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Abstract

Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed
costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to
select for growth traits; however, genetic improvement is slow over generations. Single nucleotide polymorphisms (SNPs)
explain 90% of the genetic differences between individuals; therefore, they are most suitable for genetic evaluation and
strategies that employ molecular genetics for selective breeding. SNPs found within or near a coding sequence are of
particular interest because they are more likely to alter the biological function of a protein. We aimed to use SNPs to identify
markers and genes associated with genetic variation in growth. RNA-Seq whole-transcriptome analysis of pooled cDNA
samples from a population of rainbow trout selected for improved growth versus unselected genetic cohorts (10 fish from 1
full-sib family each) identified SNP markers associated with growth-rate. The allelic imbalances (the ratio between the allele
frequencies of the fast growing sample and that of the slow growing sample) were considered at scores .5.0 as an
amplification and ,0.2 as loss of heterozygosity. A subset of SNPs (n = 54) were validated and evaluated for association with
growth traits in 778 individuals of a three-generation parent/offspring panel representing 40 families. Twenty-two SNP
markers and one mitochondrial haplotype were significantly associated with growth traits. Polymorphism of 48 of the
markers was confirmed in other commercially important aquaculture stocks. Many markers were clustered into genes of
metabolic energy production pathways and are suitable candidates for genetic selection. The study demonstrates that RNA-
Seq at low sequence coverage of divergent populations is a fast and effective means of identifying SNPs, with allelic
imbalances between phenotypes. This technique is suitable for marker development in non-model species lacking complete
and well-annotated genome reference sequences.
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Introduction

Traits associated with fast and efficient growth have a major

influence on the profitability of food animal production including

aquaculture species. In addition, optimizing genetic6diet interac-

tions to improve feed efficiency has the potential to reduce

aquaculture effluents leading to more environmentally sustainable

production. Successful selection for optimal growth rate or body

weight is a key objective in aquaculture breeding programs.

Traditional phenotype-based selection is typically used to select for

growth traits, however, it requires several generations to optimize

genetic improvement. In addition, insight into the genetic bases of

growth can be used to make better selection decisions. Molecular

genetics have been used to identify several genes and markers

associated with quantitative traits including genetic variation

explaining phenotypic differences in growth [1,2].

Genetic maps characterizing the inheritance patterns of traits

and markers have been developed and used for a wide range of

species, including fish. Genetic maps are used to target discovery

of allelic variation affecting traits with the ultimate goal of

identifying DNA sequences underlying phenotypes [3]. Markers

used in genetic mapping have been identified by a range of

molecular techniques such as RFLPs, RAPDs, AFLP, microsatel-

lites etc. However, these markers are cumbersome to use in high

throughput genotyping protocols because they exist in low density

and may not be widely and evenly distributed in the genome.

Alternatively, SNPs are abundant and distributed widely and

evenly throughout the genome. It is estimated that 90% of the

genetic variation in human arises from SNPs and 4–5 SNPs for

every 1000 base pairs translate to 10,000,000 points of variation

[4]. SNPs are co-dominantly inherited, and highly adaptable to

large-scale automated genotyping. Therefore, they are most

suitable for genome-scan association studies [5]. SNPs found

within or near coding sequences, called cSNPs [4], are of

particular interest because they are expected to modify the

function of a protein. In addition, crossing over is less likely to
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separate cSNP markers from genes compared to non-cSNPs.

Therefore, this class of SNPs is especially useful for species without

complete genome sequences/assemblies such as aquaculture

species. SNPs serve as suitable markers for mapping, in

comparative genome studies and in marker assisted selection

(MAS) of important traits [5,6].

Recent developments of the next-generation sequencing tech-

nologies have allowed whole transcriptomes sequencing (RNA-

Seq) and SNPs discovery at fast, accurate and affordable scale.

This study tests the hypotheses if RNA-Seq can be used in a non-

model species to discover true SNPs with allelic imbalances

between two phenotypes in a selection population, and identify

genetic markers and candidate genes suitable for association

studies.

Rainbow trout is one of the most intensively studied fishes in all

research areas and is the most cultivated cold freshwater fish in the

US [7]. It is a member of the Salmonidae family, which has been

widely introduced around the world. Considerable biological

knowledge has been developed for this species as a result of their

widespread cultivation as a food and sport fish [8]. More is known

about the physiology and biology of rainbow trout than any other

fish species, and it serves extensively as a research model for other

economically important fish such as Atlantic and Pacific salmon

and char species [7]. The increased interest in using genomics

tools for salmonids research and development is reflected in the

considerable accumulation of genomic resources for rainbow trout

in the last few years [9].

The molecular and genetic basis of growth traits is inadequately

understood in fish [10]. A family-based selection program was

initiated in 2002 at the USDA, ARS, National Center for Cool

and Cold Water Aquaculture (NCCCWA) to improve growth

performance in rainbow trout using traditional genetic selection.

The objective of the current study was high-throughput discovery

of growth-associated cSNP markers using next-generation se-

quencing of the whole transcriptome, RNA-Seq, and validation

and characterization of these markers in a population of rainbow

trout from the NCCCWA selection program. This study examined

the association of these markers with variation in growth rate in a

three-generation parent/offspring panel of rainbow trout. The

study identified markers and genes associated with genetic

variation in growth traits.

Methods

Ethics Statement
Institutional Animal Care and Use Committee of The United

States Department of Agriculture, National Center for Cool and

Cold Water Aquaculture (Leetown, WV) specifically reviewed and

approved all husbandry practices used in this study (IACUC

approval #056).

Growth-selected Line and Fish Population
This study was carried out using fish from a growth-selected line

at NCCCWA breeding program [11]. Briefly, this synthetic line

was developed beginning in 2002 by crossbreeding 7 founder

strains with known genetic diversity and domestication history.

The main strains that contributed to the population were 1)

University of Washington, Donaldson; 2) Kamloops/Puget Sound

Steelhead cross; 3) College of Southern Idaho, House Creek; and

4) Ennis NFH Shasta strain. The growth synthetic line is a 2-yr-old

winter/spring-spawning population that became a closed popula-

tion in 2004 and since that has gone through 3 generations of

merit-based genetic selection.

Each generation, full-sib families were produced from single-

sire6single-dam matings. Eggs were reared in spring water, and

water temperatures were manipulated between approximately 7

and 13uC to synchronize hatch times. Each family was stocked

separately in 200-L tanks at a density of approximately 600

alevins/tank and fish were hand-fed a commercial fishmeal-based

diet (50 to 55% protein, 15% fat; Ziegler Bros Inc., Gardners, PA)

beginning at swim-up. Fish were randomly culled every month to

maintain stocking densities ,50 kg/m3. Neomales were developed

from a subset of alevins from the 2008 year class by feeding 2 mg/

kg of 17a-methyltestosterone (Sigma-Aldrich, St. Louis, MO) for

60 d post swim-up, and the masculinized females were used as

sires for the following generation. At about 5-months old, fish were

anesthetized using 100 mg/L of tricaine methanesulfonate

(Tricaine-S, Western Chemical, Ferndale, WA) and uniquely

tagged by inserting a passive integrated transponder (Avid

Identification Systems Inc., Norco, CA) into the dorsal muscula-

ture, and tagged fish were combined and reared in 1,000-L

communal tanks using flow-through spring water (ambient

temperature ,12.5–13.7uC). Fish were fed a commercial fish-

meal-based diet (42% protein, 16% fat; Ziegler Bros Inc.,

Gardners, PA) using automatic feeders (Arvotec, Huutokoski,

Finland). Initially, young fish were fed at a daily feeding rate ,
2.5% of body weight (BW), which later was gradually reduced to

approximately 0.75% of BW.

Individual BW were measured at four ages, approximately 6

(Weight1), 7 (Weight2), 9 (Weight3) and 12 (Weight4) months

post-hatching, each generation using a Biomark tagging station

(Biomark, Boise, ID). Fish from three generations were included in

this study; breeding years, 2006, 2008 and 2010. An index of 10-

mo BW estimated breeding value (EBV) and thermal growth

coefficient TGC EBV was used as selection criterion in the 2008

and 2010 generations, whereas the 10-mo BW EBV was used as

selection criterion in the 2006 generation using MTDFREML

[12]. Each generation, mating decisions were made to maximize

genetic gain while constraining the rate of inbreeding to #1% per

generation using EVA evolutionary algorithm [13]. Data from

masculinized fish were removed from the growth analysis dataset.

RNA-Seq
RNA-Seq and SNP discovery were carried out using muscle

tissues collected from 10 fast growing (Average weight at ,14

months, 1,078.6 g, SD = 87.9 g) and 10 slow growing (Average

weight 643.7 g, SD 147.4 g) female rainbow trout. Each group

represents a full-sib family from the 2008 hatching year of the

above-mentioned growth-selected line from the NCCCWA

breeding program. Tissues were flash frozen in liquid nitrogen,

shipped on dry ice to WVU, then stored at 280uC until total RNA

isolation. Total RNA was isolated from each sample using

TRIzolTM (Invitrogen, Carlsbad, CA). Equal masses of total

RNA from the samples of each group were pooled and used for

RNA-Seq sequencing.

Sequencing, data processing and RNA-Seq

analysis. cDNA libraries were prepared and sequenced on an

Illumina Genome Analyzer (single-end, 36 bp read length) at the

National Center for Genome Resources (Santa Fe, New Mexico)

as previously described [14]. Alpheus sequence variant detection

pipeline [15] was used to map sequence reads to a reference

transcriptome that we previously sequenced and assembled from a

double-haploid rainbow trout fish [16]. The default settings in

Alpheus were used for read mapping. The SNP detection

stringency conditions include at least 4 reads calling the variant,

.20% reads calling the variant and .20 Quality score [17].

Putative SNPs assumed to be associated with fast growth were
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considered at allelic imbalances scores (the ratio between the allelic

frequencies of the fast growing fish sample and that of the slow

growing fish sample) .5.0 as an amplification and ,0.2 as loss of

heterozygosity [18].

Marker validation and genotyping. Putative SNPs identi-

fied by RNA-Seq as presumably associated with growth traits were

initially validated by individually genotyping fish of the discovery

panel (fast versus slow growing fish, 10 fish from each group as

described above) using the Sequenom iPLEX Genotyping

platform. Association of markers with growth traits were further

estimated by genotyping 778 individuals of the growth-selected

line at NCCCWA; 661 fish from hatch year 2010 belonging to 40

families (all available 38 full-sib [with no maternal or paternal

relationship] and 2 paternal half-sib families) in addition to fish

parents (78 fish from hatch year 2008) and grandparents (39 fish

from hatch year 2006).

Statistical Analysis of Markers’ Associations with Growth
Traits

Body weight was recorded on each animal at approximately 6,

7, 9 and 12 months post-hatching months post-hatching. The

specific growth rate (SGR) was estimated as:

SGR~½Ln(BWfinal-BWinitial)=Time in days� � 100

Where evaluation times were 1 = 170 d, 2 = 218 d, 3 = 282 d and

4 = 372 d post-hatching; BW is body weight; and Ln is the natural

logarithm.

Model selection and normality test. Before performing

association analysis, variables with significant contribution to the

predictive power of growth trait models (Weight1-4), were identified

by performing multivariable regression analysis using two linear

models that included random family, fixed effect tank, and

continuous covariates (age; and founder-strain composition Shasta

[SH], Troutlodge [TL] and University of Washington [UW]) using

STEPWISE model selection with SAS procedure REG [19]. Model

A included all 6 variables (family, tank, age, SH, TL and UW); and

Model B included tank, age, SH, TL and UW. The STEPWISE

model selection was performed using only YC2010 offspring

(n = 1657 animals) from the growth selected families (i.e., growth

selection line). Whenever possible, we included the random family,

fixed effect tank and covariates age and founder-strain composition

SH in the linear model of association analysis to [20] minimize the

variance in the sampled population; [21] to account in the

association analysis for the effects of variables that have significant

contribution to the predictive power of growth trait models; and

[22] to ensure that the association signals detected here were mainly

due to marker effects.

Growth traits (Weight1-4) were tested for departure from

multivariate normal (MVN) distribution and estimated basic

statistical measures for the response variables using SAS procedure

UNIVARIATE [19].

Association analysis of nuclear SNPs with growth. From

the YC2010 progeny of 40 growth selected families with their

corresponding parents and grandparents (n = 1657 animals), a

subset of offspring (,17 siblings/family) were random selected

(including their parents and grandparents; total of n = 877 animals)

to genotype with the validated nuclear SNPs. The marker

genotype data from the validated SNPs that had a genotype

completion rate ,0.70 and had monomorphic alleles were filtered

out. After filtering out poor quality marker genotype data, we had

a marker genotype dataset with 30 validated nuclear SNPs, which

was used in association analysis with growth traits.

Three different algorithms of family-based association analysis

were used in the association analysis of the validated nuclear SNPs

with growth traits. The rate of false positive claims of association

was reduced by following up the initial analysis with different

methods of association analysis. Family-based association analysis

methods were used to detect association signals that are robust to

population stratification [21]. First, we performed family-based

association analysis with PLINK version 1.07 [22]. The t-statistic

for regression of phenotype on allele count (by.x), and the

asymptotic P-value for the t-statistic were estimated; and the

empirical P-value was estimated using 20,000 permutations. The

association results from PLINK should be taken with caution

because variables (tank, age and SH) with significant contribution

to the predictive power of growth trait models were not accounted

in the association analysis. The current version of PLINK has a

limitation of not allowing the inclusion of fixed effects and

covariates in the linear model of family-based association analysis

when using continuous quantitative traits (‘‘qfam’’ function).

Second, we performed a family-based association analysis using

the R package genome-wide association analysis with family data

(GWAF) [23]. We estimated the asymptotic P-value for the test

statistic distributed as x2 with 1 and 2 DF for dominant and

general model, respectively, and the proportion of phenotypic

variance explained by each SNP (h2
q). The covariates age and SH

and the fixed effect tank were included in the linear model of

association analysis for all growth traits (Weight2-4). Third, family-

based quantitative trait linkage disequilibrium (QTLD), Bayesian

quantitative trait nucleotide (BQTN) and quantitative trait

disequilibrium QTDT analyses were performed with SOLAR

version 4.0 [21,24]. The BQTN association analysis was

performed using SNP genotypes and haplotypes; the haplotypes

were estimated with SIMWALK2, which is called internally by

SOLAR. The BQTN method of association analysis can be very

powerful and useful to identify genetic variants that have

functional significance given a comprehensive list of SNPs in

well-chosen candidate genes [25,26].

Association analysis of mitochondrial SNPs with

growth. The same sample of n = 877 animals used above in

the association analysis of nuclear SNPs was genotyped with the

validated mitochondrial SNPs. After filtering out, as indicated

above, mitochondrial SNPs with poor quality marker genotype

data, we had a marker genotype dataset of 24 validated

mitochondrial SNPs genotyped on n = 877 animals (40 families

each with ,17 siblings). From this marker genotype dataset, a

sibling was random sampled from each family to generate a

population-based sample of n = 40 unrelated individuals; the

random sampling was repeated to develop three sets of unrelated

individuals. These three sets of unrelated individuals were used in

association analysis of mitochondrial SNPs with growth traits.

Population-based association analysis was performed using the

validated mitochondrial SNPs marker genotype and haplotype

data with PLINK version 1.07 [22]. We estimated the t-statistic for

regression of phenotype on allele count (by.x); the square of the

multiple correlation coefficient (R2) which measures the proportion

of total variation explained by the regression by.x; and the

asymptotic P-value for the t-statistic. The empirical P-value was

estimated using 20,000 and 10,000 permutations when using

marker genotype and haplotype data in association analysis,

respectively. The false discovery rate (FDR-BH) for the association

analysis with marker genotype data was estimated according to

Benjamini and Hochberg [27]. The results of this population-

based association analysis with mitochondrial SNPs should be

taken with caution because (1) the current version of PLINK has a

limitation of not allowing to include fixed effects (tank) and
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covariates (age and SH) in the linear model of association analysis

when using continuous quantitative traits; and (2) population

stratification and cryptic relatedness are confounding factors in

population-based association analyses which can inflate the false-

positive rate [28].

Genomic DNA Isolation for Genotyping
Genomic DNA used in genotyping samples was purified from fin

clips using a modified salt-out extraction protocol. Fin clips were

placed in microtubes with 500 mL of lysis buffer (10 mM Tris HC1,

pH 8.0, 10 mM EDTA, 100 mM NaC1), containing 0.2% SDS

and 6 mL of 10 mg/mL of proteinase K and 5 mL DTT (1 M).

Tubes were incubated immediately in a water bath at 56uC for 3 h

or 37uC overnight, shaking occasionally. Samples were spun for

2 min at 14,000 rpm. Supernatant was transferred to a new 1.5 mL

tube. Then, 200 mL of 5 M NaCl was added to each sample before

being centrifuged for 10 min at 14000 rpm. The supernatant was

transferred to new microtubes where the DNA was precipitated

with 1 mL of cold absolute ethanol and incubated at -20uC for

10 min. The DNA samples were centrifuged, washed with 700-mL

70% ethanol and re-suspended in 60 ml of nuclease-free water. Fish

were genotyped using the Sequenom iPLEX service at Partners

HealthCare Center for Personalized Genetic Medicine (PCPGM),

Cambridge, MA as previously described [29].

Linkage Analysis and Genetic Mapping
Four full-sib NCCCWA mapping families each with 46 progeny

were genotyped with the 30 validated nuclear SNP markers and

214 microsatellite markers selected from the rainbow trout

reference genetic maps [30]. The genotype data were checked

for inconsistencies with Mendelian inheritance using PED-

CHECK [31]. Linkage maps were constructed with software

MULTIMAP [32]. Markers were assigned into linkage groups

with the parameters of LOD $4 and recombination fraction r

#0.3. The framework map for each linkage group was constructed

with default parameters, and markers were added to the

comprehensive map by lowering the LOD threshold one integer

at a time and starting with the previous order. The linkage groups

were assigned to chromosomes based on the chromosomal

locations of microsatellite markers on the latest reference genetic

map of rainbow trout [32].

Mitochondrial markers were positioned on the rainbow trout

mitochondrial genome by aligning the flanking sequences of SNP

markers against the rainbow trout mitochondrial reference

sequence (GenBank: L29771.1) [33].

Aquaculture Broodstocks
Markers’ polymorphism was assessed in unrelated fish collected

from three aquaculture breeding programs: two broodstocks from

the USDA-ARS Hagerman Fish Culture Experiment Station,

Hagerman, ID (2009 and 2010 odd and even brood-year), two

stocks from Clear Springs Foods, Buhl, ID (2009 and 2010 odd and

even brood-year) and 8 stocks from Troutlodge Inc., Sumner, WA (4

spawning time broodstocks x 2 year cycles). A total of 96 unrelated

fish (8 fish/broodstock) were genotyped. These samples represent

populations from the main rainbow trout breeders in the US.

Results and Discussion

Detecting SNP Variants in Pooled Transcriptome Samples
by RNA-Seq

Single-end short read (36-bp) RNA-Seq technology was used to

identify putative SNPs in cDNAs from fast growing versus slow

growing rainbow trout fish. Sequencing one lane of an Illumina

Genome Analyzer flow-cell from a pool of 10 samples from the fast

growing fish yielded 8,275,289 reads; from which 6,077,479 (73%)

were mapped to a transcriptome reference sequence with

1,624,444 (20%) uniquely mapped to transcripts. Similarly,

sequencing a cDNA library from a pool of 10 slow growing fish

on a separate flow-cell lane yielded 6,340,991 reads; from which

3,981,922 (63%) were mapped to the reference transcriptome with

1,190,804 (19%) uniquely mapped to transcripts. Figure 1

summarizes the workflow used for discovery of putative SNPs

associated with growth traits in the rainbow trout transcriptome. A

total of 6,140 putative SNPs were identified using SNP detection

stringency conditions of at least 4 reads calling the variant, .20%

reads calling the variant and .20 Quality score (Figure 1). To

overcome difficulties in distinguishing true/false SNPs due to the

nature of duplicated rainbow trout genome; reads were mapped to

a transcriptome reference which we previously generated from a

doubled haploid rainbow trout individual [16]. SNPs due to

paralogous loci were removed. Allelic frequencies of heterozygous

SNPs were obtained for the pooled samples by counting the

number of reads representing each allele. Allele frequency ratios

between the fast growing fish samples and that of the slow growing

fish samples were used to calculate allelic imbalance scores. A total

of 361 SNPs putatively associated with fast/slow growth were

identified using allelic imbalances cut off values .5.0 as an

amplification and ,0.2 as loss of heterozygosity (Figure 1).

Figure 1. Workflow used for discovery of SNPs associated with
growth traits in the rainbow trout transcriptome. SNPs identified
in RNA-Seq reads were called and filtered using Alpheus pipeline. The
SNP detection stringency conditions include at least 4 reads calling the
variant, .20% reads calling the variant and .20 Quality score. SNP
putatively associated with fast growth were considered at allelic
imbalances scores .5.0 as an amplification and ,0.2 as loss of
heterozygosity. SNPs were validated by individually genotyping the
discovery panel. Putative SNPs were genotyped for association analysis
on 778 fish (40 families).
doi:10.1371/journal.pone.0036264.g001
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To validate heterozygosity and allelic imbalance scores of the

putative SNPs, a Sequenom iPLEX platform was used to

individually genotype each of the 20 fish of the SNP discovery

panel. Ninety-nine SNPs failed the Sequenom iPLEX Genotyping

assay design, mostly because SNP flanking sequences were less

than the 100-bp long requirement for iPLEX assay design. The

remaining 262 SNPs were submitted to Sequenom genotyping, of

which 211 SNPs were successfully genotyped and 51 SNPs failed

due to technical multiplexing errors (,81% SNP conversion rate).

Sequenom genotyping showed that 149 SNPs are heterozygous

and 62 are monomorphic (Figure 1). Seventy-four SNPs proved to

be polymorphic and potentially associated with growth rate by

genotyping fish of the discovery panel (allelic imbalances .5.0 or

,0.2) were further evaluated as growth-associated markers by

genotyping a panel of 778 fish from 3 generations (Figure 1). Two

SNPs turned out to be monomorphic and 18 SNPs did not yield

satisfactory genotyping results due to unacceptable genotyping

quality or showed abnormal allelic variation. The remaining 54

validated SNPs were considered for the final association study as

explained below; 30 nuclear SNPs (nuSNPs) and 24 mitochondrial

SNPs (mtSNPs) (Figure 1 and table S1).

These results indicate about 70% success rate of the pooled

sequencing strategy in detecting true SNPs (147 true SNPs out 211

successful assays). Pooled sequencing is a cost-effective but

challenging strategy for detection of variants, especially rare ones.

Detection of SNPs from pooled sequencing requires high

stringency methods and deep sequence coverage compared to

individual genotyping strategy. To overcome the next generation

technical sequencing error that causes false SNP discovery,

individual genomes are typically sequenced to 20–30X depth of

coverage [34]. In this study, although a sequence coverage of only

,0.97X (,0.73M read) per fish was used, approximately 70%

success rate in detecting polymorphic/true SNPs was achieved.

This success rate in detecting true SNPs is higher than what we

previous achieved in rainbow trout (48%) using genomic reduced

representation libraries and pyrosequencing technologies [35].

Higher accuracy rate of RNA-Seq in SNP discovery (81%) was

reported in a bovine milk transcriptome study [36]. A lower level

of accuracy in SNP detection is expected in rainbow trout due to

typical issues of the genome duplication reported for salmonids

including errors in assembling paralogous sequences [37,38,39].

Because of low sequence coverage used in this study, SNPs

identified probably represent the most common variants in the

populations. Further studies to detect rare variants using higher

depth of coverage are warranted.

Phenotypic Variation in Growth
In this study, individual BW was measured at four ages, 6, 7, 9

and 12 months post-hatching; Weight1, Weight2, Weight3 and

Weight4, respectively. There was substantial variation in BW

means measured at each age (Figure 2) among the 40 families used

in this study. The phenotypic coefficients of variation (CV = SD/

mean) in the tested population were, 25, 28, 27 and 24% for

Weight1, Weight2, Weight3 and Weight4, respectively. Mean BW

of the fastest growing family at 12 month was ,305% larger than

that of the slowest growing family (Figure 2). There was a positive

response to selection in the whole population, genetic trend

Figure 2. Variation in average family body weight (BW)
measured in grams at approximately 6, 7, 9 and 12 months
post-hatching (Weight1, Weight2, Weight3 and Weight4). CV
(SD/mean) indicates the phenotypic coefficients of variation.
Color intensities (green, blue and red) reflect changes in mean of BWs of

different families at Weight1, Weigh2 and Weight3, respectively. Up/
right/down arrows indicate families’ mean BWs lie within top, middle
and bottom 33% of the population at each age, respectively.
doi:10.1371/journal.pone.0036264.g002
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estimate for 10-month BW was 60.0 grams per generation from

2006–2010 (unpublished data).

Design variables, fixed effects and covariates contribution to the

predictive power of growth trait models were assessed with

stepwise model selection, and we found that family as independent

variable has significant effects on Weight1 when using model A

(P#0.0001, Table S2). Similarly, fish age showed significant

contributions to the predictive power of Weight1-4 and tank

effects on the predictive power were significant at Weight2 and

Weight3 (P,0.01, Table S2). Interestingly, the founder-strain

composition effect showed that Shasta strain has significant

contributions to weight at each age (Statistical model A &B,

P,0.01, Table S2). Silverstein reported significant differences

among crosses at NCCCWA in thermal growth coefficient,

percent of feed consumption and residual feed intake when fish

were fed to satiation. However, there was no significant difference

among families, including control Shasta crosses, when feed was

moderately restricted [40]. The observation of superior contribu-

tion of the Shasta founder strains to the phenotypic growth traits is

an important finding for breeding activities at NCCCWA.

However, this study was not optimally designed to compare

strains contribution to growth traits. Shasta founder strains

superiority to body weight warranted further examinations to

clarify any possible issues related to unbalanced sample sizes per

strain. As explained in the methods section, the random family,

fixed effect tank and covariates age and founder-strain composi-

tion SH were included in the linear model of association analysis

to account for these variables and ensure that the association

signals were due to marker effects.

Multivariate normal distribution for residuals diagnostic tests

(including Skewness and Kurtosis) revealed significant departures

from normality for growth response traits Weight1 and Weight4

(Table S2). However, Weight4 has been used in quantitative trait

analysis due to its relatively low Kurtosis (Kurtosis ,0.54).

Weight2 and Weight3 did not have a significant departure from

MVN distribution (Kurtosis ,0.24; Shapiro-Wilk P.0.01). All

SGR measurements showed deviations from MVN distribution

(data not shown). Therefore, only BW data from Weight2,

Weight3 and Weight4 were included in association analysis.

Markers Association with Growth
Nuclear SNPs association with growth. A family-based

marker association analysis of 30 validated nuclear SNPs with

growth traits on 778 fish (the t-statistic for regression of phenotype

on allele count) was performed with PLINK program [22]. Eight

markers were significantly associated with BW; nuSNP 1, 7, 9, 17,

22, 23, 24, 25 (Table 1, P,0.01). Markers nuSNP 1 and 7 were

associated with BW at all 3 ages (P,0.01). All eight markers were

associated with Weight2, 6 markers were associated with Weight3,

and 4 markers with Weight4 (P,0.01).

The family-based association analysis performed with the R-

package (GWAF) [23] identified 3 strongly associated markers

with BW of at least 2 ages; nuSNP 7, 20, and 21 (P = 1.5E219 to

9.2E263, table 2). Two other SNPs showed weaker association

with BW, nuSNP 8 & 12 (P = 2.0E25 to 8.1E209). Each SNPs,

except nuSNP 12, explained ,1% of phenotype variation (h2
q).

Family-based association analyses were conducted using three

methods with SOLAR [24]; the measured genotype test, the

quantitative disequilibrium test (QTDT), and the quantitative trait

linkage-disequilibrium test (QTLD). All 3 tests revealed evidence

for association of 4 markers with BW of at least 2 ages; nuSNP 7,

12, 21, 25 (P,0.05, table 3). The association tests (QTLD and

QTDT) were approximately similar in the empirical estimates of

SNP linkages to growth traits. The QTLD and QTDT are

powerful tests in identifying association due to linkage disequilib-

rium [41], and they are robust to population stratification.

Family-based Bayesian quantitative trait nucleotide (BQTN)

analysis was performed with software SOLAR [24] using nuclear

SNP genotypes; this test is robust to multiple testing and

population stratification. A single marker, nuSNP 25, had

posterior probabilities 88 and 92% with Weight2 and Weight3,

respectively, which indicate a significant support for a functional

effect of SNP 25 on growth (data not shown). Adjusting for

multiple testing showed that nuSNP 25 has significant association

with Weight2 and Weight3 (P = 0.001, 0.0017, respectively).

Table 4 summarizes annotations and transcript locations of the

aforementioned 14 markers with significant association to growth

traits in rainbow trout. Significant association of 4 markers

(nuSNP7, 12, 21 & 25) was detected by more than one statistical

method. The average minor allele frequency of the 14 markers is

0.19. The exact P-value test of Hardy-Weinberg (HW) proportion

Table 1. Association of nuclear SNPs with growth traits1 using family-based association analysis2.

SNP Weight2 Weight3 Weight4

by.x t P Pempirical by.x t P Pempirical by.x t P Pempirical

nuSNP1 210.3 23.3 0.00096** 0.096 225.6 22.8 0.00431** 0.112 248.8 22.6 0.00782** 0.084

nuSNP7 30.6 3.5 0.00049** 0.075 83.6 3.2 0.00124** 0.082 144.8 2.8 0.00468** 0.07

nuSNP9 212.8 22.6 0.00781** 0.141 224.8 21.8 0.06913 0.272 2119 24.3 1.52e205** 0.002*

nuSNP17 10.8 3.1 0.00179** 0.136 27.5 2.8 0.00517** 0.133 47.5 2.3 0.02046* 0.152

nuSNP22 215.4 23.7 0.00022** 0.058 232.9 22.7 0.00581** 0.116 254.4 22.2 0.02665* 0.144

nuSNP23 216.9 24.2 0.995e205** 0.032* 238.4 23.3 0.00078** 0.059 258.1 22.3 0.01821* 0.126

nuSNP24 215.7 23.7 0.00018** 0.051 233.1 22.7 0.00576** 0.112 254.4 22.2 0.02721* 0.147

nuSNP25 9.4 2.6 0.00775** 0.221 22.2 2.1 0.03076* 0.258 61.2 2.7 0.00566** 0.088

1Body weight was recorded on each animal at approximately 7 (Weight2), 9 (Weight3) and 12 (Weight4) months post-hatching.
2Family-based association analysis was performed with program PLINK version 1.07 [22]. Here, t is the t-statistic for regression of phenotype on allele count (by.x), P is
the asymptotic P-value for t-statistic, and the empirical P-value was estimated using 20,000 permutations.
**indicates significance at P,0.01.
*indicates significance at P,0.05.
doi:10.1371/journal.pone.0036264.t001
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for multiple alleles were simulated using PLINK program and

compared to values predicted based on HW equilibrium [22].

Three markers, significantly associated with growth, exhibited

significant deviation from HW nuSNP 1, 9, 17 (Table 4, HW

P,0.01). SNPs exhibiting HW deviation are often excluded from

association studies, but we maintained them because the HW

deviation may be due to directional selection bias in population or

partial tetraploidy genome of the rainbow trout.

QTDT test which is especially robust to population stratifica-

tion, showed that three out of the 30 evaluated nuclear SNPs has

significant evidence for population stratification at P,0.01 and

seven extra nuSNPs were significant at P,0.05 (Table S3), which

is fairly expected in the NCCCWA closed population [42]. Only

three out of the 14 markers with significant association to growth

traits showed significant evidence for population stratification;

nuSNP 9, 21 &27 (Table 4). However, markers association with

growth traits reported here are expected to be not influenced by

population stratification because we used family-based methods of

association analyses, which are robust to this population stratifi-

cation.

Biological relevance of nuSNPs to growth. Nine out of 14

nuSNP markers were located within open reading frames and 2

SNPs (nuSNP 27 &29) caused amino acid changes (Table 4). The

list of growth-associated markers comprises 2 nuSNPs in genes

encoding glycolytic enzymes; Glucose phosphate isomerase (GPI)

and Enolase. nuSNP 7 in GPI showed strong association

(measured by 4 statistical methods) with growth traits. GPI

catalyzes the second step of glycolysis, conversion of glucose-6-

phosphate into fructose 6-phosphate. Human mutations in GPI

are characterized by anemia and neuromuscular dysfunctions

[43]. An association was reported between GPI genotypes and

rapid growth in the African catfish [44]. In this study, genetic

variations in the glycolytic pathway genes are consistent with

reports showing positive correlation of muscular glycolytic

enzymes with growth rate in Atlantic cod [45] and association of

increased expression of genes involved in glycolysis with selection

for muscle growth [46]. In addition, we previously reported

decreased transcription and translation of genes encoding glyco-

lytic enzymes in degenerating rainbow trout muscle [47,48].

Nine nuSNPs were identified in genes related to structural and

functional muscular proteins. nuSNP 8 in ATP2A1 (calcium

ATPase 3) showed association with growth. This enzyme

hydrolyzes ATP to catalyze translocation of calcium from the

cytosol to the sarcoplasmic reticulum. ATP2A1 is important in

muscular contraction and perhaps has a role in the growth of the

developing muscle [49]. In addition, the list includes 3 markers

Table 2. Family-based association analysis of nuclear SNPs with growth traits1 using the R package GWAF2.

SNP Weight2 Weight3 Weight4

x2 DF P Model3 h2
q x2 DF P Model3 h2

q x2 DF P Model3 h2
q

nuSNP7 233.08 1 1.27E252** D 0 81.86 1 1.46E219** D 0 12.45 1 0.00041 D 0

nuSNP8 2.38 1 0.12291 D 0 33.25 1 8.10E209* D 0 0.56 1 0.4539 D 0

nuSNP12 8.43 2 0.01478 G 0.01 21.21 2 0.00002* G 0.01 17.27 2 0.00017* G 0.01

nuSNP20 279.6 1 9.20E263** D 0 101.75 1 6.31E224** D 0 15.91 1 6.65E205* D 0

nuSNP21 245.88 1 2.05E255** D 0 101.14 1 8.59E224** D 0 12.22 1 0.00047 D 0

1Body weight was recorded on each animal at approximately 7 (Weight2), 9 (Weight3) and 12 (Weight4) months post-hatching.
2The genome-wide association analysis with family data (GWAF) R package [23] was used in the association analysis. The analyzed sample included 40 full-sib families
each with ,17 progeny. Here, we show the asymptotic P-value for the test statistic distributed as a x2 with 1 and 2 DF for dominant and general model, respectively.
The h2

q is the proportion of phenotypic variance explained by the tested SNP.
3The general (G) and dominant (D) models had the highest likelihood in the association analysis of Weight2, Weight3 and Weight4.
**indicates SNPs strongly associated with BW (P-value = 1.5E219 to 9.2E263).
*indicates SNPs with weaker association (P-value = 2.0E25 to 8.1E209).
doi:10.1371/journal.pone.0036264.t002

Table 3. Association of nuclear SNPs with weight1 using family-based quantitative trait linkage disequilibrium (QTLD) analysis, the
measured genotype test and the quantitative disequilibrium test (QTDT) 2.

SNP P-value (Weight2) P-value (Weight3) P-value (Weight4)

Stratifi-
cation

Measured
genotype QTDT3 QTLD

Stratifi-
cation

Measured
genotype QTDT3 QTLD

Stratifi-
cation

Measured
genotype QTDT3 QTLD

nuSNP7 0.486 0.042* 0.032* 0.032* 0.639 0.030* 0.040* 0.040* 0.328 0.157 0.105 0.105

nuSNP12 0.124 0.149 0.065 0.065 0.368 0.009** 0.023* 0.023* 0.105 0.003** 0.016* 0.016*

nuSNP21 0.000** 1 0.125 0.125 0.000** 0.136 0.019* 0.019* 0.020* 0.047* 0.019* 0.019*

nuSNP25 0.111 0.029* 0.084 0.084 0.145 0.024* 0.064 0.064 0.559 0.198 0.265 0.265

1Body weight was recorded on each animal at approximately 7 (Weight2), 9 (Weight3) and 12 (Weight4) months post-hatching.
2Family-based QTLD analysis was performed with software SOLAR version 4.0 [24]. The sample included 40 FS families each with ,17 progeny. Here, we show the
asymptotic P-value for the test statistic distributed as a x2 with 1 DF; the effective number of tests and multiple testing adjusted P-value was P = 0.00165 [65].
3QTDT stands for quantitative trait disequilibrium test [21].
**indicates significance at P,0.01.
*indicates significance at P,0.05.
doi:10.1371/journal.pone.0036264.t003
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Table 4. Summary of nuclear markers significantly associated/linked1 to growth traits and their annotations.

SNP MAF2 HW3
QTDT 4

stratification test Statistical Test(s) Annotation9
Location/amino
acid change

nuSNP7 0.106 NA NA 5,6,7,8 Glucose phosphate isomerase b 59UTR

nuSNP1 0.354 1.00E203 NA 5 Enolase 3-1 ORF/SYN

nuSNP8 0,142 NA NA 6 ATP2A1 calcium ATPase 3 ORF/SYN

nuSNP17 0.313 1.20E203 NA 5 Myosin binding protein C ORF/SYN

nuSNP20 0.033 NA NA 6 Myosin binding protein C ORF/SYN

nuSNP21 0.036 NA ,0.01 6,7 Myosin binding protein C ORF/SYN

nuSNP25 0.232 NA NA 6,7,8 Fast myotomal muscle actin 2 ORF/SYN

nuSNP22 0.199 NA NA 5 Troponin C 39UTR

nuSNP23 0.189 NA NA 5 Troponin C 39UTR

nuSNP24 0.199 NA NA 5 Troponin C 39UTR

nuSNP27 0.138 NA ,0.05 5 Fast myotomal muscle troponin-T-2 ORF/NRK

nuSNP29 0.235 NA NA 5 Taxilin beta muscle-derived protein 77 ORF/GRA

nuSNP9 0.189 7.20E203 ,0.05 5 60 S ribosomal protein L4-A ORF/SYN

nuSNP12 0.337 NA NA 6,7 Unknown Unknown

1Body weight was recorded on each animal at approximately 7 (Weight2), 9 (Weight3) and 12 (Weight4) months post-hatching. A family-based sample that included 40
full-sib families each with 17 progeny were genotyped with 30 SNPs. Summary statistics were obtained with program PLINK version 1.07 [22].
2SNPs minor allele frequency (MAF).
3SNPs showing deviation from Hardy-Weinberg equilibrium. Exact P-value estimated using 20,000 permutations.
4QTDT population stratification test.
5t-statistic for regression of phenotype on allele count P is the asymptotic P-value for t-statistic, was estimated using 20,000 permutations.
6Genome-wide association analysis with family data (GWAF) R package [23].
7Family-based Measured Genotype and QTLD analysis was performed with software SOLAR version 4.0 [24] or QTDT quantitative trait disequilibrium test [21].
8Family-based Bayesian quantitative trait nucleotide (BQTN) analysis was performed with software SOLAR version 4.0 [24].
9SNP annotation; gene name and SNP location (ORF/59UTR/39UTR), SYN = Synonymous, NON-SYN = Non-synonymous.
NA indicates statistically insignificant estimate.
doi:10.1371/journal.pone.0036264.t004

Table 5. Association of mitochondrial SNPs with weight1 using population-based association analysis2.

Weight SNP Set1 Set2 Set3

R2 t P Pempirical

FDR–
BH R2 t P Pempirical FDR–BH R2 t P Pempirical

FDR–
BH

Weight2 mtSNP6 0.05 21.3 0.177 0.181 0.21 0.12 22.1 0.041* 0.0417* 0.11 0.05 21.4 0.151 0.15 0.22

mtSNP8 0.11 22.1 0.039* 0.039* 0.21 0.16 22.6 0.013* 0.0134* 0.11 0.03 21 0.302 0.3 0.31

mtSNP21 0.11 22.1 0.039* 0.039* 0.21 0.16 22.6 0.013* 0.013* 0.11 0 20.29 0.772 0.773 0.77

Weight3 mtSNP8 0.1 22 0.052 0.053 0.34 0.09 21.9 0.055 0.057 0.11 0.21 23.1 0.004** 0.004** 0.05

mtSNP21 0.02 20.8 0.393 0.39 0.43 0.11 21.9 0.062 0.063 0.11 0.25 23.4 0.002** 0.002** 0.04*

Weight4 mtSNP1 0.01 20.5 0.57 0.568 0.93 0.07 21.6 0.106 0.105 0.18 0.12 22 0.045* 0.044* 0.09

mtSNP4 0.01 20.5 0.57 0.568 0.93 0.07 21.6 0.106 0.105 0.18 0.12 22 0.045* 0.044* 0.09

mtSNP7 0.01 20.5 0.57 0.568 0.93 0.06 21.4 0.145 0.143 0.2 0.13 22.1 0.041* 0.040* 0.09

mtSNP8 0.13 22.3 0.022* 0.022* 0.53 0.22 23.1 0.003** 0.003** 0.03* 0.12 22.1 0.041* 0.041* 0.09

mtSNP15 0.01 20.5 0.57 0.568 0.93 0.07 21.6 0.106 0.105 0.18 0.12 22.1 0.045* 0.044* 0.09

mtSNP16 0 20.3 0.766 0.763 0.93 0.04 21.3 0.192 0.191 0.2 0.14 22.2 0.038* 0.038* 0.09

mtSNP21 0.07 21.6 0.114 0.113 0.93 0.27 23.4 0.001** 0.002** 0.03* 0.13 22.2 0.037* 0.036* 0.09

1Body weight was recorded on each animal at approximately 7 (Weight2), 9 (Weight3) and 12 (Weight4) months post-hatching.
2Population-based association analysis was performed with program PLINK version 1.07 [22]. From 40 full-sib families each with ,17 progeny, a sibling was randomly
sampled from each family to generate a population-based sample of n = 40 unrelated individuals; we repeated the random sampling to develop three sets of unrelated
individuals. Here, t is the t-statistic for regression of phenotype on allele count (by.x); R2 is the square of the multiple correlation coefficient which measures the
proportion of total variation explained by the regression by.x; P is the asymptotic P-value for t-statistic; the empirical P-value was estimated using 20,000 permutations;
and FDR-BH is the false discovery rate [27].
**indicates significance at P,0.01.
*indicates significance at P,0.05.
doi:10.1371/journal.pone.0036264.t005
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(nuSNP 17, 20 and 21) in the Myosin binding protein C transcript

and 3 nuSNPs (nuSNPs 22, 23 and 24) in the Troponin C gene.

Further, nuSNP25 and nuSNP27 were annotated to each of the

Fast myotomal muscle actin 2 and Fast myotomal muscle

troponin-T-2, respectively. Mutations in these genes may have

association with muscle functions and growth but are unlikely to

cause major effects on overall growth regulations.

Mitochondrial SNPs association with growth. Growth

association of genotypes from 24 validated mitochondrial SNPs

was examined using the same set of 778 fish as explained in

nuSNPs. Population-based association analysis was performed

with PLINK program [22]. To avoid false association signals that

may arise due to individual relatedness, siblings were randomly

sampled from each family to generate a population-based sample

of n = 40 unrelated individuals. Random samplings were repeated

to develop three sets of individuals. T-statistic test for regression of

phenotype on allele count showed eight significantly associated

markers with BW; mtSNP 1, 4, 6, 7, 8, 15, 16, 21 (Table 5,

P,0.05).

Unlike the nuclear markers, the mitochondrial SNPs showed

high R2 correlation coefficient values indicating that a substantial

proportion of total phenotypic variation is explained by mtSNPs

(average R2/association signal = 0.16, table 5). It is worth

mentioning that maternal effects have non-significant (P.0.01)

contribution to the predictive power of growth traits (weight2-4)

when performing both stepwise model selection [20] and

quantitative genetic analysis [24] (data not presented). Haplotypes

estimated for mtSNPs mapped to the mitochondrial genome [33]

showed 3 distinct (24-SNP long) haplotypes (Table S4). The

haplotype frequencies in the population were 0.49, 0.26 and 0.25

for Hap1, Hap2 and Hap3, respectively. T-statistic for regression

of phenotype on haplotype count showed association of Hap3 with

growth at all 3 ages (Table S4, P,0.05). Noteworthy, Hap2 and

Hap3 share identical sequences except for mtSNP 8 and mtSNP

21. mtSNP 8 and mtSNP 21 were the most significantly associated

mtSNPs and the only mtSNPs associated with BW at all 3 ages

when mtSNPs were analyzed individually (Table 5). R2 growth

correlation coefficient values for mtSNP 8 and mtSNP 21 were

0.16 and 0.18, respectively, compared to 0.17 of Hap3. These

results indicate that Hap3, mtSNP 8 and mtSNP 21 are the most

significantly associated markers/haplotypes explaining phenotypic

variation of growth traits in this data set.

Functional annotation of mtSNP markers. Eight mtSNP

markers individually associated with growth traits have been

identified. In addition, the 24 mtSNPs form 3 distinct haplotypes,

and Hap3 was associated with growth traits. The 24 mtSNPs

Table 6. Summary of mitochondrial markers significantly associated 1 with growth traits and their annotations1.

SNP Physical position (bp)2 MAF3 Annotation4
Location/amino acid
change

mtSNP1 4116 0.49 NADH dehydrogenase subunit 1 ORF/SYN

mtSNP2 4323 0.49 NADH dehydrogenase subunit 1 ORF/SYN

mtSNP3 4647 0.48 NADH dehydrogenase subunit 1 ORF/SYN

mtSNP4 5212 0.48 NADH dehydrogenase subunit 2 ORF/SYN

mtSNP5 5275 0.48 NADH dehydrogenase subunit 2 ORF/SYN

mtSNP6 5530 0.48 NADH dehydrogenase subunit 2 ORF/SYN

mtSNP7 5740 0.49 NADH dehydrogenase subunit 2 ORF/SYN

mtSNP16 12423 0.47 NADH dehydrogenase subunit 4 ORF/VR M

mtSNP17 13231 0.49 NADH dehydrogenase subunit 5 ORF/SYN

mtSNP18 13795 0.48 NADH dehydrogenase subunit 5 ORF/SYN

mtSNP19 14077 0.48 NADH dehydrogenase subunit 5 ORF/SYN

mtSNP20 14626 0.49 NADH dehydrogenase subunit 5 ORF/SYN

mtSNP21 15591 0.23 Cytochrome b ORF/SYN

mtSNP22 15822 0.49 Cytochrome b ORF/SYN

mtSNP23 16305 0.49 Cytochrome b ORF/SYN

mtSNP24 16317 0.48 Cytochrome b ORF/SYN

mtSNP8 7052 0.23 Cytochrome c oxidase subunit 1 ORF/SYN

mtSNP9 7193 0.50 Cytochrome c oxidase subunit 1 ORF/SYN

mtSNP10 8774 0.48 Cytochrome c oxidase subunit 2 ORF/SYN

mtSNP11 8804 0.48 Cytochrome c oxidase subunit 2 ORF/SYN

mtSNP14 9410 0.48 ATPase 6 ORF/SYN

mtSNP15 9656 0.49 ATPase 6 ORF/SYN

mtSNP12 9084 0.48 ATPase 8 ORF/SYN

mtSNP13 9087 0.49 ATPase 8 ORF/SYN

1Body weight was recorded on each animal at approximately 7 (Weight2), 9 (Weight3) and 12 (Weight4) months post-hatching. Population-based association analysis
was performed with program PLINK version 1.07 [22]. From 40 full-sib families each with ,17 progeny, a sibling was randomly sampled from each family to generate a
population-based sample of n = 40 unrelated individuals; we repeated the random sampling to develop three sets of unrelated individuals.
2Markers were positioned on mitochondrial genome by BLASTing sequences flanking markers against a rainbow trout mitochondrial reference sequence [33].
3SNPs minor allele frequency (MAF). 4SNP annotation; gene name and SNP location (ORF/59UTR/39UTR), SYN = Synonymous.
doi:10.1371/journal.pone.0036264.t006

RNA-Seq Identifies SNP Markers for Growth Traits

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e36264



markers were mapped to 9 genes of the mitochondrial oxidative

phosphorylation pathway (OPP) (Table 6). The OPP is an

important metabolic pathway that harnesses energy released by

oxidation of nutrients through catabolic biochemical processes,

such as glycolysis, the citric acid cycle and beta-oxidation to

produce ATP. OPP is a critical metabolic pathway in supplying

the energy required for the cell, hence OPP is expected to have

major effect on control of animal growth. Prevalence of the

mtSNPs association with growth in rainbow trout is consistent with

recent reports showing that short stature and a progressive

reduction in body mass index as features of mitochondrial disease

in human childhood [50,51]. In addition, recent studies highlight-

ed possible relationships between enhanced growth performance

and mitochondrial enzyme activities in rainbow trout, catfish,

broilers and livestock [52,53,54,55].

Twelve mtSNPs were found in 4 genes/subunits of the NADH

dehydrogenase (complex I) ‘‘entry enzyme’’ of the OPP pathway;

3 SNPs in subunit 1 (mtSNP 1–3), 4 SNPs in subunit 2 (mtSNP 4–

7), 1 SNP in subunit 4 (mtSNP 16) and 4 SNPs in subunit 5

(mtSNPs 17–20) (Table 6). mtSNP 16 in subunit 4 is the only

mtSNP causing amino acid change. Existence of a large number of

SNPs in complex I is consistent with human studies showing that

deficiencies in complex I are the most common respiratory chain

defects [56]. In addition, families with low feed efficiency showed

low enzymatic activities for OPP complex I in rainbow trout

tissues and broilers [53,54].

In addition, 4 SNPs were found in the Cytochrome b gene

(mtSNPs 21–24); the only subunit encoded by a mitochondrial

gene of Cytochrome bc1 (complex III) (Table 6). A number of

mutations in this gene have been reported in patients with

myopathy suggesting an important role in muscle function [57]. In

addition, muscular mitochondrial complex III showed down

regulation in fish with low feed efficiency [53]. Further, 4 SNPs

were found in 2 subunits of Cytochrome c oxidase (complex IV); 2

SNPs in subunit 1 (mtSNPs 8&9) and 2 SNPs in subunit 2 (mtSNP

10 &11) (Table 6). Cytochrome c oxidase has been reported to

have higher activity in fast growing salmon fish [58]. Noteworthy,

mtSNP 8 &21, the most significantly associated markers explaining

phenotypic variation in this data set, are located in Cytochrome b

and Cytochrome c oxidase, respectively.

Furthermore, 4 SNPs were found in the ATP synthase F0

(complex V), the final enzyme in the OPP pathway; 2 SNPs in

subunit 6 (mtSNP 14&15) and 2 SNPs in subunit 8 (SNP 12 &13)

(Table 6). These results are consistent with studies showing greater

expression of the ATP synthase-a subunit of complex V in liver

and lymphocytes of broilers with high feed efficiency [59].

Together, the nuSNPs and mtSNPs of the energy related genes

point to importance of ATP production mechanisms in regulation

of fish growth.

Table 7. Polymorphism of significantly associated/linked markers to growth traits in three aquaculture broodstocks.

SNP TL CS HF

A1 A2 MAF A1 A2 MAF A1 A2 MAF

nuSNP1 Assay failed

nuSNP7 C A 0.02 C A 0.03 C A 0.03

nuSNP8 Assay failed

nuSNP9* A T 0.3 T A 0.37 T A 0.23

nuSNP12 C T 0.08 C T 0.25 C T 0.1

nuSNP17 T C 0.38 T C 0.1 T C 0.06

nuSNP20 G A 0.25 G A 0.15 G A 0.31

nuSNP21 G A 0.25 G A 0.15 G A 0.3

nuSNP22* G A 0.31 A G 0.17 A G 0.19

nuSNP23* C T 0.31 T C 0.18 T C 0.19

nuSNP24 C T 0.31 T C 0.17 T C 0.19

nuSNP25 A G 0.13 A G 0.35 A G 0.16

nuSNP27 C G 0.06 C G 0.33 C G 0.47

nuSNP29 Monomorphic

mtSNP1* G A 0.45 A G 0.23 G A 0.31

mtSNP4* A G 0.42 A G 0.23 G A 0.31

mtSNP6* T C 0.44 T C 0.17 C T 0.37

mtSNP7* G A 0.43 A G 0.27 A G 0.25

mtSNP8 C T 0.14 C T 0.07 C T 0.06

mtSNP15* A G 0.42 A G 0.21 G A 0.31

mtSNP16 A G 0.45 A G 0.23 A G 0.25

mtSNP21 G A 0.11 0 A 0 G A 0.15

1markers were genotyped in 12 broodstocks (8 unrelated fish/stock); TL (Troutlodge, Inc), CS (Clear Springs Foods) and HF (Hagerman Fish Culture Experiment Station),
48 markers were polymorphic, the average MAF is 0.24.
*indicate different minor alleles between different populations.
doi:10.1371/journal.pone.0036264.t007
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Markers’ Heterozygosity in Outbred Populations
Markers’ polymorphism was assessed in other U.S. aquaculture

broodstocks to evaluate the markers potential usefulness for

marker assisted selective breeding in rainbow trout. Ninety-six

individuals were genotyped from 12 rainbow trout broodstocks (8

fish/stock) representing 3 aquaculture populations. Forty-eight out

of the fifty-four markers were polymorphic among individuals of

the aquaculture populations, 3 markers were monomorphic

(nuSNP 6, 29 & 30) and 3 genotyping assays failed (nuSNP 1, 8

& mtSNP 23) because of technical errors (Table S5). The average

MAF of the 48 polymorphic markers on the 96 individuals was

0.24. Allelic polymorphism rate of markers was calculated in each

population. The TL population had the highest number of

polymorphic SNPs (47 markers, 0.26 MAF), the HF population

had intermediate values (46 markers, 0.24 MAF) and CS

population had the lowest polymorphism (42 markers, 0.20

MAF). Table 7 summarizes heterozygosity of the significantly

associated markers to growth traits. These data indicate hetero-

zygosity of most of the growth-associated markers in all three

populations and suggest potential utility for marker assisted

selection in these predominate breeds which represent most of

the U.S. rainbow trout aquaculture [60]. Twenty SNPs had

different minor alleles between populations, perhaps due to

selection for different economic traits among the strains. Forty-

two markers (out of the 51 successfully genotyped markers, 82%)

were polymorphic in all 3 populations which is consistent with a

report showing 71.5% average heterozygosity over nine microsat-

ellite markers in NCCCWA founder populations [61]. Heterozy-

gosities of most markers were confirmed in 3 outbred populations

of particular importance to the aquaculture industry in the US.

Therefore, these markers are suitable for MAS and population

genetics studies in rainbow trout. Further studies using a larger

number of phenotyped and genotyped fish are required to identify

markers’ associations within each strain.

Genetic/physical Mapping of SNP Markers
Among the 30 nuSNPs used to genotype the four NCCCWA

mapping families, 23 markers were polymorphic (Table S6). Based

on the chromosomal locations of microsatellite markers on the

NCCCWA reference genetic map (LOD $4.0) [32], 19 nuSNP

markers were assigned to the chromosomes of rainbow trout

(Table S6). Ten nuSNP markers were mapped to chromosome 16

(Figure 3), two nuSNP markers were placed onto each of

chromosome 4 and the sex chromosome, and one nuSNP marker

Figure 3. NCCCWA genetic/physical map with positions of 19 nuSNPs polymorphic markers. nuSNPs were genotyped on mapping
families from the NCCCWA. Linkage groups were determined and nuSNPs were added to the NCCCWA genetic map [32]. Closest markers from the
published map were determined using two-point linkage analyses.
doi:10.1371/journal.pone.0036264.g003
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was assigned to each of chromosomes 2, 6, 10, 12 and 25

(Figure 3). Other polymorphic nuSNP markers could not be

placed on the chromosomes of rainbow trout because they were

not linked with any of the 214 microsatellite markers at LOD $4.

Mitochondrial markers were placed on the mitochondrial

genome by BLASTing sequences flanking markers against the

rainbow trout mitochondrial reference sequence (GenBank:

L29771.1) [33]. Physical locations of the mtSNPs are shown in

table 6.

Conclusion
RNA-Seq approach was used in a global allele-specific expression

approach to identify a set of markers associated with growth traits in

rainbow trout. The study provides a proof of concept demonstrated,

perhaps for the first time, in a non-model species that RNA-Seq can

be used as a discovery tool; first to identify SNPs with allelic

imbalances between two phenotypes, second develop genetic

markers for association studies, and third to identify candidate

genes explaining variations in phenotypes. In this study, only muscle

tissues from two families were used as the RNA source. Other

tissues, more families and life stages should be used to explore more

SNPs in the population and detect tissue- or life stage-specific SNPs

that are associated with growth and development. Although many

of SNPs identified in this study are located outside of the open

reading frames or caused synonymous mutations, marker loci may

be linked to nearby other causative mutations in the genome.

Further studies are needed to identify causative mutations. In

addition, synonymous mutations may still have functional effects by

altering the mRNA folding/stability and or by translation

suppression [62,63]. Libraries from pooled samples were sequenced

at low depth of coverage, which proves that RNA-Seq is a fast,

economical and effective method for marker development in species

without complete genome sequences/assemblies. The RNA-Seq

technique is applicable in many other species of agricultural interest

that do not have complete genome sequence/assemblies or at least

finished to the point where they are useful. In addition, the RNA-

Seq approach we developed in this study will still be useful model

species if the population diversity is high, then the numbers of

genotypes/phenotypes necessary to use Whole Genome Selection is

going to be so staggeringly high.

Supporting Information

Table S1 Summary of 54 SNPs (30 nuSNPs and 24
mtSNPs with allelic imbalances .5.0 or ,0.2 in fast/

slow growing fish) considered for the growth traits
association study and their annotations. SNPs were

submitted to NCBI dbSNP database [64].

(DOCX)

Table S2 Variables with significant contribution to the
predictive power of growth trait1 models using stepwise
model selection2.
(DOCX)

Table S3 Association of nuclear SNPs with weight1

using family-based quantitative trait linkage disequilib-
rium (QTLD) analysis2.
(DOCX)

Table S4 Association of mitochondrial SNP haplotypes
with growth traits1 using population-based association
analysis2.
(DOCX)

Table S5 Markers’ heterozygosity and minor allele
frequency (MAF) in outbred populations, 96 individuals
were genotyped from 12 rainbow trout families (8 fish/
family) representing 3 outbred populations from the
Hagerman Fish Culture Experiment Station (HF), Clear
Springs Foods (CS) and Troutlodge Inc (TL).
(XLSX)

Table S6 30 nuSNPs were genotyped on mapping
families from the NCCCWA. Linkage groups were deter-

mined and nuSNPs were added to the a recently published version

of the NCCCWA genetic map (LOD $ 7.0). Segregating data of

nuSNPs genotypes were used to identify the closest markers from

the published map using two-point linkage analyses. Linkage

analysis placed 19 loci onto 8 chromosomes.

(XLSX)
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