172
N2—H2ACg3i 0.88 (3) 2.85 (3) 3.637 (3) 150 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the National Research Foundation (NRF) of Korea.

supplementary crystallographic information

Comment

The 3,7-diazabicyclo[3.3.1] nonan-9-one nucleus is widely present in Lupin alkaloids and are displaying various biological actions (Parthiban et al., 2009, 2010, Asakawa, 1995, Jayaraman & Avila, 1981). In fact, the biological activities mainly depends on the nature of the substituents and their positions on the nucleus. Since C=N—O-R is an important class of pharmacophore by displaying biological actions, we have synthesized the title molcule by the condensation of 3,7-diazabicyclo[3.3.1]nonan-9-one and O-benzyl moiety to make the biologically potent oxime derivative. Because the biological actions mainly depend on the stereochemistry of the molecule, we undertaken the title molecule for the present study to explore its stereochemistry.

The crystallographic parameters viz., torsion angles, asymmetry parameters and ring puckering parameters calculated for the title compound shows that one of the piperidone rings, N(1)—C(1)—C(2)—C(7)—C(5)—C(6) adopts a near ideal chair conformation, according to Cremer & Pople and Nardelli. The total puckering amplitude, QT is 0.606 (3) Å, the phase angle θ is 2.7 (3)° and phi is 261 (6)° (Cremer & Pople, 1975). The smallest displacement asymmetry parameters q2 and q3 are 0.031 (3) and 0.605 (3) Å, respectively (Nardelli, 1983). On the otherhand, another piperidone ring N(2)—C(3)—C(2)—C(7)—C(5)—C(4) exists in the boat conformation according to C&P by QT = 0.764 (3), θ = 91.9 (2)° and phi = 357.0 (3)° as well as Nardelli by q2 = 0.764 (3) and q3 = -0.025 (3)°.

An equatorial orientation of the 4-chlorophenyl groups attached on the chair form piperidone is supported by the angles of C(1)—C(8) and C(6)—C(26) on the C&P plane normal as 70.85 (19) and 75.04 (19)°, respectively (Luger & Bülow, 1983). The equatorial orientations of the aryl groups are further supported by thier torsion angles; the C8—C1—C2—C7 is 178.4 (3)° and C26—C6—C5—C7 is 177.0 (3)°. The 4-chlorophenyl groups attached on the boat form of the piperidone have angles with C&P plane normal are C(3)—C(14) = 57.34 (19)° and C(4)—C(20) = 61.70 (19)°, they are respectively in bisectional and equatorial orientations according to Luger & Bulow. In fact, both lies on the boundary of bisectional and this is further supported by their torsion angles as follows: C7—C2—C3—C14 = 115.5 (3)° and C20—C4—C5—C7 = -121.6 (3)°.

The 4-chlorophenyl groups attached on the chair form are equatorially oriented at an angle of 18.15°, respect to each other, whereas, the 4-chlorophenyl groups attached to the boat form are oriented at an angle of 32.64° between them.

Based on the above analysis, it is clear that the title compound exists in the chair-boat conformation with an equatorial orientation of the 4-chlorophenyl groups on both sides of the secondary amino group of the piperidone in the chair conformation.

The crystal packing is stabilized by weak intermolecular N—H···π (C14—C19) and C—H···O interactions.

Experimental

The 2,4,6,8-tetrakis(4-chlorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one was synthesized by a modified Mannich condensation in one-pot, using 4-chlorobenzaldehyde (0.2 mol, 28.12 g), acetone (0.05 mol, 3.7 ml) and ammonium acetate (0.1 mol, 7.7 g) in a 50 ml of absolute ethanol (Parthiban et al., 2008). The mixture was gently warmed on a hot plate at 303 K (30° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude 3,7-diazabicycle was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. The pure 2,4,6,8-tetrakis(4-chlorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one (0.01 mol, 5.823 g) was condensed with O-benzylhydroxylamine hydrochloride (0.012 mol, 1.915 g) using sodium acetate trihydrate (0.03 mol, 3.06 g) as base in ethanol-chloroform 1:1 mixture to obtain the title oxime ether. Colourless prisms were obtained by slow evaporation of an acetone solution.

Refinement

The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids (H atoms are removed for clarity).

Crystal data

C38H31Cl4N3O·C3H6O F(000) = 1552
Mr = 745.54 Dx = 1.286 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6628 reflections
a = 14.9237 (5) Å θ = 1.6–25.0°
b = 10.5064 (3) Å µ = 0.35 mm1
c = 24.6015 (7) Å T = 293 K
β = 93.116 (1)° Prism, colourless
V = 3851.7 (2) Å3 0.20 × 0.16 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 7173 independent reflections
Radiation source: fine-focus sealed tube 4263 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
ω and φ scan θmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −18→18
Tmin = 0.934, Tmax = 0.947 k = −12→8
35931 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0699P)2 + 3.3824P] where P = (Fo2 + 2Fc2)/3
7173 reflections (Δ/σ)max = 0.005
475 parameters Δρmax = 0.89 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2859 (2) 0.4608 (3) 0.27681 (13) 0.0522 (8)
C2 0.2691 (2) 0.3992 (3) 0.33290 (12) 0.0485 (7)
H2 0.2124 0.4308 0.3460 0.058*
C3 0.2670 (2) 0.2506 (3) 0.33063 (13) 0.0482 (7)
C4 0.4313 (2) 0.2457 (3) 0.34865 (14) 0.0484 (7)
C5 0.4330 (2) 0.3935 (3) 0.35421 (12) 0.0495 (7)
H5 0.4803 0.4192 0.3812 0.059*
C6 0.4467 (2) 0.4608 (3) 0.29906 (13) 0.0537 (8)
C7 0.3440 (2) 0.4355 (3) 0.37191 (12) 0.0505 (8)
C8 0.2128 (2) 0.4241 (3) 0.23443 (12) 0.0500 (8)
C9 0.2286 (2) 0.3441 (3) 0.19141 (13) 0.0576 (8)
H9 0.2865 0.3149 0.1868 0.069*
C10 0.1592 (2) 0.3064 (3) 0.15477 (14) 0.0627 (9)
H10 0.1704 0.2531 0.1257 0.075*
C11 0.0742 (2) 0.3494 (4) 0.16243 (14) 0.0602 (9)
C12 0.0572 (2) 0.4299 (4) 0.20424 (14) 0.0640 (9)
H12 −0.0008 0.4592 0.2085 0.077*
C13 0.1257 (2) 0.4674 (3) 0.23989 (14) 0.0603 (9)
H13 0.1139 0.5226 0.2682 0.072*
C14 0.1801 (2) 0.2023 (3) 0.35236 (13) 0.0499 (7)
C15 0.1040 (2) 0.1871 (3) 0.31863 (14) 0.0596 (9)
H15 0.1071 0.2026 0.2816 0.072*
C16 0.0231 (2) 0.1492 (4) 0.33852 (17) 0.0721 (10)
H16 −0.0278 0.1408 0.3153 0.086*
C17 0.0193 (2) 0.1245 (4) 0.39275 (18) 0.0756 (11)
C18 0.0929 (3) 0.1397 (4) 0.42751 (16) 0.0820 (12)
H18 0.0891 0.1241 0.4645 0.098*
C19 0.1732 (2) 0.1785 (4) 0.40740 (14) 0.0676 (10)
H19 0.2233 0.1889 0.4312 0.081*
C20 0.5042 (2) 0.1854 (3) 0.38518 (13) 0.0513 (8)
C21 0.4914 (2) 0.1632 (3) 0.43962 (14) 0.0597 (9)
H21 0.4358 0.1804 0.4534 0.072*
C22 0.5599 (3) 0.1161 (4) 0.47385 (15) 0.0685 (10)
H22 0.5511 0.1033 0.5106 0.082*
C23 0.6403 (2) 0.0886 (4) 0.45328 (17) 0.0688 (10)
C24 0.6552 (2) 0.1077 (4) 0.39992 (17) 0.0744 (11)
H24 0.7105 0.0878 0.3865 0.089*
C25 0.5870 (2) 0.1571 (4) 0.36575 (15) 0.0645 (9)
H25 0.5972 0.1715 0.3293 0.077*
C26 0.5374 (2) 0.4319 (3) 0.27753 (13) 0.0559 (8)
C27 0.6118 (3) 0.4936 (4) 0.29977 (17) 0.0784 (11)
H27 0.6051 0.5533 0.3271 0.094*
C28 0.6954 (3) 0.4685 (5) 0.2823 (2) 0.0986 (15)
H28 0.7454 0.5104 0.2978 0.118*
C29 0.7049 (3) 0.3807 (5) 0.2415 (2) 0.0927 (14)
C30 0.6326 (3) 0.3186 (5) 0.21902 (17) 0.0860 (13)
H30 0.6395 0.2587 0.1917 0.103*
C31 0.5497 (3) 0.3444 (4) 0.23664 (15) 0.0698 (10)
H31 0.5001 0.3021 0.2208 0.084*
C32 0.3717 (4) 0.5788 (5) 0.49734 (18) 0.1062 (16)
H32A 0.3446 0.6590 0.4858 0.127*
H32B 0.4242 0.5979 0.5208 0.127*
C33 0.3056 (4) 0.5049 (6) 0.52925 (17) 0.0944 (14)
C34 0.2425 (5) 0.5741 (8) 0.5549 (2) 0.136 (2)
H34 0.2418 0.6624 0.5522 0.163*
C35 0.1807 (6) 0.5133 (14) 0.5844 (4) 0.194 (5)
H35 0.1375 0.5612 0.6010 0.233*
C36 0.1804 (9) 0.3853 (15) 0.5902 (4) 0.198 (6)
H36 0.1380 0.3457 0.6107 0.238*
C37 0.2455 (9) 0.3128 (11) 0.5645 (4) 0.198 (5)
H37 0.2464 0.2245 0.5671 0.238*
C38 0.3095 (5) 0.3786 (6) 0.5345 (2) 0.1211 (19)
H38 0.3545 0.3334 0.5183 0.145*
C39 0.0817 (4) 0.6394 (6) 0.4002 (2) 0.1086 (17)
C40 0.0896 (7) 0.7529 (8) 0.4329 (3) 0.213 (4)
H40A 0.0921 0.8260 0.4096 0.320*
H40B 0.1433 0.7486 0.4561 0.320*
H40C 0.0385 0.7598 0.4548 0.320*
C41 0.0762 (4) 0.5122 (7) 0.4283 (3) 0.142 (2)
H41A 0.0714 0.4458 0.4015 0.213*
H41B 0.0245 0.5106 0.4498 0.213*
H41C 0.1293 0.4993 0.4514 0.213*
N1 0.37419 (18) 0.4222 (3) 0.26073 (11) 0.0534 (7)
N2 0.34337 (17) 0.2004 (3) 0.36383 (11) 0.0519 (7)
N3 0.3236 (2) 0.4941 (3) 0.41573 (12) 0.0745 (9)
O1 0.39933 (19) 0.5102 (3) 0.44974 (12) 0.0930 (9)
O2 0.0791 (4) 0.6448 (5) 0.35250 (17) 0.1589 (19)
Cl1 −0.01371 (7) 0.29806 (12) 0.11818 (4) 0.0871 (4)
Cl2 −0.08182 (8) 0.07631 (17) 0.41840 (6) 0.1228 (5)
Cl3 0.72648 (8) 0.03096 (14) 0.49745 (6) 0.1128 (5)
Cl4 0.81177 (10) 0.3490 (2) 0.21892 (8) 0.1549 (7)
H1 0.286 (2) 0.557 (3) 0.2824 (12) 0.060 (9)*
H1A 0.386 (2) 0.453 (3) 0.2293 (14) 0.060 (10)*
H2A 0.343 (2) 0.117 (3) 0.3623 (13) 0.059 (10)*
H3 0.2687 (19) 0.225 (3) 0.2914 (13) 0.050 (8)*
H4 0.4428 (18) 0.225 (3) 0.3110 (12) 0.042 (8)*
H6 0.4450 (19) 0.551 (3) 0.3059 (12) 0.049 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.060 (2) 0.0453 (19) 0.0517 (19) 0.0018 (16) 0.0036 (15) 0.0040 (15)
C2 0.0522 (18) 0.0474 (18) 0.0463 (17) 0.0051 (15) 0.0063 (14) 0.0020 (14)
C3 0.0505 (18) 0.0478 (18) 0.0461 (18) 0.0029 (15) 0.0002 (14) 0.0030 (14)
C4 0.0481 (18) 0.0472 (18) 0.0501 (19) 0.0000 (15) 0.0030 (14) −0.0009 (15)
C5 0.0553 (19) 0.0464 (18) 0.0464 (17) −0.0041 (15) −0.0011 (14) −0.0015 (14)
C6 0.061 (2) 0.048 (2) 0.0523 (19) −0.0040 (16) 0.0021 (16) 0.0021 (15)
C7 0.066 (2) 0.0440 (18) 0.0410 (17) 0.0014 (15) 0.0035 (15) 0.0010 (14)
C8 0.0557 (19) 0.0471 (18) 0.0470 (17) 0.0019 (15) 0.0010 (14) 0.0087 (14)
C9 0.057 (2) 0.063 (2) 0.0536 (19) 0.0061 (17) 0.0057 (16) 0.0036 (17)
C10 0.068 (2) 0.067 (2) 0.0526 (19) 0.0004 (19) 0.0006 (17) −0.0006 (17)
C11 0.059 (2) 0.068 (2) 0.052 (2) −0.0034 (18) −0.0042 (16) 0.0173 (17)
C12 0.053 (2) 0.074 (2) 0.065 (2) 0.0100 (18) 0.0030 (17) 0.0140 (19)
C13 0.064 (2) 0.061 (2) 0.056 (2) 0.0126 (18) 0.0047 (17) 0.0060 (16)
C14 0.0512 (18) 0.0451 (17) 0.0533 (18) 0.0049 (14) 0.0008 (14) 0.0026 (14)
C15 0.059 (2) 0.063 (2) 0.0567 (19) 0.0010 (17) −0.0018 (16) −0.0045 (17)
C16 0.052 (2) 0.080 (3) 0.083 (3) −0.0030 (19) −0.0057 (19) −0.008 (2)
C17 0.052 (2) 0.085 (3) 0.091 (3) −0.004 (2) 0.011 (2) 0.010 (2)
C18 0.064 (2) 0.114 (4) 0.068 (2) −0.002 (2) 0.010 (2) 0.029 (2)
C19 0.052 (2) 0.090 (3) 0.060 (2) −0.0023 (19) −0.0036 (16) 0.0198 (19)
C20 0.0519 (19) 0.0467 (18) 0.0549 (19) −0.0043 (15) −0.0009 (15) 0.0033 (15)
C21 0.056 (2) 0.062 (2) 0.061 (2) 0.0026 (17) 0.0039 (16) 0.0051 (17)
C22 0.069 (2) 0.073 (2) 0.062 (2) −0.009 (2) −0.0059 (19) 0.0179 (19)
C23 0.053 (2) 0.067 (2) 0.084 (3) −0.0034 (18) −0.0143 (19) 0.022 (2)
C24 0.049 (2) 0.087 (3) 0.086 (3) 0.0041 (19) −0.0024 (19) 0.008 (2)
C25 0.054 (2) 0.077 (2) 0.063 (2) 0.0012 (18) 0.0042 (17) 0.0065 (18)
C26 0.058 (2) 0.058 (2) 0.0521 (19) −0.0079 (17) 0.0031 (15) 0.0050 (16)
C27 0.063 (2) 0.082 (3) 0.091 (3) −0.016 (2) 0.009 (2) −0.016 (2)
C28 0.066 (3) 0.111 (4) 0.119 (4) −0.026 (3) 0.008 (3) −0.014 (3)
C29 0.069 (3) 0.112 (4) 0.100 (3) −0.008 (3) 0.028 (2) 0.000 (3)
C30 0.080 (3) 0.101 (3) 0.080 (3) −0.006 (3) 0.023 (2) −0.022 (2)
C31 0.064 (2) 0.085 (3) 0.060 (2) −0.010 (2) 0.0076 (18) −0.010 (2)
C32 0.141 (5) 0.107 (4) 0.071 (3) −0.015 (3) 0.002 (3) −0.039 (3)
C33 0.118 (4) 0.111 (4) 0.053 (2) 0.005 (3) −0.004 (3) −0.016 (3)
C34 0.138 (5) 0.175 (7) 0.094 (4) 0.021 (5) 0.004 (4) −0.004 (4)
C35 0.111 (6) 0.358 (17) 0.116 (6) −0.002 (8) 0.022 (4) 0.019 (9)
C36 0.222 (12) 0.281 (17) 0.090 (6) −0.079 (11) −0.007 (6) 0.065 (8)
C37 0.296 (15) 0.192 (10) 0.102 (6) −0.072 (10) −0.037 (7) 0.038 (6)
C38 0.171 (6) 0.104 (5) 0.087 (4) −0.008 (4) −0.010 (4) 0.011 (3)
C39 0.116 (4) 0.124 (5) 0.086 (4) 0.021 (3) 0.013 (3) −0.010 (3)
C40 0.314 (12) 0.155 (7) 0.170 (7) 0.005 (7) −0.010 (7) −0.062 (6)
C41 0.126 (5) 0.164 (6) 0.138 (5) 0.017 (4) 0.038 (4) 0.031 (5)
N1 0.0511 (16) 0.0626 (18) 0.0465 (16) −0.0030 (13) 0.0039 (13) 0.0057 (14)
N2 0.0484 (16) 0.0447 (17) 0.0623 (17) 0.0005 (13) 0.0006 (12) 0.0088 (13)
N3 0.090 (2) 0.072 (2) 0.0593 (18) −0.0117 (18) −0.0146 (17) 0.0008 (16)
O1 0.0775 (19) 0.116 (2) 0.0848 (19) −0.0107 (17) 0.0013 (15) −0.0291 (17)
O2 0.234 (5) 0.156 (4) 0.087 (3) 0.043 (4) 0.015 (3) 0.002 (3)
Cl1 0.0746 (7) 0.1043 (8) 0.0801 (7) −0.0127 (6) −0.0181 (5) 0.0094 (6)
Cl2 0.0633 (7) 0.1634 (14) 0.1442 (12) −0.0164 (8) 0.0286 (7) 0.0234 (10)
Cl3 0.0765 (8) 0.1344 (11) 0.1236 (10) 0.0078 (7) −0.0308 (7) 0.0487 (8)
Cl4 0.0784 (9) 0.1845 (17) 0.2077 (18) −0.0109 (10) 0.0618 (10) −0.0301 (14)

Geometric parameters (Å, º)

C1—N1 1.454 (4) C21—H21 0.9300
C1—C8 1.517 (4) C22—C23 1.358 (5)
C1—C2 1.557 (4) C22—H22 0.9300
C1—H1 1.02 (3) C23—C24 1.358 (5)
C2—C7 1.482 (4) C23—Cl3 1.746 (3)
C2—C3 1.562 (4) C24—C25 1.385 (5)
C2—H2 0.9800 C24—H24 0.9300
C3—N2 1.465 (4) C25—H25 0.9300
C3—C14 1.516 (4) C26—C27 1.373 (5)
C3—H3 1.00 (3) C26—C31 1.383 (5)
C4—N2 1.463 (4) C27—C28 1.368 (6)
C4—C20 1.513 (4) C27—H27 0.9300
C4—C5 1.558 (4) C28—C29 1.375 (6)
C4—H4 0.98 (3) C28—H28 0.9300
C5—C7 1.488 (4) C29—C30 1.354 (6)
C5—C6 1.553 (4) C29—Cl4 1.750 (4)
C5—H5 0.9800 C30—C31 1.360 (5)
C6—N1 1.454 (4) C30—H30 0.9300
C6—C26 1.510 (5) C31—H31 0.9300
C6—H6 0.97 (3) C32—O1 1.454 (5)
C7—N3 1.292 (4) C32—C33 1.508 (7)
C8—C9 1.382 (4) C32—H32A 0.9700
C8—C13 1.391 (4) C32—H32B 0.9700
C9—C10 1.393 (5) C33—C38 1.334 (7)
C9—H9 0.9300 C33—C34 1.371 (8)
C10—C11 1.369 (5) C34—C35 1.363 (11)
C10—H10 0.9300 C34—H34 0.9300
C11—C12 1.366 (5) C35—C36 1.353 (15)
C11—Cl1 1.744 (4) C35—H35 0.9300
C12—C13 1.369 (5) C36—C37 1.410 (14)
C12—H12 0.9300 C36—H36 0.9300
C13—H13 0.9300 C37—C38 1.418 (11)
C14—C15 1.379 (4) C37—H37 0.9300
C14—C19 1.386 (5) C38—H38 0.9300
C15—C16 1.386 (5) C39—O2 1.173 (6)
C15—H15 0.9300 C39—C40 1.441 (9)
C16—C17 1.363 (5) C39—C41 1.509 (8)
C16—H16 0.9300 C40—H40A 0.9600
C17—C18 1.364 (5) C40—H40B 0.9600
C17—Cl2 1.743 (4) C40—H40C 0.9600
C18—C19 1.382 (5) C41—H41A 0.9600
C18—H18 0.9300 C41—H41B 0.9600
C19—H19 0.9300 C41—H41C 0.9600
C20—C25 1.382 (5) N1—H1A 0.86 (3)
C20—C21 1.383 (5) N2—H2A 0.88 (4)
C21—C22 1.381 (5) N3—O1 1.380 (4)
N1—C1—C8 111.7 (3) C22—C21—H21 119.5
N1—C1—C2 108.5 (3) C20—C21—H21 119.5
C8—C1—C2 111.0 (3) C23—C22—C21 119.3 (3)
N1—C1—H1 108.4 (18) C23—C22—H22 120.4
C8—C1—H1 110.1 (18) C21—C22—H22 120.4
C2—C1—H1 106.9 (18) C24—C23—C22 121.5 (3)
C7—C2—C1 108.3 (3) C24—C23—Cl3 119.9 (3)
C7—C2—C3 107.1 (2) C22—C23—Cl3 118.5 (3)
C1—C2—C3 112.8 (3) C23—C24—C25 119.3 (4)
C7—C2—H2 109.5 C23—C24—H24 120.4
C1—C2—H2 109.5 C25—C24—H24 120.4
C3—C2—H2 109.5 C20—C25—C24 120.8 (3)
N2—C3—C14 109.7 (3) C20—C25—H25 119.6
N2—C3—C2 109.1 (3) C24—C25—H25 119.6
C14—C3—C2 109.8 (3) C27—C26—C31 117.8 (3)
N2—C3—H3 112.2 (17) C27—C26—C6 119.1 (3)
C14—C3—H3 108.4 (17) C31—C26—C6 123.1 (3)
C2—C3—H3 107.7 (17) C28—C27—C26 121.1 (4)
N2—C4—C20 109.8 (3) C28—C27—H27 119.5
N2—C4—C5 108.3 (3) C26—C27—H27 119.5
C20—C4—C5 110.9 (3) C27—C28—C29 119.3 (4)
N2—C4—H4 112.1 (17) C27—C28—H28 120.3
C20—C4—H4 108.2 (16) C29—C28—H28 120.3
C5—C4—H4 107.6 (17) C30—C29—C28 120.7 (4)
C7—C5—C6 106.4 (3) C30—C29—Cl4 119.9 (4)
C7—C5—C4 108.1 (3) C28—C29—Cl4 119.4 (4)
C6—C5—C4 112.3 (3) C29—C30—C31 119.5 (4)
C7—C5—H5 110.0 C29—C30—H30 120.3
C6—C5—H5 110.0 C31—C30—H30 120.3
C4—C5—H5 110.0 C30—C31—C26 121.6 (4)
N1—C6—C26 111.5 (3) C30—C31—H31 119.2
N1—C6—C5 108.1 (3) C26—C31—H31 119.2
C26—C6—C5 112.2 (3) O1—C32—C33 112.7 (4)
N1—C6—H6 111.3 (18) O1—C32—H32A 109.0
C26—C6—H6 106.9 (18) C33—C32—H32A 109.0
C5—C6—H6 106.8 (18) O1—C32—H32B 109.0
N3—C7—C2 117.4 (3) C33—C32—H32B 109.0
N3—C7—C5 129.8 (3) H32A—C32—H32B 107.8
C2—C7—C5 112.8 (3) C38—C33—C34 120.7 (6)
C9—C8—C13 118.1 (3) C38—C33—C32 122.4 (6)
C9—C8—C1 122.4 (3) C34—C33—C32 116.8 (6)
C13—C8—C1 119.4 (3) C35—C34—C33 119.9 (9)
C8—C9—C10 121.2 (3) C35—C34—H34 120.1
C8—C9—H9 119.4 C33—C34—H34 120.1
C10—C9—H9 119.4 C36—C35—C34 121.9 (11)
C11—C10—C9 118.6 (3) C36—C35—H35 119.1
C11—C10—H10 120.7 C34—C35—H35 119.1
C9—C10—H10 120.7 C35—C36—C37 118.9 (12)
C12—C11—C10 121.3 (3) C35—C36—H36 120.5
C12—C11—Cl1 119.8 (3) C37—C36—H36 120.5
C10—C11—Cl1 118.9 (3) C36—C37—C38 118.0 (11)
C11—C12—C13 119.8 (3) C36—C37—H37 121.0
C11—C12—H12 120.1 C38—C37—H37 121.0
C13—C12—H12 120.1 C33—C38—C37 120.6 (8)
C12—C13—C8 120.9 (3) C33—C38—H38 119.7
C12—C13—H13 119.5 C37—C38—H38 119.7
C8—C13—H13 119.5 O2—C39—C40 121.1 (7)
C15—C14—C19 117.6 (3) O2—C39—C41 120.1 (6)
C15—C14—C3 121.2 (3) C40—C39—C41 118.8 (6)
C19—C14—C3 121.1 (3) C39—C40—H40A 109.5
C14—C15—C16 121.7 (3) C39—C40—H40B 109.5
C14—C15—H15 119.1 H40A—C40—H40B 109.5
C16—C15—H15 119.1 C39—C40—H40C 109.5
C17—C16—C15 118.9 (3) H40A—C40—H40C 109.5
C17—C16—H16 120.5 H40B—C40—H40C 109.5
C15—C16—H16 120.5 C39—C41—H41A 109.5
C16—C17—C18 121.1 (4) C39—C41—H41B 109.5
C16—C17—Cl2 119.5 (3) H41A—C41—H41B 109.5
C18—C17—Cl2 119.4 (3) C39—C41—H41C 109.5
C17—C18—C19 119.6 (4) H41A—C41—H41C 109.5
C17—C18—H18 120.2 H41B—C41—H41C 109.5
C19—C18—H18 120.2 C1—N1—C6 113.5 (3)
C18—C19—C14 121.0 (3) C1—N1—H1A 112 (2)
C18—C19—H19 119.5 C6—N1—H1A 107 (2)
C14—C19—H19 119.5 C4—N2—C3 114.9 (3)
C25—C20—C21 118.2 (3) C4—N2—H2A 109 (2)
C25—C20—C4 120.9 (3) C3—N2—H2A 109 (2)
C21—C20—C4 120.8 (3) C7—N3—O1 110.0 (3)
C22—C21—C20 120.9 (3) N3—O1—C32 106.9 (3)
N1—C1—C2—C7 55.2 (3) C3—C14—C19—C18 177.2 (4)
C8—C1—C2—C7 178.4 (3) N2—C4—C20—C25 146.8 (3)
N1—C1—C2—C3 −63.2 (3) C5—C4—C20—C25 −93.6 (4)
C8—C1—C2—C3 60.0 (3) N2—C4—C20—C21 −36.6 (4)
C7—C2—C3—N2 −4.7 (3) C5—C4—C20—C21 83.0 (4)
C1—C2—C3—N2 114.4 (3) C25—C20—C21—C22 1.0 (5)
C7—C2—C3—C14 115.5 (3) C4—C20—C21—C22 −175.6 (3)
C1—C2—C3—C14 −125.4 (3) C20—C21—C22—C23 −1.5 (6)
N2—C4—C5—C7 −1.1 (3) C21—C22—C23—C24 0.7 (6)
C20—C4—C5—C7 −121.6 (3) C21—C22—C23—Cl3 179.2 (3)
N2—C4—C5—C6 −118.2 (3) C22—C23—C24—C25 0.4 (6)
C20—C4—C5—C6 121.4 (3) Cl3—C23—C24—C25 −178.0 (3)
C7—C5—C6—N1 −59.7 (3) C21—C20—C25—C24 0.1 (5)
C4—C5—C6—N1 58.4 (3) C4—C20—C25—C24 176.8 (3)
C7—C5—C6—C26 177.0 (3) C23—C24—C25—C20 −0.9 (6)
C4—C5—C6—C26 −65.0 (4) N1—C6—C26—C27 161.1 (3)
C1—C2—C7—N3 122.5 (3) C5—C6—C26—C27 −77.5 (4)
C3—C2—C7—N3 −115.5 (3) N1—C6—C26—C31 −19.9 (5)
C1—C2—C7—C5 −59.2 (3) C5—C6—C26—C31 101.6 (4)
C3—C2—C7—C5 62.7 (3) C31—C26—C27—C28 −0.5 (6)
C6—C5—C7—N3 −121.0 (4) C6—C26—C27—C28 178.7 (4)
C4—C5—C7—N3 118.3 (4) C26—C27—C28—C29 0.5 (7)
C6—C5—C7—C2 61.1 (3) C27—C28—C29—C30 −0.5 (8)
C4—C5—C7—C2 −59.7 (3) C27—C28—C29—Cl4 179.7 (4)
N1—C1—C8—C9 10.8 (4) C28—C29—C30—C31 0.6 (8)
C2—C1—C8—C9 −110.5 (3) Cl4—C29—C30—C31 −179.7 (4)
N1—C1—C8—C13 −172.1 (3) C29—C30—C31—C26 −0.7 (7)
C2—C1—C8—C13 66.6 (4) C27—C26—C31—C30 0.6 (6)
C13—C8—C9—C10 −0.7 (5) C6—C26—C31—C30 −178.5 (4)
C1—C8—C9—C10 176.4 (3) O1—C32—C33—C38 35.3 (7)
C8—C9—C10—C11 −0.6 (5) O1—C32—C33—C34 −147.2 (5)
C9—C10—C11—C12 1.5 (5) C38—C33—C34—C35 −2.5 (9)
C9—C10—C11—Cl1 −177.7 (3) C32—C33—C34—C35 179.9 (6)
C10—C11—C12—C13 −1.0 (5) C33—C34—C35—C36 1.2 (13)
Cl1—C11—C12—C13 178.2 (3) C34—C35—C36—C37 −0.6 (16)
C11—C12—C13—C8 −0.4 (5) C35—C36—C37—C38 1.1 (15)
C9—C8—C13—C12 1.2 (5) C34—C33—C38—C37 3.2 (9)
C1—C8—C13—C12 −176.0 (3) C32—C33—C38—C37 −179.4 (5)
N2—C3—C14—C15 −151.8 (3) C36—C37—C38—C33 −2.5 (12)
C2—C3—C14—C15 88.3 (4) C8—C1—N1—C6 177.3 (3)
N2—C3—C14—C19 31.7 (4) C2—C1—N1—C6 −60.0 (3)
C2—C3—C14—C19 −88.1 (4) C26—C6—N1—C1 −173.5 (3)
C19—C14—C15—C16 −0.1 (5) C5—C6—N1—C1 62.8 (4)
C3—C14—C15—C16 −176.7 (3) C20—C4—N2—C3 −179.0 (3)
C14—C15—C16—C17 −1.1 (6) C5—C4—N2—C3 59.8 (3)
C15—C16—C17—C18 1.7 (6) C14—C3—N2—C4 −176.9 (3)
C15—C16—C17—Cl2 −179.8 (3) C2—C3—N2—C4 −56.6 (4)
C16—C17—C18—C19 −1.2 (7) C2—C7—N3—O1 174.4 (3)
Cl2—C17—C18—C19 −179.7 (3) C5—C7—N3—O1 −3.5 (5)
C17—C18—C19—C14 0.0 (7) C7—N3—O1—C32 178.8 (3)
C15—C14—C19—C18 0.7 (6) C33—C32—O1—N3 63.3 (5)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C8–C13 ring.

D—H···A D—H H···A D···A D—H···A
C13—H13···O2 0.93 2.52 3.441 (6) 172
N2—H2A···Cg3i 0.88 (3) 2.85 (3) 3.637 (3) 150 (3)

Symmetry code: (i) −x+1/2, y+3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6689).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Asakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.
  3. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Jayaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.
  7. Luger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431–432.
  8. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  9. Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985. [DOI] [PubMed]
  10. Parthiban, P., Kabilan, S., Ramkumar, V. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett 20, 6452–6458. [DOI] [PubMed]
  11. Parthiban, P., Ramachandran, R., Aridoss, G. & Kabilan, S. (2008). Magn. Reson. Chem 46, 780–785. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812016509/hb6689sup1.cif

e-68-o1481-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016509/hb6689Isup2.hkl

e-68-o1481-Isup2.hkl (343.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016509/hb6689Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES