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Abstract

Background: Cancer arises when within a single cell multiple malfunctions of
control systems occur, which are, broadly, the system that promote cell growth and
the system that protect against erratic growth. Additional systems within the cell
must be corrupted so that a cancer cell, to form a mass of any real size, produces
substances that promote the growth of new blood vessels. Multiple mutations are
required before a normal cell can become a cancer cell by corruption of multiple
growth-promoting systems.

Methods: We develop a simple mathematical model to describe the solid cancer
growth dynamics inducing angiogenesis in the absence of cancer controlling
mechanisms.

Results: The initial conditions supplied to the dynamical system consist of a
perturbation in form of pulse: The origin of cancer cells from normal cells of an
organ of human body. Thresholds of interacting parameters were obtained from the
steady states analysis. The existence of two equilibrium points determine the strong
dependency of dynamical trajectories on the initial conditions. The thresholds can be
used to control cancer.

Conclusions: Cancer can be settled in an organ if the following combination
matches: better fitness of cancer cells, decrease in the efficiency of the repairing
systems, increase in the capacity of sprouting from existing vascularization, and
higher capacity of mounting up new vascularization. However, we show that cancer
is rarely induced in organs (or tissues) displaying an efficient (numerically and
functionally) reparative or regenerative mechanism.

Background
A total of 562, 875 cancer deaths were recorded in the United States in 2007, and it is

estimated that approximately 570, 000 died from cancer in 2010. The overall estimate

of approximately 1.53 million new cases does not include carcinoma in situ of any site

except urinary bladder, nor does it include basal cell and squamous cell cancers of the

skin. Greater than 2 million unreported cases of basal cell and squamous cell skin can-

cer, approximately 54, 010 cases of breast carcinoma in situ, and 46, 770 cases of mela-

noma in situ are expected to be newly diagnosed in 2010 [1]. In the world, the

estimate for 1990 suggested a total of 8.1 million new cases, divided almost exactly

between developed and developing countries, and 5.2 million cancer deaths, about 55%

of which occurred in developing countries [2].
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Cells of some organs, as the heart, stop proliferation after reaching their size, but

others, like skin cells and cells that line body cavities, must proliferate almost continu-

ously to replenish cells that are lost. Cancer arises when within a single cell multiple

malfunctions of control systems occur, which are, broadly, the system that promote

cell growth and the system that protect against erratic growth (for instance, tumor

suppressor gene p53, which name comes from protein of molecular weight 53,000, and

RB, from retinoblastoma). Additional systems within the cell must be corrupted so that

a cancer cell, to form a mass of any real size, produces substances (such as VEGF -

Vascular Endothelial Growth Factor) that promote the growth of new blood vessels.

Cellular growth-control systems can be corrupted either when cellular genes are

mutated or when proteins produced during a viral infection interfere with control sys-

tem function. Multiple mutations are required before a normal cell can become a can-

cer cell by corruption of multiple (about five) growth-promoting systems [3].

With respect to the control systems that protect against cancer, they are classified in

two general types: systems that prevent mutations, and systems that deal with muta-

tions once they occurred. For instance, there are mechanisms in cells that can convert

toxic by-products of cellular metabolism or carcinogenic substances from the environ-

ment into harmless chemicals, preventing DNA damage. In addition, cells have a num-

ber of different systems that can detect damaged DNA and fix it, avoiding mutations.

However, if the DNA of a cell has been damaged that repair would be impossible,

there are systems which trigger the cell to die. Hence, even though there are trillions

of cells, only one in three humans will get cancer during his lifetime, and cancer is

mainly a disease of the elderly [3].

In order to develop effective treatments, it is important to identify the mechanisms

to controlling cancer growth, how they interact, and how they can most easily be

manipulated to eradicate (or manage) the disease. Aiming to gain such insight, it is

usually necessary to perform large numbers of time-consuming and intricate experi-

ments - but not always. Through the development and solution of mathematical mod-

els that describe different aspects of solid tumor growth, applied mathematics has the

potential to prevent excessive experimentation and also to provide biologists with com-

plementary and valuable insight into the mechanisms that may control the develop-

ment of solid tumors [4]. In [5] it is provided a concise history of the study of tumor

growth, discussing some of the most influential mathematical models and their rela-

tionship to experimental studies, and illustrating how the field of cancer research has

evolved due to these interactions between theoretical and experimental approaches.

In this paper we develop a mathematical model to understand the solid cancer

growth inducing angiogenesis. We determine the steady states of the model and the

stability of the equilibrium points are performed. We simulate the model to assess the

appearance of cancer. Treatments aiming the control of cancer are not dealt here (see

[6] and [7] for tumor control).

Methods
Our objective is the development of a simple mathematical model to describe the can-

cer growth dynamics inducing angiogenesis. The model does not include important

physiological processes like the diffusion of oxygen into a solid where it is consumed

by metabolic processes, the outward diffusion of lactic acid from a solid which
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produces it by metabolic processes and the diffusion of oxygen away from a blood ves-

sel into a region with an oxygen debt. First, we describe an organ of human body free

of cancer and, then, cancer cells appear in this organ.

The normal cells of an organ (the concentration at time t is designed as C) are feed

by an existing vasculature formed by endothelial cells (the concentration at time t is

designed as E). Adult endothelial cells and cells of an organ of human body are nor-

mally quiescent apart from certain developmental processes (e.g., embryogenesis), and

proliferation of these cells aims to replenish losses (for instance, cells dying due to

aging and wound). The normal cells and surrounding vascular networks (epithelial

cells) are governed by the logistic growth, with intrinsic growth rates a1 and a2,

respectively, and they are under mortality rates μ1 and μ2, respectively. Normal cells

produce substances to promote the growth of blood vessels in a suitable network to

attend their needs. The extension of vascularization (blood vessels network) depends

on the size and function of the organ, and conversely, the blood vessels network deter-

mines the activity of the organ. In other words, the size of an organ could be deter-

mined by the surrounding network of blood vessels, that is, k1(E), as k2 depends on C,

k2(C), where k1 and k2 are the carrying capacities of the organ (normal cells) and the

extension of blood vessels network (epithelial cells), respectively. In a cancer free state,

normal cells (C) and blood vessels (E) are in a steady state, where the amount of nor-

mal cells depends on the feeding network, as well as the amount of epithelial cells

depends on the size and function of organs that must feed.

Let us suppose that a series of accumulating mutations in normal cells (one single

cell may be sufficient) corrupted systems that promote cell growth and that protect

against erratic growth. Also systems that control the production of substances which

induce new blood vessels are corrupted in the cancer cells. These sequential events

initiate a rapid growth of cancer due to angiogenesis. Angiogenesis is the process by

which new blood vessels develop from an existing vasculature, through endothelial cell

sprouting, proliferation, and fusion [8]. The angiogenesis links the relatively harmless

avascular and the potentially fatal vascular growth phases of the tumor [9].

Let us consider what occurs in cancer growth: (1) there is an initial amount of cancer

cells (the model does not deal with the origin of cancer cells) appearing in a completely

health organ; (2) these cells induce the formation of pre-vascular cells from existing vascu-

lar network; (3) after a period of time, the formation of new blood vessels is initiated; and

(4) both normal and cancer cells compete for nutrients and space (proteins, oxygen, etc.).

For cancer cells (the concentration at time t is designed as T), the growth, which is

likely to be limited by energetic constraints, is limited by the carrying capacity k3 and

the surrounding new vessels originated by angiogenesis (the concentration at time t is

designed as A). The new vessels, represented by angiogenesis cells A, have growth

depending on tumor cells T and are limited by available space (k4). The growth of

blood vessels (E and A) are constrained by physical restrictions, even they are never

subject to either oxygen or nutrient deprivation. We assume the existence of an early

stage of angiogenesis, called pre-angiogenesis (the concentration of cells at time t is

designed as P). This stage corresponds to the release by tumoral cells of VEGF, which

starts to diffuse into the surrounding tissue and approach the endothelial cells of

nearby blood vessels. Endothelial cells subsequently respond to the VEGF concentra-

tion gradient by forming sprouts. From these sprouts, there occur migration and
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proliferation toward the tumor, and these new vessels are called as angiogenesis

(endothelial cells A).

The tumoral cells induce new vascular network from the existing one to feed cancer

cells. The pre-angiogenesis cells are formed by the mass action law [10] at a constant rate

g, the rate of sprouts formation, from which new vascularizations occur resulting in angio-

genesis cells after an average period of time δ-1, where δ is transfer rate from pre-angio-

genesis to angiogenesis cells. The cancer, pre-angiogenesis and angiogenesis cells are

under the mortality rates μ3, μ4 and μ5, respectively. The cancer and angiogenesis cells are

governed by the logistic growth: intrinsic growth a3 and ε, which depend respectively on

angiogenesis and cancer cells, and carrying capacities k3 and k4, respectively. Cancer cells

can also grow logistically using existing vascularization at rate α′
3 . The rates at which nor-

mal and cancer cells compete themselves for resources and space are β ′
1 and β ′

2 . Both

parameters also take into account effects of the environment.

Pre-angiogenesis cells deserve some words. New blood vessels to nourish cancer cells

must sprout from pre-existing blood vessels. However, there is an elapse of time from

the appearance of sprouts until the complete formation of new blood vessels that effec-

tively feed cancer cells. By doing this, we take into account a time-delay between the

formation of new network of blood vessels (angiogenesis cells A) and tumor growth.

Notice that the probability of sproutings becoming angiogenesis cells is δ/(δ + μ4). If

we let δ ® ∞, this phase is negligible (probability one).

Let us consider the normal cells C taking into account the above descriptions. In the

absence of cancer cells T, normal cells obey d
dt C = α1C[1 − C

k1(E) ] − μ1C . The cancer

cells influence negatively normal cells, and this term is described by α1Cβ ′
1T

k1(E) with nega-

tive signal. Due to mutation, some normal cells become cancer cells, which can occur

continuously. However, we will assume that the mutations occur instantaneously at a

given time (cancer cells grow exponentially in the beginning, hence further mutations,

being in small amount, can be disregarded), when an amount of normal cells are trans-

ferred to cancer cells compartment. For other types of cells, the dynamical equations

can be obtained similarly.

Based on the above definitions of variables and model’s parameters, the dynamics of

the cancer growth is described by the following system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
C = α1C

[
1 − C

k1(E)
− β ′

1T
k1(E)

]
−μ1C − CmδD(t)

d
dt

E = α2E
[

1 − E
k2(C)

]
− γ ET − μ2E

d
dt

T = CmδD(t) + α3AT
(

1 − T
k3

)

+α′
3T

[
1 − T

k1(E)
− β ′

2C
k1(E)

]
− μ3T

d
dt

P = γ ET − δP − μ4P

d
dt

A = δP + εTA
(

1 − A
k4

)
− μ5A.
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In this model, an amount Cm of normal cells are mutated to cancer cells at time t =

0, which is described by the Dirac delta function δD (t): it assumes ∞ at t = 0, and 0,

otherwise.

Let us simplify the model assuming that k1 and k2 are constant, depending only on

the status corresponding to cancer free. Under this simplification, we can define the

interaction parameters as β1 = β ′
1α1/k1 and β2 = β ′

2α
′
3/k1 . Another simplification

assumes that the rate at which cancer cells increase due to new vascularization is

much higher than due to existing one, or we let α3AT(1 − T/k3) � α′
3T(1 − T/k1) .

The above impulsive system taking into account these simplifications can be written

as, for t > 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

C = α1C
(

1 − C
k1

)
− β1CT − μ1C

d
dt

E = α2E
(

1 − E
k2

)
− γ ET − μ2E

d
dt

T = α3AT
(

1 − T
k3

)
− β2CT − μ3T

d

dt
P = γ ET − δP − μ4P

d
dt

A = δP + εTA
(

1 − A
k4

)
− μ5A,

(1)

in order to describe a perturbation introduced at t = 0 in a cancer free status. Hence,

the initial conditions supplied to the system of equations become:

(C(0) = C0 − Cm, E(0) = E0,

T(0) = Cm, P(0) = 0, A(0) = 0),
(2)

where C0 and E0 are the cancer free steady state values (see below), and Cm is the

instantaneous mutation of normal cells to initiate cancer growth. The vital dynamics of

normal cells is similar than that presented in [11]. In Table 1 we present the summary

of variables, which depend on time, for instance C(t), and parameters, which do not

depend on time, of the model.

We next obtain the steady states of the system of equations (1), and the correspond-

ing characteristic equations in order to establish the stability of the steady states.

Steady states

We determine the steady states of the system (1), denoted by Q̄ = (C̄, Ē, T̄, P̄, Ā) . The

coordinates of the equilibrium point are obtained by letting the time derivatives in

equation (1) equal to zero, for instance, d
dt C = 0 . The first is the equilibrium where

there is not any cells, that is,

Q̄abs = (0, 0, 0, 0, 0).

For obvious reason, this point is not considered here.

The trivial equilibrium point, given by

Q̄0 = (C0, E0, 0, 0, 0),

Yang Theoretical Biology and Medical Modelling 2012, 9:2
http://www.tbiomed.com/content/9/1/2

Page 5 of 39



where C0 and E0 are⎧⎪⎨
⎪⎩

C0 =
k1

α1
(α1 − μ1)

E0 =
k2

α2
(α2 − μ2),

(3)

corresponds to the absence of cancer. The trivial equilibrium point exists for a1 >μ1
and a2 >μ2. In this model the normal and epithelial cells are not dependent on each

other. One possibility of dependence can be done by the carrying capacities k1(E0) and

k2(C0).

The coordinates of the non-trivial equilibrium point Q̄∗ are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C̄ =
k1

α1
[(α1 − μ1) − β1T̄]

Ē =
k2

α2
[(α2 − μ2) − γ T̄]

P̄ =
γ k2

(μ4 + δ)α2
[(α2 − μ2) − γ T̄]T̄

Ā =
k3

k3 − T̄

[
μ3

α3
+

β2k1

α3α1
(α1 − μ1) − β1β2k1

α3α1
T̄
]

,

(4)

where T̄ is the positive solution of the equation

f (T) = g(T) ≡ g1(T) + g2(T), (5)

Table 1 Symbols and definitions

Symbols Definitions

C Concentration of normal cells at time t

E Concentration of epithelial cells at time t

T Concentration of cancer cells at time t

P Concentration of pre-angiogenesis cells at time t

A Concentration of angiogenesis cells at time t

a1 Intrinsic growth rate of normal cells

a2 Intrinsic growth rate of epithelial cells

a3 Intrinsic growth rate of cancer cells

ε Intrinsic growth rate of angiogenesis cells

μ1 Mortality rate of normal cells

μ2 Mortality rate of epithelial cells

μ3 Mortality rate of cancer cells

μ4 Mortality rate of pre-angiogenesis cells

μ5 Mortality rate of angiogenesis cells

k1 Carrying capacity of normal cells

k2 Carrying capacity of epithelial cells

k3 Carrying capacity of cancer cells

k4 Carrying capacity of angiogenesis cells

δ Transfer rate from pre-angiogenesis to angiogenesis cells

g Epithelial sprouting rate

b1 Rate of inhibition of normal cells by cancer cells

b2 Rate of inhibition of cancer cells by normal cells

The summary of the variables and parameters of the model.
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with the fourth degree polynomial f(T), and the third degree polynomials g1(T) and

g2(T) being given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (T) =
γ δk2

(μ4 + δ)μ5α2k3
[(α2 − μ2) − γ T]

×(k3 − T)2T

g1(T) =
(

1 − ε

μ5
T
)

(k3 − T)

×
[

μ3

α3
+

β2k1

α3α1
(α1 − μ1) − β1β2k1

α3α1
T
]

g2(T) =
εk3

μ5k4
T

×
[

μ3

α3
+

β2k1

α3α1
(α1 − μ1) − β1β2k1

α3α1
T
]2

.

(6)

By inspecting C̄ , Ē and Ā, the positive solution T̄ , in order to Q̄∗ be biologically fea-

sible, must satisfy, respectively, the constraints T̄ < TC, T̄ < TE and T̄ < TA , where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TC =
α1 − μ1

β1

TE =
α2 − μ2

γ

TA = k3.

(7)

However, the constraint for the equilibrium Ā is T̄ < Tg , where

Tg =
α1α3

β1β2k1

[
μ3

α3
+

β2k1

α3α1
(α1 − μ1)

]

=
α1μ3

β1β2k1
+

α1 − μ1

β1
,

(8)

but it is always satisfied when T̄ < TC , since Tg >TC.

With respect to the constraints, we must have T̄ < min{TC, TE, TA} , where min{TC,

TE, TA} is the minimum among TC, TE and TA. The constraints depend inversely with

removing parameters b1 and g, and directly with the carrying capacity k3. Hence, for

higher values of removing parameters b1 and g, and lower values of carrying capacity

k3, the constraints are decreased, that is, the steady state cancer cells T̄ must assume

lower values. Let us suppose that k3 is high, which implies that cancer cells T̄ can

achieve higher values. If the sproutings rate g from existing blood vessels is high, in

principle it seems to be beneficial to cancer cells. However, higher values of g result in
lower values for the constraint TE, and, consequently, T̄ must assume lower values,

because it must be lower than both TE and k3. Therefore, cancer cells will achieve

higher values for high carrying capacity k3, and lower sprouting rate g. Further angio-
genesis cells must be originated by the clonal division from a small amount of pre-

angiogenesis cells. In appendix A we show the analysis of equation (5). Summarizing,

the number of solutions T̄ depends on the values assigned to the model’s parameters,

which can be 0, 2 or 4. Notwithstanding, the solution T̄ must obey the constraints

given in equation (7), which reduces the number of solutions up to 2. In the case of 2
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solutions, we denote the solutions T̄ as small (T<, and the corresponding equilibrium

point Q̄∗
<
) and big (T>, and the corresponding equilibrium point Q̄∗

>
). Hence, the con-

straints play an important role in the number of equilibrium points. Notice that the

interacting parameter ε does not appear in the constraints. Let us analyze possible sce-

narios resulting by varying the non-linear term parameters b1, b2, g and ε. First, let us

vary b1. Notice that TC depends on b1, but TE and TA do not. For small b1, the solu-

tion T̄ of equation (5) situates below TC. However, as b1 increases, T̄ can surpass TC,

after intercepting TC at β1 = βc
1 . As T̄ increases with b1, C̄ , given by the first equation

of (4), decreases and reaches zero at β1 = βc
1 , and C̄ < 0 sinceafter. At β1 = βc

1 we

have T̄ = Tc
C = (α1 − μ1)/βc

1. Let us suppose that Tc
C < min{TE, TA} , the minimum

between TE and TA. When C̄ = 0 , there arises another feasible equilibrium point Q̄c ,

with the coordinates⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C̄ = 0

Ē =
k2

α2

[
(α2 − μ2) − γ T̄

]
P̄ =

γ k2

(μ4 + δ)α2

[
(α2 − μ2) − γ T̄

]
T̄

Ā =
k3μ3

α3(k3 − T̄)
,

(9)

where T̄ = Tc
C , and the equilibrium T̄ does not depend anymore on the interacting

parameter b1. Hence for β1 ≥ βc
1 we have a constant value T̄ = (α1 − μ1)/βc

1 , which

implies in constant values for Ē, P̄ and Ā.

See more discussion below, in the stability analysis.

The equilibrium point Q̄c corresponds to the case where the cancer cells displaced

normal cells. By inspecting the equation for C̄ , the first in equation (4), the normal

cells drop out to zero for a sufficiently higher values of b1. In another words, when

cancer cells have very higher fitness than normal cells and overcome the competition

for resources, they can lead to the exclusion of the normal cells (of course, the cancer

diseased person dies before reaching this equilibrium). Notice that Q̄c can be avoided

as the equilibrium point when k3 assumes small values, that is, if k3 < min{TE, TC},

minimum between TE and TC. In this situation, the equilibrium value T̄ is always

smaller than k3, and all coordinates of the equilibrium point are positive (Appendix A).

Second, let us now vary b2. The third equation of (1) in the equilibrium can be writ-

ten as

T̄ =
k3

Āα3

[(
Āα3 − μ3

) − β2C̄
]

.

When b2 increases, T̄ decreases, and at a certain value of b2, say β th
2 , T̄ assumes

zero value. When T̄ = 0 , the unique feasible equilibrium point is the trivial Q̄0 . When

the influence of the normal cells and the environment is higher ( β2 ≥ β th
2 ), then can-

cer can not be maintained.
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Cancer onset depends on the interplay among the initial condition T(0) = Cm and

interacting parameters b1 and b2. Once cancer cells are originated by mutation from

several sources, these cells interact with healthy cells and the surrounding environ-

ment. While the parameter b1 is practically insensitive in the behavior of the dynamics,

however, there is a threshold in the parameter b2, above which cancer can not be

established. This result shows that cancer is rarely induced in organs (or tissues) dis-

playing an efficient (numerically and functionally) reparative or regenerative mechan-

ism [12], which is the reason for the incidence of cancer rising exponentially with age

[13].

Finally, let us analyze the effects of varying the sprouting rate g and angiogenesis

increasing rate ε.

When g increases, Ē decreases according to the second equation of (4). Let us

assume that Ē reaches zero at a certain value named gc, and Ē < 0 sinceafter. When Ē

= 0, differently from C̄ = 0 , the unique feasible equilibrium point is the trivial Q̄0 .

Hence, we expect that Ē > 0 for g ≥ 0, because of T̄ < TE = (α2 − μ2)/γ is always

obeyed, and there is not a critical value gc. When we decrease g, we observe that equa-

tion (5) may not have biologically feasible solutions.

Initially, let us analyze g = 0. In this case, we have f(T) = 0, and the equilibrium value

T̄ is solution of the polynomial of degree two

0 =
(

1 − ε

μ5
T
)

(k3 − T) +
εk3

μ5k4
T

×
[

μ3

α3
+

β2k1

α3α1
(α1 − μ1) − β1β2k1

α3α1
T
]

,
(10)

with another being given by T̄ = Tg . Moreover, from equation (4), we have P̄ = 0

(due to g = 0, the role of the parameter δ does not matter). In this case, there arises

another feasible equilibrium point Q̄p , with the coordinates

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C̄ =
k1

α1
[(α1 − μ1) − β1T̄]

Ē =
k2

α2
(α2 − μ2)

P̄ = 0

Ā =
k3

k3 − T̄

[
μ3

α3
+

β2k1

α3α1
(α1 − μ1) − β1β2k1

α3α1
T̄
]

.

. (11)

Equation (10) has two positive solutions (not shown) when Tg >k3 and ε > μ5/k3,

where Tg is given by equation (8), while a unique positive solution occurs when Tg =

k3. Let us introduce a threshold of ε, named εth. We remark that this threshold value

appears only for g = 0. Hence, when ε >εth, with εth >μ5/k3, we have two positive solu-

tions, named Tε
< (and the corresponding equilibrium point Q̄p

< ) and Tε
> (and the cor-

responding equilibrium point Q̄p
> ), which collapse to one at ε = εth, and for ε <εth

there is not positive solution. The equilibrium point Q̄p represents the origin of angio-

genesis from other sources, not from existing vascular system feeding an organ of the

human body. Two facts must occur to appearing of Q̄p : sufficiently higher capacity of

Yang Theoretical Biology and Medical Modelling 2012, 9:2
http://www.tbiomed.com/content/9/1/2

Page 9 of 39



cancer cells to originate new vascular system from external sources (ε >εth), and higher

initial amount, at time 0, of vascular cells (T(0) > Tε
<) .

Now, for lower values of g (g ≳ 0), as a consequence of the appearing of εth for g = 0,

equation (5) does not have positive solution and there is not biologically feasible equili-

brium point. Let us introduce a threshold of g, named gth. For g <gth the unique solu-

tion is T̄ = 0 (this fact is shown numerically). Note that as ε increases, gth decreases.

Hence, higher the capacity of building up new vascularization ε, less the amount of

sprouts originated from existing blood vessels needed to angiogenesis. In the special

case ε = 0 (cancer cells do not promote growth in the new vascularization), the equili-

brium T̄ , which must be substituted in the variables given in equation (4), must be

solution of f(T) = g(T), where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (T) =
γ δk2

(μ4 + δ)μ5α2k3
[(α2 − μ2) − γ T]

×(k3 − T)T

g(T) =
μ3

α3
+

β2k1

α3α1
(α1 − μ1) − β1β2k1

α3α1
T.

(12)

This equation clearly shows that a positive solution T̄ is feasible for sufficiently

higher values of g, that is, γ > γ th
0 , where γ th

0 corresponds to ε = 0. Due to the fact

that ε increases as gth decreases, γ th
0 is the upper bound of the threshold of g. Even

the cancer cells do not promote the proliferation of the sprouted endothelial (pre-

angiogenesis) cells (ε = 0), if the capacity of endothelial cell sprouting is higher (g >gth),
then cancer cells can be maintained.

There are two mechanisms by which the tumor’s vasculature is built: (1) as a tumor

grows, it excretes tumor angiogenesis factor, which help activate endothelial cells of

nearby blood vessels, initiating angiogenesis; (2) bone marrow derived endothelial pro-

genitor cells are mobilized into the blood, by means of long-range signaling, and they

are recruited from blood by the tumor by short-range signaling, resulting in vasculo-

genesis (the vascular endothelium of the nearby vessels become activated and allows

the endothelial progenitor cells to extravase and start a cycle of differentiation/division)

[14]. In both cases, the newly stimulated endothelial cells (described by parameter g)
and the recruited endothelial progenitor cells (this phenomenon is not considered in

the model; however, the case g = 0 can in some extent be understood as vasculogen-

esis) enter a stage of clonal expansion and continue to form blood vessels, which is

described by the parameter ε.

With respect to the linear term of the pre-angiogenesis parameter δ, when

δ → ∞, Q̄∞ appears, similar to the equilibrium point Q̄p , because limδ→∞P̄ = 0 .

However, from the third equation of (4), we have limδ→∞δP̄ = γ ĒT̄ . Hence, the coor-

dinates of Q̄∞ are those given in equation (11), but T̄ is solution of the equation f(T)

= g1(T) + g2(T), where

f (T) =
γ k2

μ5α2k3
[(α2 − μ2) − γ T](k3 − T)2T,
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and g1(T) + g2(T) is given be equation (6). Notice that f(T) differs from that in equa-

tion (6) by the factor δ/(μ4 + δ). The equilibrium point Q̄∞ represents the absence of

the intermediate pre-angiogenesis, that is, angiogenesis occurs directly and instanta-

neously from epithelial cells.

Summarizing, the non-trivial equilibrium points Q̄∗ (Q̄∗
<

and Q̄∗
>
, when they exist),

Q̄c (for β1 ≥ βc
1 ), and Q̄p (when g = 0) are biologically feasible, but Q̄c is not a real

cancer equilibrium point, since C̄ = 0 . Especially, Q̄p is a cancer equilibrium point

only if vasculogenesis can act alone to generate new blood vessels. The analysis of the

model showed the existence of thresholds β th
2 and gth (and, eventually, εth, for g = 0),

and a critical value βc
1 .

We analyzed the steady states of the model described by the system of ordinary dif-

ferential equations (1) assuming that all parameters of the linear terms (μ1, μ2, μ3, μ4,

μ5 and δ) plus the intrinsic growth rates a1, a2 and a3 and carrying capacities k1, k2, k3
and k4 are fixed values. But, the parameters regarded to the interaction between differ-

ent cells (b1, b2, g and ε) are generally unknown, hence they were allowed to vary to

analyze broad range of variation in these parameters.

Local stability analysis

The local stability of the equilibrium points [15] is determined by the eigenvalues of

the characteristic equation det (J̄ − λI) = 0 , where J̄ is the Jacobian J evaluated at the

equilibrium point under analysis,

J̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α1

k1
C̄ 0 −β1C̄ 0 0

0 −α2

k2
Ē −γ Ē 0 0

−β2T̄ 0 −α3

k3
ĀT̄ 0 j1

0 γ T̄ γ Ē −j2 0
0 0 j3 δ −j4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where j1, j2, j3 and j4 are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j1 = α3T̄
(

1 − T̄
k3

)
j2 = μ4 + δ

j3 = εĀ

(
1 − Ā

k4

)

j4 = δ
P̄

Ā
+

ε

k4
ĀT̄.

(13)

The Jacobian J̄ was obtained using equilibrium equations given in (4) assuming that

C̄ 	= 0 . When C̄ = 0 , the element in the first line and first column is

a11 = (α1 − μ1) − β1T̄ , and in the third column, a13 = 0.

We present analytical results corresponding to the equilibrium points Q̄0 and Q̄c .

The eigenvalues (from Jacobian J̄0 ) corresponding to the trivial equilibrium point Q̄0

are: l1 = -μ5, l2 = - (μ4 + δ), l3 = - (μ3 + b2C0), l4 = - (a1 - μ1), and l5 = - (a2 - μ2).

Yang Theoretical Biology and Medical Modelling 2012, 9:2
http://www.tbiomed.com/content/9/1/2

Page 11 of 39



In the last two eigenvalues we used the coordinates given by equation (3). Hence, the

trivial equilibrium Q̄0 is locally asymptotically stable whenever this point exists (a1

>μ1 and a2 >μ2), because all eigenvalues become negative.

The non-trivial equilibrium point Q̄c , with coordinates given in equation (9), has one

of them zero (C̄ = 0 ). The eigenvalues corresponding to the trivial equilibrium point

Q̄c are obtained from the Jacobian J̄c . Once C̄ = 0 , one of the eigenvalues is

λ1 = −β1(T̄ − TC) , arising one of the conditions to the not real cancer equilibrium Q̄c

being stable, that is, T̄ > TC , where TC is given by equation (7). The remaining four

eigenvalues are obtained from the sub-matrix J̄c
1 , which comes from J̄c excluding first

row and first column. Let us define matrix A as A = −J̄c
1 , or,

A =

⎡
⎢⎢⎢⎢⎣

α2

k2
Ē γ Ē 0 0

0
α3

k3
ĀT̄ 0 −j1

−γ T̄ −γ Ē j2 0
0 −j3 −δ j4

⎤
⎥⎥⎥⎥⎦ , (14)

where j1, j2, j3 and j4 were defined in equation (13). In appendix B we show that, for

big solution T>, A is an M-matrix, and, hence, all eigenvalues associated to J̄c
1 have

negative real part. Hence, Q̄c , which is biologically feasible but not real cancer, is

locally asymptotically stable only if T̄ > TC . Therefore, Q̄c appears when one of the

constraints to Q̄∗ be biologically feasible is violated: in the equation (4), instead of

C̄ < 0 , we have C̄ = 0 for β1 ≥ βc
1 .

The local stability of the non-trivial equilibrium Q̄∗ is performed numerically. How-

ever, we stress the fact that the equilibrium Q̄c is an extension of Q̄∗ for β1 ≥ βc
1 .

Hence, the big solution T>of equation (5) for β1 ≥ βc
1 must be stable. For this reason

we showed the local stability of Q̄c , even though this is not a real cancer equilibrium.

Results and Discussion
In this section we present numerical simulations of the model, which are discussed.

The numerical methods used are bisection (to find zeros of polynomials) and 4th order

Runge-Kutta (to solve system of ordinary differential equations) [16].

Numerical analysis of the model

Numerical simulations are performed taking into account the values and units of the

model’s parameters given in Table 2. These values have the purpose of illustrating the

outcomes of the model. Cancer free equilibrium point Q̄0 has the cancer free concen-

trations: C0 = 9 cells/uv and E0 = 10 cells/uv, where uv stands for an arbitrarily unit of

volume. Hereafter we will omit units of all variables and parameters. In this section we

deal with the steady state of the system (1), determining the equilibrium points and

bifurcation diagrams. We also study the dynamical trajectories of the system (1)

assuming that mutations occurred and cancer cells arise suddenly. For this reason the

initial conditions are given by equation (2). The reason behind this is the fact that the

trivial equilibrium point Q̄0 always exists and is stable. Hence, the initial conditions
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supplied to the system of equations correspond to an appearance of Cm number of

cancer cells in a cancer free situation Q̄0 , that is, at time t = 0 the variables assume C

(0) = C0 - Cm, E(0) = E0, T(0) = Cm, P(0) = 0 and A(0) = 0. The initial amount of can-

cer cells is originated by mutation from several sources. In some special situations we

will use C(0) = C0. The initial amount of mutations Cm can either grow up to cancer,

or fades out.

Based on the values given in Table 2, the constraints, using equations (7) and (8), are

TC = 9.0 (at b1 = 0.01), TE = 5.0, TA = 5.0 and Tg = 14.0. The coordinates of the non-

trivial equilibrium points, corresponding to small (T<) and big (T>) equilibrium values

of cancer cells obtained from equation (5), are, respectively,

Q̄∗
< = (8.92, 9.85, 0.08, 0.07, 0.71) and Q̄∗

> = (5.32, 2.64, 3.68, 0.88, 1.96) , from

equation (4). The corresponding five eigenvalues (li, i = 1, ..., 5) are given in Table 3,

showing that the small is unstable (l1 > 0), while the big is stable (all li’s are negative).

The big equilibrium T>= 3.68 satisfies the constraints given in equation (7). The trivial

equilibrium Q̄0 is always stable.

In Figure 1 we illustrate the dynamical trajectories of system (1) taking into account

the values of parameters given in Table 2. The dynamical trajectories depend on the

Table 2 Values of the parameters

Parameters Fixed values Alternative values** Units

a1 0.1 days-1

a2 0.1 days-1

a3 0.2 5.0 [A]-1 × days-1

ε 0.01* 0.1 [T]-1 × days-1

μ1 0.01 days-1

μ2 0.05 days-1

μ3 0.05 0.005 days-1

μ4 0.01 days-1

μ5 0.01 days-1

k1 10 [C]

k2 20 [E]

k3 5 0.1 [T]

k4 1 0.2 [A]

δ 0.1 days-1

g 0.01* 0.02 [T]-1 × days-1

b1 0.01* [T]-1 × days-1

b2 0.01* [C]-1 × days-1

The values for model’s parameters. The unity of [•] is number of cells of type • per unit of volume, •/uv. Parameters
regarded to the non-linear terms of the dynamical system are allowed to vary (indicated by the symbol*). The values of
the parameters that differ from the fixed values are in the column indicated with **.

Table 3 Eigenvalues

Eigenvalues Corresponding to Q∗
< Corresponding to Q∗

>

l1 +0.028 -0.227 - i0.024

l2 -0.089 - i0.060 -0.227+ i0.024

l3 -0.089 + i0.060 -0.068

l4 -0.064 -0.0293 - i0.0059

l5 -0.047 -0.0293 + i0.0059

Eigenvalues (li, i = 1,..., 5) corresponding to the non-trivial equilibrium points Q̄∗
<

(unstable) and Q̄∗
>

(stable) using
values given in Table 2.
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initial conditions. In Figure 1(a), due to T(0) = 1.023, the dynamical trajectories are

attracted to the trivial equilibrium Q̄0 ; while for T(0) = 1.024, the dynamical trajec-

tories attain the non-trivial equilibrium Q̄∗
>

(Figure 1(b), which shows a sudden

relapse to cancer onset at around 400 days). The exact critical amount of cancer cells

T* that divides two regions of attraction situates in the open interval (1.023,1.024).

Notice that T* is much higher than T<= 0.08, which comes out due to other initial

conditions. However, if the initial conditions are the coordinates of Q̄∗
<
, except T(0),

that is, C(0) = 8.92, E(0) = 9.85, P(0) = 0.07 and A(0) = 0.71, then, for an arbitrary

value � > 0, the dynamical trajectories go to trivial Q̄0 when T(0) = (1 - �) × 0.08, and

to the non-trivial Q̄∗
>

when T(0) = (1 + �) × 0.08 (for instance, � = 0.001, figures not

shown). In this case, we have T* = T<. Hence, Q̄∗
<

is the break-point, and its coordi-

nates generate a hyper-surface that divides two attracting regions (see Appendix A).

Notice that T(0) = 1.023 which plays the role of separating two attracting regions is

12-fold higher than T<= 0.08.

The initial amount of normal cells that suffer mutation Cm is crucial to trigger can-

cer disease. Figure 1 shows that if this amount is below a critical value, that is, T(0) =

Cm <T*, then repairing systems act efficiently and cancer does not settle in an organ.

However, if the mutated cells surpass the critical value, the repairing systems do not

avoid the onset of cancer.

Next, numerical simulations are performed in order to assess the effects of varying

parameters b1, b2, g and ε. In all dynamical trajectories, remember that unstable solu-

tion T<is very small, but T(0) is higher due to the initial conditions supplied to system

(1) correspond to the coordinates of the trivial equilibrium Q̄0 , and not those of the

unstable Q̄∗
<
. Hence, T(0) is not comparable with T<, one of the coordinates of the

break-point Q̄∗
<
. The cancer cells proliferate above the subclinical threshold of 103

cells and reach 109 cells which is the X-ray detectable threshold [11].

Interaction between normal and cancer cells - b1 and b2
Direct competition between normal and cancer cells for resources and space occur in

order to grow. But there are many factors that affects both populations, like indirect
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Figure 1 Dynamical trajectories using values in Table 2. Dynamical trajectories of the system (1)
considering the values of parameters given in Table 2. The initial conditions determine the region of
attraction: trivial Q̄0 for T(0) = 1.023 (a), or non-trivial Q̄∗

>
(b). The scales of vertical and horizontal axes

must be multiplied by the factors shown in the legends to obtain the actual values.
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interaction as excretion released by cells, changes in the environment and control

mechanisms. The parameters b1 and b2 take into account these factors also.

Let us assess the cancer cells affecting negatively in the normal cells, by varying b1.
In Figure 2 we show T̄ , the solutions of f(T) - g(T) = 0. Figure 2(a), which corre-

sponds to the figure shown in Appendix A with TE = TA = 5.0, shows the existence of

two positive solutions: small (denoted by T<) and big (denoted by T>) for four values

of b1: 0.01 (labelled b1), 0.1 (b2), 1.0 (b3) and 10.0 (b4). In Figure 2(b) a zoom near

lower values of b1 is shown to enhance the small solution T<.

Let us vary b1 and compute the corresponding equilibrium value T̄ using equation

(5). As shown in Figure 2, we have two positive solutions: small, T<, and big, T>. Sub-

stituting this solution into equation (4), we obtain the coordinates of the non-trivial

equilibrium point Q̄∗ . In Figure 3 we show the coordinates of the equilibrium points

Q̄∗
<

(a) and Q̄∗
>

(b). In (b) we also show the curves of TC and Tg, which intercept the

curve of big solution T>. When T>= TC, which occurs at β1 = βc
1 = 2.1273 × 10−2 , we

have C̄ = 0 , at which the big non-trivial Q̄∗
>

disappears and arises an another equili-

brium Q̄c
>
, with C̄ = 0 and other coordinates given by equation (9), which has fixed

value T> = Tc
C = (α1 − μ1)/βc

1 = 4.2306 for β1 ≥ βc
1 . Coordinates of Q̄c

>
are same for

all β1 ≥ βc
1 . Mathematically, there is another value of b1, which does not change the

existing equilibrium point Q̄c , at which we have T>= Tg, that is,

β1 = βA
1 = 2.8001 × 10−2 . At this value we have Ā = 0, with

T> = TA
g =

α1μ3

βA
1 β2k1

+
α1 − μ1

βA
1

= 4.9996 .

Figure 3 shows that trivial Q̄0 and small non-trivial Q̄∗
<

exist for all b1, but big non-

trivial is Q̄∗
>(β1 < βc

1) or Q̄c
>(β1 ≥ βc

1) . In Figure 4, we show the bifurcation diagram,

considering T̄ as a function of b1 (curve T in (a) and (b) of Figure 3). For all values of

b1 the small equilibrium point Q̄∗
<

is the break-point, which divides two regions where

trivial Q̄0 or big non-trivial Q̄∗
>

(or Q̄c
>
) is attracting point. Initial conditions set in a

small region marked with I and Ia are attracted to the trivial equilibrium point Q̄0 .
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Figure 2 Two Positive solutions for four values of b1. Two positive roots for the equation f(T) = g(T), for
four values of b1. In (a) we show both roots, while in (b), a zoom near lower values of b1. Legends of
curves stand for: b1 = 0.01 (Table 2), b2 = 0.1, b3 = 1.0 and b4 = 10.0.
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However, initial conditions set in regions marked with II and III are attracted to big

non-trivial equilibrium point Q̄∗
>

for β1 < βc
1 , while for β1 ≥ βc

1 (regions marked

with IIa and IIIa), to Q̄c
>
. Notice that T<always decreases very slowly with b1 (see also

Figure 3(a)), showing that as b1 increases, less amount of initial cancer cells is needed

to trigger a cancer. But this variation is quite insensitive.
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Figure 4 Bifurcation diagram varying b1. The bifurcation diagram of T̄ varying b1, showing the
attracting regions. With respect to the coordinates of small equilibrium point Q̄∗

<
for all b1, the trivial Q̄0

is attractor for initial conditions in a very small region I (and Ia). Initial conditions in regions II and III are
attracted to Q̄∗

>
for β1 < βc

1 , and initial conditions in regions IIa and IIIa are attracted to Q̄c
>

for β1 ≥ βc
1 .

The scales of vertical and horizontal axes must be multiplied by the factors shown in the legends to obtain
the actual values.
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Figure 3 Positive equilibrium values varying b1. The coordinates of the positive equilibrium points
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<
, and in (b), of the big

equilibrium point Q̄∗
>
. The coordinates of Q̄∗

<
is quite insensitive with variation in b1, and in (b) we also

show the curves of TC (C̄ = 0 at T̄ = TC ) and Tg (Ā = 0 at T̄ = Tg ). The small root T<decreases very
slowly, while the big one T> increases up to T> = Tg, and then, decreases. The scales of vertical and
horizontal axes must be multiplied by the factors shown in the legends to obtain the actual values.
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In Figure 5 we show the dynamical trajectories, changing only b1 in 1000 times the

values of parameters given in Table 2, or b1 = 10.0, being attracted to the special equi-

librium point Q̄c , which is biologically feasible, but does not describe evolution of can-

cer. Dynamical trajectories are attracted to Q̄0 (a) when T(0) = 0.151, while for T(0) =

0.152, to Q̄c
>

(b). The dynamical trajectories in Figure 5 are similar to Figure 1, except

C, which decreases abruptly to zero and situates practically in the vertical axis, and

after 650 days increases quickly to C̄ (a), or remains in the horizontal axis (b). Increas-

ing b1 in 100-fold, T(0) decreased 7-fold. For another b1 = 100.0, when T(0) = 0.142,

trajectories go to Q̄0 ; while for T(0) = 0.143, to Q̄c
>
, which coordinates have exactly

the same values found in the previous case (b1 = 10.0). Both cases (figures not shown)

correspond to β1 > βc
1 , hence Q̄c

>
are the same, while Q̄c

<
decrease little bit.

Let us assess the normal cells affecting negatively in the cancer cells, by varying b2.

In Figure 6 we show the coordinates of the equilibrium points Q̄∗
<

(a) and Q̄∗
>

(b)

by varying b2. Positive solutions for equation (5) disappeared for higher b2.
In Figure 7, we show the bifurcation diagram, considering T̄ as a function of b2

(curve T in (a) and (b) of Figure 6). For β2 < β th
2 , initial conditions set in region

marked with I are attracted to the trivial equilibrium point Q̄0 , while for those set in

regions II and III are attracted to big non-trivial equilibrium point Q̄∗
>
. However, for

β2 > β th
2 all initial conditions are attracted to Q̄0 , which is the unique equilibrium,

because there is not any positive solution for equation (5). Hence, there is a threshold

of the parameter b2, denoted by β th
2 , above which all trajectories go to trivial equili-

brium. At the threshold value β th
2 = 4.8376 × 10−2 both roots assume same value,

that is, T<(β th
2 ) = T>(β th

2 ) = 0.7053 .

For β2 < β th
2 the dynamical trajectories are similar to that shown in Figure 1. For

instance, when b2 = 0.04, for T(0) = 10.60 trajectories are attracted to Q̄0 ; while for T

(0) = 10.61, to Q̄∗
>
. Notice that increasing b2 in 4-fold, T(0) increased 10-fold, showing
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Figure 5 Dynamical trajectories using b1 = 10.0. Dynamical trajectories of the system (1) considering
the values of parameters given in Table 2, except b1 = 10.0. The initial conditions determine the region of
attraction: trivial Q̄0 for T(0) = 0.151 (a), or non-trivial Q̄∗

>
for T(0) = 0.152 (b). The scales of vertical and

horizontal axes must be multiplied by the factors shown in the legends to obtain the actual values.
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that negative influence on cancer cells by normal cells affects strongly (very sensitive)

in the cancer dynamics. For β2 > β th
2 , all initial conditions are attracted to trivial dis-

regarding initial conditions. Figure 8 shows an extreme example, changing only b2 in

100 times the values of parameters given in Table 2, or b2 = 1.0. In this simulation we

consider a very high (unrealistic) initial conditions T(0) = 100.0, even though Q̄0 is the
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Figure 6 Positive equilibrium varying b2. The coordinates of the positive equilibrium points varying b2.
In (a) we show the coordinates of the small equilibrium point Q̄∗

<
, and in (b), of the big equilibrium

point Q̄∗
>
. The small root T<increases, while the big one T> decreases up to βc

2 , at which T<= T<, and
then f(T) = g(T) does not have positive solution. The scales of vertical and horizontal axes must be
multiplied by the factors shown in the legends to obtain the actual values.
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attractor: we observe that T decreases quickly (practically in the vertical axis), and A

decreases slowly. We stress the fact that we used as the initial condition for C, the

equilibrium value of normal cells, that is, C(0) = C0 = 9.0, because the amount Cm in

the initial condition for T is higher than C0.

As b1 increases, the initial number of cancer cells (for instance, originated by muta-

tion) needed to trigger a cancer T(0) = Cm is decreased, but smoothly. Also, the nor-

mal cells can be displaced by cancer cells for values of b1 higher than its critical value,

that is, β1 > βc
1 . With respect to b2, we observed a threshold for β2, β th

2 , above which

cancer can not be settled. Also, as b2 increases, the initial number of cancer cells

needed to trigger a cancer Cm increases quickly, avoiding the process of cancer disease.

Therefore, cancer can be settled in an organ if the following combination matches: bet-

ter fitness of cancer cells (b1 increases), and decrease in the efficiency of the repairing

systems (b2 decreases).
Recruitment of existing epithelial cells - g
New network of blood vessels is created by cancer cells to provide nutrients and oxy-

gen to support their growth. This new network depends on the capacity of originating

sprouts from the existing blood vessel network, and is described by the parameter g,
which is varied.

In Figure 9 we show the coordinates of the equilibrium points Q̄∗
<

(a) and Q̄∗
>

(b)

by varying g. The small T<decreases, while the big T>decreases after an initial increase.

Notice that T>decreases due to the fact that pre-existing blood vessels E decreases
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Figure 8 Dynamical trajectories using b2 = 0.04. Dynamical trajectories of the system (1) considering
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2 ). The initial conditions determine
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>
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values.
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quickly. The new blood vessels A also decrease. The maximum of the variables occurs

at around g = 6.57 × 10-3 (for C is minimum). In Figure 9(b) we show the curve TE,

which depends on g and situates always above the equilibrium value T>. Hence, we

have non-trivial equilibrium point Q̄∗ for sufficiently higher values of g.

In Figure 10, we show the bifurcation diagram, considering T̄ as a function of g
(curve T in (a) and (b) of Figure 9, which appear at g = gth). In (b), a zoom near zero

is shown. In Figures 10(a) and 10(b), for g >gth initial conditions set in regions marked

with I, Ia and Ib are attracted to the trivial equilibrium point Q̄0 . However, initial con-

ditions set in regions marked with II and III are attracted to Q̄∗
>(γ th < γ < γ c

1) ; to a

limit cycle circulating Q̄∗
>

in regions IIa and IIIa (γ c
1 < γ < γ c

2) ; and to Q̄0 in regions

IV and V (γ > γ c
2) , where E decreases and, then, increases to equilibrium value E0.
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Figure 9 Positive equilibrium values varying g. The coordinates of the positive equilibrium points
varying g. In (a) we show the coordinates of the small equilibrium point Q̄∗

<
, and in (b), of the big
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>
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Figure 10 Bifurcation diagram varying g. The bifurcation diagram of T̄ varying g, showing the
attracting regions. In (a) we show wide range of variation of g, and in (b), a zoom near origin. For g <gth

(b) the trivial Q̄0 is attractor for all initial conditions (region Ic). For g > gth (a), with respect to the
coordinates of small equilibrium point Q̄∗

<
, the trivial Q̄0 is attractor for regions I, Ia and Ib; and we have

three possibilities: (1) for γ th < γ < γ c
1 , the non-trivial Q̄∗

>
is attractor for initial conditions in regions

II and III; (2) for γ c
1 < γ < γ c

2 , stable limit cycle circulating unstable Q̄∗
>
, in regions IIa and IIIa; and (3)

for γ > γ c
2 , trivial Q̄0 is attractor for regions IV and V. In the latter case, the way to reaching the trivial

equilibrium is different for initial conditions in Ib and IV or V. The scales of vertical and horizontal axes
must be multiplied by the factors shown in the legends to obtain the actual values.
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The Hopf bifurcation occurs at γ = γ c
1 (supercritical) and γ = γ c

2 (subcritical) [17].

The special values are: gth = 5.450 × 10-4 and T>(γ th) = 1.74, γ c
1 = 2.3196 × 10−2 and

T>(γ c
1) = 2.1029 , and γ c

2 = 2.5161 × 10−2 and T>(γ c
2) = 1.9443 . Figure 9(b) showed

that at γ 
 γ c
1 , E is very low. For g < gth (b), all initial conditions set in region marked

with Ic are attracted to the trivial equilibrium point Q̄0 , which is the unique equili-

brium, because there is not any positive solution for equation (5). Hence, there is a

threshold of the parameter g, denoted gth, below which all trajectories go to trivial

equilibrium.

In cancer disease, it is expected that a small number of epithelial cells must be

recruited in order to build up new vascularization from the sproutings. For small

values of g but higher than the threshold (g > gth), the dynamical trajectories follow

those shown in Figure 1. In Appendix C we illustrate the Hopf bifurcation, which

behavior is not compatible with real cancer. Considering number of tumor cells, con-

centration of growth factor and volume of blood vessels feeding the tumor, Agur et al.

[18] showed that Hopf bifurcation can not occur if ordinary differential equations are

used. But, Hopf bifurcation can occur if time-delay is encompassed. Our model pre-

sented Hopf bifurcation, however only in a range of values of parameter g which is not

compatible with biological findings.

Solid tumors need extra source of resources to attend the quick growth of cancer

cells. Hence, cancer can be settled in an organ if the capacity of sprouting from exist-

ing vascularization is sufficiently higher (g >gth). However, it must not be so higher in

order to avoid the death of the cancer diseased person due to normal cells being dis-

placed by cancer cells quickly.

Capacity of building up new vascularization - ε

The appearance of shunts from existing blood vessels to initiate new vascularizations

was described by the parameter g. New network of blood vessels is created by cancer

cells to provide nutrients and oxygen to support their growth. After a period of time δ-

1, new vessels are built up from the shunts. The capacity of mounting up new vessels

by cancer cells is analyzed by varying ε.

In Figure 11 we show the coordinates of the equilibrium points Q̄∗
<

(a) and Q̄∗
>

(b)

by varying ε. Both small T<and big T>decrease. In (b), due to the solution T>(ε = 0) =

5.0, we used equation (12) for f(T) and g(T) to obtain Ā(0) = 4.457.

In Figure 12, we show the bifurcation diagram, considering T̄ as a function of ε

(curve T in (a) and (b) of Figure 11). When g >0, there are not neither special nor

threshold values: when initial conditions are set in a small region I, trajectories are

attracted to the trivial equilibrium point Q̄0 , and for initial conditions set in regions II

and III, trajectories are attracted to Q̄∗
>

(a). This behavior results by the existence of

influx in equation for A, given by the term gP. Hence, if we let g = 0, a different bifur-

cation arises (b).

There is a threshold of ε, denoted εth, below which all trajectories go to trivial equili-

brium. For ε > εth, where εth = 5.250 × 10-2, we have similar behavior than that

observed in (a), but T>is increasing. In Figure 13 we show the dynamical trajectories

depending on the initial conditions for g = 0, changing only ε in 100 times the values

of parameters given in Table 2, or ε = 1.0. Dynamical trajectories are attracted to Q̄0
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(a) when T(0) = 0.416, while for T(0) = 0.417, to Q̄∗
>

(b). The dynamical trajectories in

(a) are similar to Figure 1(a). Increasing ε in 100-fold, T(0) decreased 2.5-fold.

Due to the influx gP, which is a linear term, in the equation for A, the parameter ε

that describes the mounting up of new vascularization does not present any special

behavior, except by the dependency with the initial conditions. However, when g = 0,

there arises a threshold of ε, called εth, above which new vascularizations promoted by

cancer cells can occur. The case g = 0 means that cancer cells are supported exclu-

sively by the new network of blood vessels originated from surrounding tissues for

instance, and the pre-existing one maintains its function of nourishing exclusively the

normal cells.

Angiogenesis is the process by which new blood vessels develop from an existing

vasculature, through endothelial cell sprouting, proliferation, and fusion. Hence,
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angiogenesis create new vascularization from sprouting originated in existing vascula-

ture, which was called pre-angiogenesis. Due to the endothelial cell sprouting pro-

moted by the vascular endothelial growth factor, cancer cells can grow even in the

absence of new vascularization (ε = 0), being the size of cancer cells big with higher

capacity of mounting up new vascularization (increasing ε).

Discussion
In foregoing section we have used for k3 and k4 values comparable to k1 and k2 in

order to enhance the results. In other words, cancer related cells are allowed to grow

comparable to the size of normal cells, which is not true. In real world, cancer related

cells are found in much smaller size, hence k3 and k4 must be lower than k1 and k2,

being the relative size depending on the organ of the body.

In Figure 14 we show dynamical trajectories using the initial conditions given in

equation (2). The values of the parameters are given in the column marked with ** of

Table 2, and other parameters are those given in fixed values. Dynamical trajectories
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Figure 13 Dynamical trajectories using ε = 1.0. Dynamical trajectories of the system (1) considering the
values of parameters given in Table 2, except ε = 1.0. The initial conditions determine the region of
attraction: trivial Q̄0 for T(0) = 0.416 (a), or non-trivial Q̄∗

>
for T(0) = 0.417 (b). The scales of vertical and

horizontal axes must be multiplied by the factors shown in the legends to obtain the actual values.
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Figure 14 Dynamical trajectories using alternative values. Dynamical trajectories of the system (1)
considering the fixed values of parameters given in Table 2, except those in the column marked with **.
The initial conditions determine the region of attraction: trivial Q̄0 for T(0) = 9.51 × 10-3 (a), or non-trivial
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>
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are attracted to Q̄0 (a) when T(0) = 9.51 × 10-3, while for T(0) = 9.52 × 10-3, to Q̄∗
>

(b). The cancer is triggered at around 400 days. Decreasing k3 in 50-fold (and some

values of other parameters were also changed), the initial value that divides two

attracting regions T(0) is around 100-fold lower than that shown in Figure 1. In Figure

1, T reaches the asymptotic value near k3 = 5.0, while in Figure 14, near k3 = 0.1. Then

all previous simulations can be translated to real world by appropriate scaling factors.

The initial amount of cancer cells originated from normal cells by mutations plays an

important role in the dynamics of cancer growth. When the interacting parameters b1,
g and ε increase, the small solution T<decreases. This decrease in the initial cancer

cells necessary to trigger the cancer is mediated by cancer cells that: (1) inhibit and

occupy normal cells habitat (b1); (2) produce higher amount of substances which cause

new blood vessels to grow (g); and (3) construct new blood networks to nourish them-

selves (ε). In opposite way, when the interacting parameter b2 increases, the small solu-

tion T<also increases. Hence, when normal cells inhibit the growth of cancer cells by

many factors as better fitness, increasing repairing action, and induction of apoptosis,

then the onset of cancer is avoided.

Another important aspect in the cancer growth is the appearance of thresholds. The

interacting parameters b2 and g present threshold values, respectively, β th
2 and gth.

Usually the systems that control the production of substances that induce the forma-

tion of new blood vessels to grow operate normally, which have as consequence that

cancer cells are unable to recruit the blood to supply their need to continue to prolif-

erate, and they fade out at this early stage. However, cancer cells may begin to produce

substances which cause new blood vessels to grow. This phenomenon is characterized

by the threshold of g. The threshold of b2 can be understood as the well functioning

repairing mechanisms and the low fitness of cancer cells in comparison with normal

cells. The threshold of ε arises only for g = 0, which mimics cancer cells being nour-

ished only by the new network of blood vessels originated from surrounding tissues by

vasculogenesis [14].

There are also critical values for parameters b1 and g. Critical value for b1 is a math-

ematical artefact, because it is meaningless biologically (in general k3 is very low in

comparison with constraint TE). With respect to g, there are two critical values, named

γ c
1 and γ c

2 . When g increases, the epithelial cells E decrease, and damped oscillations

appear. When g approaches to γ c
1 , the oscillations are less damped, and when sur-

passes γ c
1 , regular oscillations occur. However, the amplitude of regular oscillations

increases as g approaches to γ c
2 , resulting for lowest values of E, T and A reaching

zero values (see figures in Appendix C). When the lowest values are incapable to trig-

ger new burst of cancer cells, the oscillations cease and the trivial is the attractor. This

occurs when g surpasses γ c
2 . Again both γ c

1 and γ c
2 do not bear any biological mean-

ings, because the cure of cancer is due to the elimination of pre-existing network of

blood vessels. The biological meaningless sustained oscillations begin at γ = γ c
1 (the

supercritical Hopf bifurcation) and cease at γ = γ c
2 (the subcritical Hopf bifurcation).

For instance, considering values of Table 2, the column with **, we observe the same

behavior than that found in figures shown in Appendix C as g increases: (1) damped

oscillations around Q̄∗ for g = 0.75; (2) regular oscillations around Q̄∗ in the interval
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[0.76,0.80]; and (3) to the trivial equilibrium Q̄0 for g = 0.81. In the region of limit

cycle, we observed that: (1) C oscillates between (8.9, 9.0) for all g; E, P and A oscillate

between (0, M), where M increases as g increases; and (3) T oscillates between (m,0.1),

where m decreases as g increases. When m becomes very small, there is not burst of

cancer cells, limit cycle is destroyed, and cancer fades out for higher values of g. Notice

that the amplitude of oscillations of normal cells C is not affected, in opposite way of

epithelial cells E which drops to near 0.

Agur et al. [18] showed that ordinary differential equations admit Hopf bifurcation if

and only if at least one time-delay is introduced in the tumor growth modeling. They

then concluded that an appropriate candidate for describing the cancer growth is the

alternative that includes time-delays in the tumor proliferation or angiogenesis process.

They also concluded that further mathematical research is warranted for exploring

time-delays in the biologically realistic domains in the parameter spaces. Our model,

however, showed Hopf bifurcation without time-delay (in fact, there is an elapse of

time between pre-angiogenesis and angiogenesis cells), and sustained oscillations occur

only in biologically not realistic domains in the parameter space.

When the initial conditions, especially T(0) = Cm, are such that the non-trivial equili-

brium is attractor, the cancer cells reach the level T>. Cm increases with increasing b1,
decreases with b2 and ε. Cancer cells can grow and reach higher levels when they affect

negatively normal cells (b1), but reach lower levels when normal cells acts as a barrier

against them (b2). When g varies, T>increases in the initial phase (E decreases), and

then decreases (E is practically zero). The parameter g plays an equivalent role of b1,
but, restricted only to E, which decreases it dramatically. For lower g, there is sufficient

number of E to increase A, but epithelial cells are exhausted as g increases, and A

decreases (see equation (4)). Finally, T>decreases with ε, which comes out due to rela-

tive higher value of g. The behavior of ε is strongly dependent on g due to the influx

gP in equation for A: for lower g (also g = 0), T>increases with ε (see Figure 12(b)).

We introduced in the model an intermediate phase between epithelial cells and

angiogenesis cells. The purpose was to consider a delay in new blood vessel formation

(angiogenesis) by the period of time δ-1. This can be suppressed by letting δ ® ∞. In

Figure 15 we show dynamical trajectories using the initial conditions given in equation

(2), and values of the parameters given in the column marked with ** of Table 2, and

other parameters are those given in fixed values, except δ. Dynamical trajectories are

attracted: (1) for δ = 0.001, to Q̄0 (not shown) when T(0) = 2.492 × 10-1, while for T

(0) = 2.493 × 10-1, to Q̄∗
>

(a); and (2) for δ = 10.0, to Q̄0 (not shown) when T(0) =

6.608 × 10-3, while for T(0) = 6.609 × 10-3, to Q̄∗
>

(b). The cancer is triggered at

around 900 and 360 days, respectively for δ = 0.001 and 10.0. Including Figure 14(b),

the cancer trigger is delayed and initial cancer formation due to mutation must be

increased as δ decreases.

Conclusions
Many models [5][19] have already been proposed to describe cancer growth, and some

of those models have explicitly considered the spatial dimension [20-22], which has

been shown to play a key role in the understanding of various tumor growth processes.

Other models considered computational approach [23,24]. Spatial and computational
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modelings were analyzed numerically. However, we developed a zero-dimensional

model for the initial stages of tumor angiogenetic growth in order to obtain analytical

results.

In this model, various cell species are supposed to satisfy Lotka-Volterra growth laws.

Neither metastasis nor geometry of the solid cancer were taken into account. The

initial conditions (2), supplied to the dynamical systems (1), describe an impulsive sys-

tem: in a steady state, a perturbation is introduced at a time t = t0 = 0 as a form of

pulse (Dirac delta function). This pulse mimics normal cells mutating to cancer cells.

Cancer cells then promote the mounting of new network of blood vessels to nourish

them after an elapse of time δ-1. We introduced the pre-angiogenesis cells P to include

the time delay in order to completing functional angiogenesis.

From the model, we conclude that the dynamical trajectories depend on the initial

conditions supplied to the system, and also on interacting parameters. The cumulative

effects of mutation is essential to originate a cancer cell. This effect is captured by the

initial amount of cancer cells originating from normal cells, denoted by Cm. A suffi-

cient number of cells must suffer mutation in order to a concentration of Cm cells

really bear all necessary mutations to become effectively cancer cells. Our model is

spatially homogeneous, hence the initial number of cancer cells is Cm × V, where V is

the volume of an organ of human body. In extremely favorable environmental and

individual conditions, this initial number can be one.

Initially, cancer cells always can grow. But they fade out if they are unable to build

up new blood vessels in order to supply their needs. The capacity of inducting new

vascularization from existing blood vessel network must be efficient (g > gth), and bet-

ter fitness (increasing capacity of proliferation and capturing nutrients, decreasing mor-

tality, etc.) of cancer cells (b1 increases) in comparison with normal cells. Another

aspect of cancer growth is corruption of the repairing systems, and in some extend we

can think of that normal cells influencing negatively cancer cells play the role of

repairing (fixing mutated DNA and inducting apoptosis). The parameter b2 measures

the efficient action of repairing system, and the effect of decreasing this value result in

a higher level of corruption in the repairing system. Since cancer cells can recruit
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Figure 15 Dynamical trajectories using δ = 0.001 and δ = 10.0. Dynamical trajectories of the system
(1) considering the fixed values of parameters given in Table 2, except those in the column marked with
**. The initial conditions determine the region of attraction. For δ = 0.001 non-trivial Q̄∗ is attractor when
T(0) = 2.493 × 10-1 (a), while for δ = 10.0, when T(0) = 6.609 × 10-3 (b). The scales of vertical and horizontal
axes must be multiplied by the factors shown in the legends to obtain the actual values.
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epithelial cells to form new blood vessels, the capacity of proliferation of new vessels

(ε) does not present threshold value.

The parameter g can be thought of deviation of nutrients and oxygen from normal

cells to feed cancer cells. This deviation does not affect normal cells because the carry-

ing capacity of normal cells k1 does not depend on the size of network of blood ves-

sels. As g increases, the deviated network plus the new one mounted by the action of

angiogenesis effectors nourish the cancer cells. Hence, g = 0 means that pre-existing

network of blood vessels feeds normal cells, while the new network nourishes cancer

cells. In this case, the capacity of cancer cells in promoting new vascularization is

essential, which must surpass the threshold value εth. We obtained biologically feasible

non-trivial equilibrium points, that is, the coordinates of the equilibrium points are

positively defined. However, due to the simplifications assumed by model, the range of

variations of parameters like b1 and g must be restricted. When β1 > βc
1 we have an

equilibrium point Q̄c with C̄ = 0 , while for γ c
1 < γ < γ c

2 , we have limit cycle (sus-

tained oscillations) with E ~ 0, but for γ > γ c
2 , we have abrupt increase of E, and the

trivial equilibrium is attained. Both results can not be acceptable for cancer growth

description.

Some results obtained here can be understood as vasculogenesis (when g = 0) [14].

The dynamics of normal and cancer cells are similar than that presented in the model

proposed by Nani and Freedman [11]. However, we did not take into account the

action of immune system, while they did not take into account the angiogenesis. Agur

et al. [18] proposed to examine the occurrence of Hopf bifurcation in the clinical con-

text, that is, to check whether or not one can contain tumor growth by imposing time-

delays in the processes of neo-vascularization. Our results showed that Hopf bifurca-

tion occurs in biologically not realistic domains in the parameter space.

In a future work we will analyze a model in which the sizes of the normal and cancer

cells are allowed to depend on the overall network of blood vessels: normal and cancer

cells compete for nutrients provided by the pre-existing blood vessels, while cancer

cells have additional source originated from angiogenesis. If we take these effects into

account in the model, maybe Hopf bifurcation can be avoided. There are several ways

to improving model given in equation (1). One is the dependency of normal cells with

the size, which decreases with increasing g, of the existing vasculature.

For instance, we can deal with intermittent process instead of a continuous process

of sprouting from existing blood vessels. We can change the second and fourth equa-

tions by⎧⎪⎨
⎪⎩

d
dt

E = α2E
(

1 − E
k2

)
− �(t) = μ2E

d
dt

P = �(t) − δP − μ4P,

where F(t) is the total intermittent sproutings rate. One form of F(t) is

�(t) =
n∑

i=0

γiθ(t − τi)θ(τi+1 − t)ET,

where gi and τi (τ0 = 0) are, for i = 0, ···, n, respectively, the i-th sprouting rate and

the time interval during which sproutings occur. The Heaviside function θ(x) is such
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that θ(x) = 1 if x > 0, and θ(x) = 0, otherwise. To be intermittent, we must have g2i > 0

and g2i+1 = 0, that is, sproutings occur in the time interval [0, τ1] with rate g0, do not

occur in the interval [τ1, τ2], and so on. Another possibility is

�(t) =
n∑

i=0

siδ(t − τi)E,

where si and τi are, for i = 0, ···, n, respectively, the i-th proportion of epithelial cells

generating sproutings and the time at which sproutings occur. The proportion si can

depend on T. Vaccination campaigns against viral infections were analyzed considering

age interval vaccination (Heaviside function) [25] or a series of pulses (Dirac function)

[26].

Another improvement of the model (1) is the introduction of the immune response.

This can be done by introducing lymphocyte cells action as Nani and Freedman dealt

with [11].

In the model (1), chemotherapy that acts specifically against tumor cells can be

introduced easily. An intermittent chemotherapy can be introduced in the model by

adding one term in the first equation, that is,

d
dt

T = α3AT
(

1 − T
k3

)
− β2CT − μ3T − μQ

TQ
kq + Q

,

and adding an equation for the drug administration as

d
dt

Q = q(t) − lμQ
TQ

kq + Q
− μqQ,

where Q is the concentration of drug at time t, and μQ and μq are the rates of,

respectively, intake of drug by cancer cells and elimination of drug by body. The para-

meter l is the amount of drugs intake by one cancer cells, and q(t) is the drug adminis-

tration rate. The kinetics of drug intake follows Michaelis-Menten [27]. If q(t) = q, a

fixed value, we have a continuous regimen of administration. Intermittent drug admin-

istration can be considered. First, we can define

q(t) =
n∑

i=0

uiδ(t − τi),

where ui is, for i = 0, ···, n, the i-th concentration of drug administered at time τi.

Another is

q(t) =
n∑

i=0

qiθ(t − τi)θ(τi+1 − t),

where qi and τi are, for i = 0, ···, n, the i-th drug administration rate and the time

interval during which drug is administrated. To be intermittent, we must have q2i >0

and q2i+1 = 0.

In this paper we obtained threshold values, but we did not deal with the effects of

controlling mechanisms, which are left to a further work. Briefly, for instance, two

parameters can be used in order to control cancer growth. The thresholds of the para-

meters g and b2, named gth and β th
2 , can be managed as follows.
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Let us suppose that g and b2 have values above and below their respective thresholds.

To control cancer, parameters of the model (including dynamics of controls) must be

managed to increase gth to surpass g, and to decrease β th
2 to fall below b2. Another

way to control cancer is acting on the probability of sproutings becoming angiogenesis

cells, in order to decrease δ/(δ + μ4), which can be done by decreasing the rate of

transformation from pre-angiogenesis to angiogenesis cells δ and/or increasing the

mortality rate μ4 of pre-angiogenesis cells.

Appendix A: Non-trivial equilibrium point
The non-trivial equilibrium value of cancer cells corresponding to model (1), T̄ , is the

positive solution of the equation (5), that is, f(T) = g(T). The fourth degree polynomial

f(T) is such that⎧⎪⎨
⎪⎩

f (−∞) = −∞
f (0) = 0

f (+∞) = −∞,

and has three non-negative roots: 0, (a2 - μ2)/g = TE, and k3 = TA is a double root

(see equation (7)). Figure 16 shows the qualitative behavior of f(T): TA <TE (a), and TA

>TE (b). Notice that Figure 16(a) corresponds to higher carrying capacity for cancer

cells.

The function g1(T) is such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(−∞) = +∞

g1(0) = g0 = k3

[
μ3

α3
+

β2k1

α3α1
(α1 − μ1)

]
> 0

g1(+∞) = −∞,

(A:1)

and has three positive roots: ε/μ5, k3 = TA, and
α1μ3

β1β2k1
+

α1 − μ1

β1
= Tg (see equa-

tions (7) and (8)). The function g2 (T) is such that⎧⎨
⎩

g2(−∞) = −∞
g2(0) = 0

g2(+∞) = +∞,

Cancer cells (T)

f(T)

k30

(a)

TE

Cancer cells (T)

f(T)

TE0 k3

(b)

Figure 16 Qualitative behavior of f(T). Qualitative behavior of f(T), with k3 <TE (a) and k3 > TE (b).
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and has two non-negative roots: 0, and
α1μ3

β1β2k1
+

α1 − μ1

β1
= Tg (double root). The

dominant terms of the third degree polynomials g1(T) and g2(T), when T ® ± ∞, are⎧⎪⎪⎨
⎪⎪⎩

g1(T) = v1T3; with v1 = −εβ1β2k1

μ5α3α1

g2(T) = v2T3; with v2
ε(β1β2k1)2k3

μ5(α3α1)2k4
.

The third degree polynomial g(T) is sum of g1(T) and g2(T). Notice that, for T ≥ 0,

we have g2(T) ≥ 0, while g1(T) changes signal. Hence, the effect of g2(T) in the sum (g

(T)) is the increasing in the values of g1(T), except at T = Tg, at which we have g1(Tg)

= g2(Tg). The asymptotic behavior of the polynomial g(T) depends on the velocities of

increasing v2 and v2 (or coefficients) of T3. When b1 b2 < a3 a1 k4/(k1 k3) (generically

referred to as weak interaction between normal and cancer cells when values of b1 and
b2 are proportional), in which case Tg is higher, we have⎧⎨

⎩
g(−∞) = +∞

g(0) = g0

g(+∞) = −∞.

It can be shown that there is one solution or three positive solutions. When b1 b2 >

a3 a1 k4/(k1 k3) (generically referred to as strong interaction between normal and can-

cer cells when b1 and b2 are proportional), in which case Tg is lower, we have⎧⎨
⎩

g(−∞) = −∞
g(0) = g0

g(+∞) = +∞,

and there is one negative solution and two positive solutions. In both cases Tg is

always a positive root of g(T), and g0 is given by equation (A.1). The existence of other

positive solutions depends on the relative position of the roots of g1(T) and the coeffi-

cients of the polynomials.

Figure 17 shows the qualitative behavior of g(T) for small b1 b2 (weak interaction):

when Tg is the greatest root of g1(T), with three positive solutions (a), and one solution

(b); when Tg is between the roots ε/μ5 and k3, with three positive solutions (c); and

when Tg is the smallest root of g1(T), with three positive solutions (d). T1 and T2, the

roots of g1(T), stand for ε/μ5 and k3, depending on the relative positions between them.

Figure 17(a) and 17(b) shows clearly the effect of g2(T) increasing g1(T) and changing

the roots of g(T), named Tg
1 and Tg

2 : Tg
1 > T1 and Tg

2 < T2 , and both Tg
1 and Tg

2 disap-

pear when g2(T) is sufficiently higher.

The positive solution of the equation (5) is the intersection between the curves f(T)

and g(T), or roots of f(T)-g(T). Notice that:

1. We do not have negative solutions, because f(T) < 0 and g(T) > 0, for T < 0,

which implies that f(T) - g(T) < 0. At T = 0 we have f(0) - g(0) = -g0 < 0.

2. We have f(∞) - g(∞) ® -∞, even when g(∞) ® +∞, because f(T) is fourth degree

polynomial, and g(T), third degree.
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3. f(T) - g(T) is a continuous function, a fourth degree polynomial, where there is

not solution for T < 0, f(0) - g(0) < 0 and f(∞) - g(∞) < 0. Hence, by the intermedi-

ate value theorem, we have 0, 2 or 4 positive solutions in the interval (0, ∞).

4. We are searching biologically feasible equilibrium, hence, according to equation

(7), T̄ must be lower than the lowest root Tm of f(T), that is, T̄ ∈ (0, Tm) , where

Tm = min {(a2 - μ2)/g, k3}, the minimum between (a2 - μ2)/g and k3. Therefore, in

the interval (0, Tm) we have at most 2 positive solutions.

Figure 18 shows qualitative behavior of f(T) - g(T). Figures 18(b) and 18(c) (first two

lower roots) show two positive solutions satisfying T̄ < TA, T̄ < TE and T̄ < Tg . Addi-

tionally, the constraint T̄ < TC are satisfied, once T̄ < Tg . Hence, biologically feasible

solutions are at most 2. However, Figures 18(c) (last two higher roots) and 18(d) show

two positive solutions not biologically feasible, because they are greater than the con-

straint TA = k3.

When there is not any positive solution for f(T) - g(T) = 0, the unique equilibrium

point is the trivial Q̄0 . In the case of two positive solutions, the small root (T<) forms

the unstable equilibrium Q̄∗
<
, and the big one (T>) forms a possibly stable (let us for
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Figure 17 Qualitative behavior of g(T). Qualitative behavior of g(T), for small b1 b2 (weak interaction): Tg
is the greatest root of g1(T), with three positive solutions (a), and one solution (b); Tg is between the roots
ε/μ5 and k3, with three positive solutions (c); and Tg is the smallest root of g1(T), with three positive
solutions (d). T1 and T2, the roots of g1(T), stand for ε/μ5 and k3.
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simplicity say that it is stable) equilibrium Q̄∗
>
. Between two stable equilibria Q̄∗

>
and

Q̄0 (this always exists and is stable), we have an unstable point Q̄∗
<
. We call as the

‘break-point’ [28,29] the unstable equilibrium point Q̄∗
<
, which separates two attracting

regions containing one of the equilibrium points Q̄∗
>

and Q̄0 . In another words, we

have a hyper-surface obeying, e.g., h(C̄(T<), Ē(T<), T<, P̄(T<), Ā(T<)) = 0, generated by

the coordinates of the equilibrium point Q̄∗
<

such that one of the equilibrium points

Q̄∗
>

and Q̄0 is an attractor depending on the relative position of the initial conditions

supplied to the dynamical system (1) with respect to the hyper-surface h [30].

Appendix B: The local stability of the non-trivial equilibrium Q̄c

Let us show that the matrix A, given by equation (14), is an M-matrix [31] for big non-

trivial equilibrium Q̄c
>
, where T>is one of the coordinates.

Definition. We say that the n × n matrix A = [aij] is a non-singular M-matrix if aij ≤

0, i ≠ j, and there exists a matrix B ≥ 0 and a real number s > 0 such that

A = sI − B and s > (ρ(B),

where I is the identity matrix and r is the spectral radius [32].
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Figure 18 Qualitative behavior of f(T) - g(T). Qualitative behavior of f(T) - g(T): none (a), two (b) and four
(c) solutions. In (d), we show two positive solutions not biologically feasible, because they are greater than
the constraint TA = k3.
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Or, equivalently:

Proposition 1. A is a non-singular M-matrix if and only if the real part of its eigen-

values is greater than zero.

Proposition 2. A (elements aij) is a non-singular M-matrix if and only if the diagonal

entries are positive, and there exists a positive diagonal matrix D (diagonal elements di
> 0), such that AD is strictly diagonal dominant, that is,

aiidi >
∑
j	=i

∣∣aij
∣∣dj,

for i = 1, 2, ..., n.

According to the first part of Proposition 2, the matrix A has positive diagonal ele-

ments, see equation (14).

The second part of Proposition 2 is written as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α2

k2
Ēd1 > γ Ēd2

α3

k3
ĀT̄d2 >

α3

k3
T̄(k3 − T̄)d1

(μ4 + δ)d3 > γ Td1 + γ Ēd2(
δ

P̄

Ā
+

ε

k4
ĀT̄

)
d4 >

ε

k4
Ā

∣∣k4 − Ā
∣∣ d2 + δd3,

(B:1)

because Ā can be greater than k4. The equilibrium values correspond to the point

Q̄c , given by equation (9).

Let us define⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 =
γ k2 + ϕ

α2
d2 = 1

d3 =
γ 2k2T̄ + γ α2Ē + (γ T̄α2)ϕ

α2(μ4 + δ)

d4 =
Ā − ϕ

k3 − T̄
,

where � > 0. By these definitions, the first three inequalities of equation (B.1) hold.

To prove the last inequality, we substitute above definitions, and we obtain

0 < ϕ <
ϕn

ϕd
, (B:2)

where the numerator �n and denominator �d >0 are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕn =
(

δ
P̄

Ā
+

ε

k4
ĀT̄

)
Ā

k3 − T̄
− ε

k4
Ā

∣∣k4 − Ā
∣∣

−δγ k2(α2 − μ2)
α2(μ4 + δ)

ϕd =
(

δ
P̄

Ā
+

ε

k4
ĀT̄

)
1

k3 − T̄
+

δ(γ T̄ + α2)
α2(μ4 + δ)

,

with the last term of the numerator being obtained using the relation

γ 2k2T̄ + γ α2Ē = γ k2(α2 − μ2),
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which is valid in the equilibrium. Since �d > 0, if we show that �n > 0, then there

exists a positive number �.

Let us consider the case where there are two positive solutions for the equation f(T)

= g(T). In this case, we show that the bigger equilibrium Q̄c
>
, with coordinate T>as

solution of (5), is stable. Additionally, we assume that Ā >k4, which seems reasonable

since the equilibrium Q̄c is stable for T̄ > (α1 − μ1)/β1 = TC . Substituting the coordi-

nates of the equilibrium Q̄c , the numerator of � can be written as

ϕn =
Ā

(k3 − T̄)
2 �(T̄),

with

�(T̄) =
ε

k4α3
�1(T̄) − γ δk2α3

α2(μ4 + δ)μ3k3

× (
k3 − T̄

)2
�2(T̄),

(B:3)

where⎧⎪⎨
⎪⎩

�1(T̄) = k4α3T̄2 − 2k3(k4α3 − μ3)T̄

+k2
3(k4α3 − μ3)

�2(T̄) = γ T̄2 − 2(α2 − μ2)T̄ + (α2 − μ2),

and we must show that �(T̄) > 0 , for higher value of T̄ , that is, T̄ = T> . Let us

assume that k4a3 >μ3. Then, we have �(T̄) > 0 , for T̄ ≥ 0 , because the discriminant

of �1(T̄) is


1 = −4k2
3μ3(k4α3 − μ3) < 0.

Hence, �2(T̄) determines the existence of positive �n. The discriminant of �2(T̄) is


2 = 4γ (α2 − μ2)(TE − TA),

where TE and TA are given in equation (7). We have two possibilities. First, when TE

<TA, we have �2(T̄) > 0 , for all T̄ ≥ 0 , and �(T̄) > 0 for

ε > εmin,

where

εmin =
γ δk2α3k4α3

α2(μ4 + δ)μ3k3
(k3 − T>)2 �2(T>)

�1(T>)
. (B:4)

Hence, when ε >εmin, �n > 0 and we have a positive number � obeying equation

(B.2). Second, when TE > TA, �2(T̄) has two positive solutions F2<and F2>given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2< =
α2 − μ2

γ
−

√
α2 − μ2

γ

(
α2 − μ2

γ
− k3

)
= TE − √

TE(TE − TA)

�2> =
α2 − μ2

γ
+

√
α2 − μ2

γ

(
α2 − μ2

γ
− k3

)
= TE +

√
TE(TE − TA),

and we have �2(T̄) ≤ 0 , for �2< ≤ T̄ ≥ �2> ; otherwise, �2(T̄) > 0 . Notice that

F2>is out of the range of feasibility, once F2>>TE. We know that

(α1 − μ1)/β1 < T̄ < k3 , but the bigger solution under consideration is

T> = (α1 − μ1)/βc
1 = Tc

E , for β1 ≥ βc
1 . It is easy to show that F2(k3) <0; but,

�2(Tc
E) ≤ 0 , if Tc

E ≥ �2< , and �2(Tc
E) > 0 , if Tc

E < �2< . Hence, �2(T̄) ≤ 0 if

Tc
E < �2< . Hence, �(T̄) > 0 , for T̄ ≥ 0 , when Tc

E ≥ �2< , or when Tc
E ≥ �2< and

T̄ ≥ �2< ; and �(T̄) > 0 , when Tc
E < �2< and Tc

E < T̄ < �2< for ε > εmin.

Summarizing, �n > 0 occurs, in order to have positive number �:

1. TA <TE or g < (a2 - μ2)/k3 - weak capacity of recruitment of the normal epithe-

lial cells by cancer cells. We have:

1.a If Tc
E ≥ �2< : ϕn > 0 without restriction about T>.

1.b If Tc
E < T̄ < �2< : we have two possibilities

1.b.1 If T>>F2<: �n > 0 without restriction about T>.

1.b.2 If T><F2<: �n > 0 if ε > εmin, where T>satisfies εmin, equation (B.4).

Higher proliferation of angiogenesis cells must occur.

2. TA >TE or g > (a2 - μ2)/k3 - strong capacity of coopting normal epithelial cells by

cancer cells: �n >0, if ε >εmin, where T>satisfies εmin.

When g is small, the big equilibrium Q̄c
>
, with one coordinate T>, is stable without

conditions (cases 1.a and 1.b.1). However, for sufficiently higher values of g, the big

equilibrium point Q̄c
>

can be unstable (case 2), in which case Hopf bifurcation can

occur (see Appendix C).

In the case of the small equilibrium Q̄c
<
, with one coordinate T<, it is unstable.

Assuming that Ā < k4, we show here that A corresponding to small T<is not an M-

matrix (we are not proving that Q̄c
<

is unstable). In this case, equation (B.3) becomes

�(T̄) = − ε

k4α3
�1(T̄) − γ δk2α3

α2(μ4 + δ)μ3k3

× (k3 − T̄)2�2(T̄),

where{
�1(T̄) = k4α3(T̄ − k3)

2 − μ3k2
3

�2(T̄) = γ T̄2 − 2(α2 − μ2)T̄ + (α2 − μ2).
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The bigger roots of �1(T̄) and �2(T̄) are not biologically feasible, because they are,

respectively, higher than k3 and (a2 - μ2)/g. Let us define Tm = min{T1
<, T2

<} , where
min{T1

<, T2
<} is the minimum between the small roots of, respectively, �1(T̄) and

�2(T̄) given by T1
< = k3

(
1 −

√
1 − μ3

k4α3

)
, assuming that k4 ≥ 1, and

T2
< = TE

(
1 −

√
1 − TA

TE

)
, assuming that TE ≥ TA. Hence, if T̄ < Tm , we have

�(T̄) > 0 and there is not a positive number �. Notice that, when TE <TA, we have

�2(T̄) > 0 , and it is enough to satisfy T̄ < T1
<
.

Appendix C: Hopf bifurcation
In Figures 19, 20 and 21 we illustrate the Hopf bifurcation (see Figure 10 in the main

text), using values of parameters given in Table 2, except g assuming higher values.

The following figures are mathematical results, not cancer in an organ.

Dynamical trajectories are shown in Figure 19 for g near γ c
1 : γ1 = 2.31 × 10−2 � γ 1

c

and γ2 = 2.32 × 10−2 � 10−2 � γ c
1 . When T(0) = 0.44, trajectories of both cases go to

Q̄0 (trajectories similar to Figure 1(a), not shown). When T(0) = 0.45, dynamical tra-

jectories for g1 go to stable Q̄∗
>

(a), while for g2, they oscillate around unstable Q̄∗
>

(b), in which case limit cycle arises.

Now, we show the dynamical trajectories for g near γ c
2 . Again, for

γ3 = 2.519 × 10−2 � γ c
2 and γ4 = 2.520 × 10−2 � γ c

2 , when T(0) = 0.41, trajectories of

both cases go to Q̄0 (trajectories similar to Figure 1(a), not shown). When T(0) = 0.42,

Figure 20 shows dynamical trajectories for g3 oscillating around unstable Q̄∗
>
. Notice

that the amplitude of regular oscillations of the variables is very high: C and E (a), T

(b), P (c) and A (d). For the same T(0) = 0.42, we show the dynamical trajectories for

g4 and g5 = 2.519675 × 10-2, which is slightly higher than γ c
2 . In both cases we have
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Figure 19 Dynamical trajectories using g near γ c
1 . Dynamical trajectories of the system (1) considering

the values of parameters given in Table 2, except g near γ c
1 . When T(0) = 0.45 (for T(0) = 0.44 both cases

go to Q̄0 ), Q̄∗
>

is the attracting point for g = 2.31 × 10-2 (a), and limit cycle with small amplitude
circulating unstable Q̄∗

>
appears for g = 2.32 × 10-2 (b). The scales of vertical and horizontal axes must be

multiplied by the factors shown in the legends to obtain the actual values.
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Q̄∗
>
, and Figure 21 shows trajectories going to Q̄0 with different number of oscilla-

tions: for g4 (a), we have one oscillation, while for g5, three oscillations, showing C and

E (b), T (c), P and A (d). When γ > γ c
2 , we observe that E goes initially to zero, and,

after 400 days, increases abruptly, according to Figure 21(a). In Figure 5(a) we showed

that C has similar behavior.

Comparing Figures 19, 20 and 21, we observe that, as g increases, the real part of the

complex eigenvalues decreases (see Table 3), and damped oscillations persist for longer

times. At γ = γ c
1 , real part is zero. For instance, a pair of complex number has real

part -2.3 × 10-7 at g = 2.3196 × 10-2, and +9.0 × 10-7 at g = 2.3197 × 10-2. In both

cases, two of them are complex number with negative real part and one negative num-

ber. As g increases sinceafter γ c
1 , amplitude of the limit cycle increases, and at γ = γ c

2

disappears. Observe that a finite number of oscillations occurs before reaching the tri-

vial equilibrium. The increasing in the amplitude of regular oscillations resulted in an

unsustainable value of T>, and, hence, this value (due to being lower than a critical

value) can not trigger new burst of cancer cells.
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Figure 20 Dynamical trajectories using g near but lower than γ c
2 . Dynamical trajectories of the

system (1) considering the values of parameters given in Table 2, except g near but lower than γ c
2 . When

T(0) = 0.42 (Q̄0 is attracting for T(0) = 0.41), limit cycle with large amplitude circulating unstable Q̄∗
>

occurs for g = 2.519 × 10-2. Regular oscillations are observed in all variables: C and E (a), T (b), P (c) and A
(d). The scales of vertical and horizontal axes must be multiplied by the factors shown in the legends to
obtain the actual values.
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Numerical results regarding to g showed that there is a threshold for g, plus two cri-

tical values. For small values, g <gth, cancer cells can not induce new blood vessels, and

cancer fades out. As g increases, amplitude of damped oscillations increases and

appears stable limit cycle. The limit cycle separates cancer state (Q̄∗ ) to cure (Q̄0).

However, the cure occurs at the expense of death of cancer cells due to elimination of

the pre-existing network of blood vessels. This phenomenon occurs due to the absence

of dependency between normal cells (C) and pre-existing epithelial cells (E) in the car-

rying capacities k1 and k2.
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Figure 21 Dynamical trajectories using g near but greater than γ c
2 . Dynamical trajectories of the

system (1) considering the values of parameters given in Table 2, except g near but greater than γ c
2 .

When T(0) = 0.42 (Q̄0 is attracting for T(0) = 0.41), limit cycle disappears for g = 2.520 × 10-2. Being Q̄∗
>

unstable, the dynamical trajectories go to trivial Q̄0 after one oscillation (a). However, the number of
oscillations increases if g is very close to γ c

2 . For g = 2.519675 × 10-2 and T(0) = 0.42, Q̄0 is attained after
three oscillations: C and E (b), T (c), P and A (d). The scales of vertical and horizontal axes must be
multiplied by the factors shown in the legends to obtain the actual values.
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