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Abstract

It is widely thought that resting state functional connectivity likely reflects functional interaction among brain areas and that
different functional areas interact with different sets of brain areas. A method for mapping areal boundaries has been
formulated based on the large-scale spatial characteristics of regional interaction revealed by resting state functional
connectivity. In the present study, we present a novel analysis for areal boundary mapping that requires only the signal
timecourses within a region of interest, without reference to the information from outside the region. The areal boundaries
were generated by the novel analysis and were compared with those generated by the previously-established standard
analysis. The boundaries were robust and reproducible across the two analyses, in two regions of interest tested. These
results suggest that the information for areal boundaries is readily available inside the region of interest.
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Introduction

Resting state functional connectivity, measures of correlation of

low-frequency BOLD signal between brain regions during resting

[1–4], has revealed strong functional correlation between distant

brain regions [5–13]. Unlike diffusion tensor imaging (DTI)

tractography which measures the directional diffusion of water

within a voxel and reveals direct anatomical connections [14–17],

the linkage between highly correlated regions can evidently be

indirect [18]. Although the neural mechanisms for the low-

frequency fluctuations in the BOLD signal are not fully

understood, the robust functional correlation between regions

that tend to be co-activated during particular cognitive processing

is thought to reflect interaction between brain regions, thus

constituting large-scale regional networks [19–27].

Recent evidence has shown that resting state functional

connectivity can be used to delineate boundaries of functionally

distinct areas [28]. Information as to which part of the brain is

functionally correlated with a particular location in a region of

interest can be obtained by calculating voxel-wise functional

connectivity when a seed is placed at a location in that region.

Movement of the seed from the original location sometimes

encounters an abrupt change in a spatial pattern of voxel-wise

correlation in the whole brain, which is thought to reflect

boundaries between areas for distinct functions implemented by

distinct large-scale regional networks. A standard boundary

mapping method was formulated based on this observation

[18,29], and successful applications of the method have been

reported in several areas such as the cingulate areas [18,28], the

supramarginal/angular gyrus [18], the lateral parietal cortex [29]

and various regions in the whole brain [30,31].

The standard boundary mapping method defines areal bound-

aries between adjacent areas by referring to information from the

whole brain. In the present study, we present a new analysis for

boundary mapping in which areal boundaries are delineated based

on the BOLD signal timecourse within these adjacent areas,

without information taken from the other part of the brain. More

specifically, we reasoned that signal timecourse that is supposed to

be relatively uniform within an area should be changed abruptly

across the boundary between adjacent areas. The approach of

utilizing the local timecourse information would exempt the

relatively complicated procedures required in the standard

method, including calculation of whole-brain functional correla-

tion and detection of the abrupt change in a spatial pattern of the

whole-brain functional correlation. We show areal boundaries

drawn by the new analysis, and examine the validity of the new

method by comparing the results obtained from these two

methods. These two methods may yield different patterns of areal

boundaries, but we report remarkable similarity between them.

Methods

Data Acquisition
Structural and functional images were collected at a 3 T MRI

system. Functional images during the resting state were collected

using gradient echo echo-planar sequences (TR = 6.0 sec,

TE = 35 msec, flip angle = 90 deg, cubic voxel of 2 mm, 34 slices
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without slice gap). The data were sampled using cubic voxels of

2 mm to minimize signal contamination from the other bank of a

sulcus [32–36]. Each run contained 54 volume images, and 64

runs were collected for each of the subjects in multiple sessions to

compensate for lower signal to noise ratio caused by the small

voxel size. The first four images in each run were excluded from

the analysis in order to take into account the equilibrium of

longitudinal magnetization. Written informed consent was ob-

tained from 3 healthy right-handed subjects (2 males; 1 female,

age: 22–28 years). They were scanned by fMRI using experimen-

tal procedures approved by the institutional review board of the

University of Tokyo School of Medicine. For the population

average analysis, functional images of the resting state were

provided from the data set of 25 subjects (13 males; 12 females,

age: 20–28 years) used in Kimura et al. (2010) [37] (TR = 3.0 sec,

TE = 35 msec, flip angle = 90 deg, cubic voxel of 4 mm3, 40 slices

without slice gap, 2 runs of 100 volumes each). For anatomic

reference, T2-weighted images were obtained for spatial normal-

ization (TR = 3 s, TE = 85 ms, 80 slices, slice thickness = 2.0 mm,

in-plane resolution = 160.67 mm2).

Preprocessing
Functional images were realigned and were slice timing

corrected using SPM2 [38]. When head movement occurred by

more than 2 mm in translation or by more than 2 degrees in any

rotation, the entire run was excluded (one run from one subject).

Although slice timing correction may be less accurate in a longer

TR, we followed the standard method [18,21] and had to conduct

slice timing correction because the timecourses had to be averaged

across voxels in the white matter, ventricle and whole brain to

regress out nuisance signals. However, the comparison between

the standard and new boundary mapping methods in the present

study will not be influenced by the slice timing correction since the

procedures were used commonly in the two methods. Because the

functional images were acquired in the spatial resolution of

26262 mm, spatial smoothing was not conducted to keep the

functional images from being blurred. Spatial normalization was

not applied either to avoid spatial smoothing included in the

normalization algorithm, and the whole analyses were conducted

in individual subjects. The images realigned and slice timing

corrected were subject to temporal band-pass filtering

(0.009 Hz,f,0.08 Hz) using FSL [39]. The filtered images were

further subject to regression using SPM2 based on a general linear

model [38,40] with parameters obtained by head motion

correction, whole brain signal averaged over the whole brain,

ventricular signal averaged from ventricular ROI, and white

matter signal averaged from white matter ROI [21,41]. For the

population average analysis for 4-mm resolution data, spatial

normalization and smoothing (FWHM = 8 mm) were applied.

Surface-Based Mapping
The posterior part of the inferior frontal cortex (pIFC) in the

right hemisphere, a part of the association cortex that implements

several well-investigated functions [42–45], was a region of central

interest in the present study. The right pIFC in each individual

subject was analyzed in detail using two-dimensional surface

mapping based on Caret (http://brainmap.wustl.edu/caret) [46].

The SureFit method was applied to a functional image of the 2-

mm resolution from each individual subject, which resulted in a

segmentation whose boundary runs approximately midway

through the cortical thickness. The segmentation was used to

automatically generate a wire-frame tessellation whose nodes lied

on the boundary of the segmentation. The wire-frame tessellation

was further inflated, and was flattened by making cuts along five

standardized trajectories to allow for inspection of the pIFC in a

two dimensional space.

Generation of Probabilistic Boundary Maps (New
Analysis)

Rather than the spatial pattern of whole-brain correlation maps,

we utilized the local signal timecourses within the region of interest

for boundary mapping. Each pixel in the 2D space

(50 mm650 mm) that covered the right pIFC was used as the

seed to calculate correlation coefficient of signal timecourses

between the seed and all the pixels in the region (Fig. 1). A

correlation map in the right pIFC was generated by applying the

Fisher’s z-transformation to the correlation coefficient [21,41].

Therefore, the correlation maps were generated by the number of

all the seed pixels in the 2D space. The correlation map was

analyzed to detect boundaries where the correlation changed most

abruptly. Canny edge detection algorithm [47], which also

includes spatial differentiation, was applied to the correlation

map to generate a gradient map and then to detect edges [18,29]

(Fig. 1). The Canny method smoothes the correlation map with a

Gaussian filter (FWHM = 6 mm) to reduce noise, and then creates

a gradient map by spatial differentiation of the correlation map.

High gradient values in the gradient map represent locations

where similarity between the timecourses is abruptly changing.

After eliminating pixels in the gradient map that are not local

maxima, the algorithm tracks along highlighted regions in the

gradient map, which generates an edge map. Since the edge

detection is binary, averaging across the entire set of binary edge

maps for all the seed pixels generates a probabilistic boundary map

in which intensity represents how likely a location is to be an edge

Figure 1. A flow chart of the new boundary mapping method. The region of interest, the right pIFC, was flattened into a two-dimensional
space, and was subject to the new boundary mapping analysis.
doi:10.1371/journal.pone.0036496.g001

Local Signal Time-Series and Boundary Mapping

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e36496



(Fig. 1). As an additional reference, regions around the right

central sulcus were also subject to the boundary mapping analyses.

Comparison with Standard Analysis
We also used the standard analysis for boundary mapping

[18,29], which detects pixels where the spatial pattern of whole-

brain correlation maps changes abruptly, and compared the

results of our new analysis with those of the standard analysis. The

procedures for generation of the gradient maps, the edge maps,

and the probabilistic boundary maps were common to the

standard and the new analysis methods, and the same parameters

for edge detection were applied. Moreover, although the standard

analysis calculated voxel-wise correlation in the whole brain for

each seed, we also restricted the target of correlation calculation:

(1) the gray matter in the entire cerebral cortex and (2) the region

contralateral to the right pIFC. The use of only a part of the brain

as a target of correlation calculation in the standard analysis is

expected to decrease the number of slices and calculation cost.

The gray matter was segmented in individual subjects using

SPM2. The contralateral region was determined as across-seed

collection of the voxels in the spherical region (radius: 2 mm) in

the contralateral part of right pIFC. The idea is that a region has

the strongest functional connectivity with the corresponding

contralateral region [48,49] that may be sufficient for boundary

mapping.

To make a quantitative comparison of the signal to noise ratio

between the maps by the standard and new methods, we defined a

signal to noise ratio. Generally, the signal to noise ratio is defined

as the magnitude of signal divided by the magnitude of noise.

More specifically, in the present situation, the signal to noise ratio

was defined as the average of the probability values in the

Boundary pixels, divided by the average of the probability values

in the Background pixels. The Boundary and Background pixels

were defined as follows: The Boundary pixels were on the ridge of

the probabilistic boundary, whereas Background pixels were off

that ridge. To define the Boundary pixels, the direction of any one

pixel was first determined out of four possible directions by

summing up the pixel values of three linear pixels (the pixel itself

and two adjacent pixels) along each of the four possible directions

and selecting the greatest one. The pixel was regarded as a

Boundary pixel (1) when the pixel value was the greatest of the

three orthogonal pixels (the pixel itself and the two adjacent pixels

lined orthogonally to the selected direction), and (2) when such

pixels were contiguous by three or more. The pixel was regarded

as a Background pixel when there were no Boundary pixels in any

of the eight pixels surrounding that pixel.

Figure 2. Different spatial patterns in whole-brain correaltion maps and the signal timecourses between the 2 seeds as close as
2 cm. A) Whole-brain correlation maps that exhibited distinct spatial patterns when seeds were placed around the right pIFC about 2 cm apart, at
(54, 12, 12) and (54, 28, 12) [51]. A seed is indicated by ‘‘x’’. IFG: inferior frontal gyrus, PCG: precentral gyrus. B) fMRI signals in the two seed points in
one representative subject that exhibited dissimilar timecourses. The correlation between the timecourses was utilized in the present study for
boundary mapping.
doi:10.1371/journal.pone.0036496.g002
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Results

We first demonstrate that the many parts of the spatial patterns

in whole-brain correlation maps can be different even when the

two seeds are as close as 2 cm [18]. Figure 2A shows two

correlation maps when the seeds were placed in the right pIFC.

The signal timecourses in the two seeds were also different, which

was utilized for boundary mapping in the present new analysis

(Fig. 2B).

The standard boundary mapping method was applied to the

right pIFC (Fig. 3A), and the probabilistic boundary maps were

generated (Fig. 3B). The sulcus borders (PCS and IFS) were

manually drawn in yellow to provide approximate orientation as a

reference to the inferior frontal cortex. We tested the reproduc-

ibility of the probabilistic boundary maps. When the data from the

total of 64 runs were divided into two (32 runs each) by alternately

classifying the runs for each subject, the probabilistic boundary

maps generated from each of the two data sets exhibited robust

boundary patterns. To evaluate the similarity between the

boundary maps based on the divided data sets, the correlation

coefficients were calculated between the boundary maps in the

three cases, with the degrees of freedom corrected by Bartlett

correction factor [50]. All of these were highly significant (the

lowest r = 0.67, t(130) = 10.2, p = 3.4610218), demonstrating the

reliability of the probabilistic boundary maps generated by the

standard analysis.

The range of correlation calculation in the standard boundary

mapping method was restricted to only a part of the brain: (1) the

gray matter in the entire cerebral cortex and (2) the region

contralateral to the right pIFC, rather than the whole-brain. As

shown in Fig. 4 left, the restriction of the correlation calculation

yielded largely equivalent patterns of probabilistic boundaries. To

evaluate the similarity, the correlation coefficients were calculated

between the boundary maps based on whole-brain correlation and

those based on only a part of the brain in the three cases, and all of

these were highly significant (the lowest r = 0.68, t(124) = 10.1,

p = 8.0610218).

The probabilistic boundary maps were also generated using the

new boundary mapping method using the same parameters for

generation of gradient and edge maps. The new analysis

successfully yielded probabilistic boundary patterns, and the

boundary patterns were very similar to those generated by the

standard analysis (Fig. 4 right). To evaluate the similarity, the

correlation coefficients were calculated between the boundary

maps based on the standard analysis using the whole-brain

correlation maps and those based on the new analysis in the three

cases, and all of these were highly significant (the lowest r = 0.88,

t(134) = 21.1, p = 3.0610244). These results confirm the validity of

the new analysis method.

Figure 3. The probabilistic boundary maps around the right
pIFC generated by the standard analysis with whole-brain
calculation of correlation. A) An inflated brain and the region of
interest, the right pIFC. PCS: precentral sulcus, IFS: inferior frontal sulcus.
B) Reproducibility of boundary patterns based on the standard
mapping method in three individual subjects when data set was
divided into two halves (left panels: odd runs, right panels: even runs).
Yellow curves indicate the approximate location of the fundus of the
PCS or IFS.
doi:10.1371/journal.pone.0036496.g003

Figure 4. Boundary patterns in the right pIFC generated by the
standard analysis (left) and the new analysis (right) in three
individual subjects. In the standard analysis, the correlation map was
calculated for the whole brain, the gray matter in the entire cerebral
cortex, or the region contralateral to the right pIFC.
doi:10.1371/journal.pone.0036496.g004

Table 1. Signal-to-noise ratio of probabilistic boundary maps
in three cases generated by the standard and new boundary
mapping methods.

Standard Analysis New Analysis

Whole Brain Gray Matter Contralateral

Case 1 2.8 2.9 3.7 1.8

Case 2 7.6 6.6 11.2 3.1

Case 3 3.1 3.0 7.6 2.0

Average 4.5 4.2 7.5 2.3

doi:10.1371/journal.pone.0036496.t001
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To quantify the comparison of the boundary maps yielded by

the standard and new methods, we calculated the signal to noise

ratio (see Methods) and presented the results in Table 1. The ratio

for the boundary map generated by the new method was lowered

by approximately 50% relative to that by the standard method

with whole-brain calculation of correlation. We also measured

computation time taken to generate the boundary maps using a

personal computer (Dell Precision T5400, CentOS 5.5, CPU:

2.66 GHz with quad core 266 MB L2 cache and 1333 MHz FSB,

memory: 32 GB) and Matlab R2007b. Step 1 consisted of

generation of correlation maps in the new method and generation

of both correlation and eta2 maps in the standard method, whereas

Step 2 consisted of common procedures of generation of gradient

maps, edges and probabilistic boundary maps. As shown in

Table 2, the computation time was reduced drastically to

approximately one hundredth using the new method, as compared

to the standard method with whole-brain calculation of correla-

tion, at the expense of the signal to noise ratio. The computation

time in the standard method with correlation calculation only in

the contralateral region was also reduced drastically, as compared

to the standard method with whole-brain calculation of correla-

tion, without loss of the signal to noise ratio. Despite the lower

signal to noise ratio in the new method, however, the results

demonstrate that local signals contain information that can be

Table 2. Calculation time (in minutes) taken to generate probabilistic boundary maps in three cases by the standard and new
boundary mapping methods.

Standard Analysis New Analysis

Whole Brain Gray Matter Contralateral

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2 Step 1 Step 2

Case 1 2144.8 1.7 813.8 1.8 23.7 1.7 15.0 1.7

Case 2 2085.2 1.7 872.0 1.6 26.5 1.8 14.4 1.7

Case 3 2046.8 1.7 838.0 1.7 22.0 1.8 14.5 1.6

Average 2092.2 1.7 841.3 1.7 24.1 1.7 14.6 1.7

doi:10.1371/journal.pone.0036496.t002

Figure 5. A spatial profile of correlation coefficient between
signal timecourses along the line that crossed a representative
boundary. The red and yellow curves indicate the spatial profiles that
belonged to the same areas as the red and yellow dots, respectively.
doi:10.1371/journal.pone.0036496.g005

Figure 6. The probabilistic boundary maps around the right
central sulcus. A) An inflated brain and the region of interest, the right
central sulcus. CS: central sulcus. B) Boundary patterns in the right CS
generated by the standard analysis (left) and the new analysis (right) in
three individual subjects. The format is similar to Fig. 4. Red curves
indicate the approximate location of the dips of the CS.
doi:10.1371/journal.pone.0036496.g006
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used for boundary mapping.

To inspect that the pixels that had similar signal timecourses

were spatially grouped by the boundaries detected by the new

analysis, two pixels were selected across a representative boundary,

and the correlation of signal timecourse was examined along the

line between the two pixels, which included 8 pixels in total. The

correlation of signal timecourses between one pixel and each of all

the 8 seed pixels along this line were calculated, yielding a spatial

profile that peaked at the given seed pixel. As shown in Fig. 5, the

boundary delineated the region into two parts, each of which

consisted of pixels of similar profiles of correlation coefficient,

demonstrating that the signal timecourse was similar within each

of the delineated areas, but not across the probabilistic boundary.

We applied the boundary mapping methods to the central

sulcus (Fig. 6A), in order to inspect whether the boundary mapping

methods detected the well-known functional boundary between

the primary somatosensory area (S1) and the primary motor area

(M1). The delineated boundaries appeared to be located along the

fundus of the central sulcus, rather than orthogonally to the sulcus

(Fig. 6B). At the same time, the mapping method revealed various

probabilistic boundaries other than the putative boundaries

between the S1 and M1, indicating the qualitative difference

between the classical anatomic areas, such as S1 and M1, and the

rsfc-based regions defined in the present study. To evaluate the

similarity, the correlation coefficients were calculated between the

boundary maps based on whole-brain correlation maps and those

based on only a part of the brain in the three cases, and all of these

were highly significant (the lowest r = 0.61, t(140) = 9.1,

p = 8.7610216). The correlation coefficients were also calculated

between the boundary maps based on the standard analysis using

the whole-brain correlation maps and those based on the new

analysis in the three cases, and all of these were highly significant

(the lowest r = 0.77, t(130) = 13.5, p = 1.6610226). These results

suggest the regional generality of application of the new analysis.

Discussion

In the present study we developed a new analysis to delineate

areal boundaries using signal timecourse within the region of

interest, without information about inter-regional interaction in

the large-scale networks. It was demonstrated that the pattern of

probabilistic boundaries generated by the new method was highly

similar to that generated by the standard mapping method. These

results suggest that the information for areal boundaries is readily

available within the region of interest.

We first tested whether the restricted spatial extent of functional

correlation with the seed location, rather than whole-brain

correlation, was sufficient for areal boundary mapping using the

standard method. It was revealed that the spatial extent of

functional correlation to be examined could be restricted to the

contralateral part of the region of interest, which contained only

1.5% of the voxels in the whole brain in the present study.

Although it is natural that the gray matter of the cerebral cortex,

excluding the white matter and the ventricles, was sufficient to

draw areal boundaries, these results confirm that the callosal fibers

from the region of interest convey rich information on regional

interaction to the contralateral region [48,49]. Examination of

functional correlation in the restricted spatial extent should be

useful in saving slice coverage during scanning and calculation

time in subsequent analyses, compared to the standard method

where the whole-brain correlation is to be examined.

The robustness of the areal boundary patterns was also

apparent in the results generated by the new method in which

the inter-regional correlation was not necessary. The sufficient

information about areal boundary that was available in the

timecourse within the region of interest suggests that the difference

in the timecourses in two adjacent areas depended on the

difference in the combination of large-scale brain networks that

the two areas belonged to. One caveat regarding the new method

is that the resultant probabilistic boundary patterns had a lower

contrast, compared to those of the standard analysis, with the

boundaries detected by the new method more susceptible to

background noise (Figs. 4 and 6). One possible reason would be

that the new method cannot utilize the functional contrast that

should have been provided by the whole-brain standard method.

Moreover, the standard method with correlation calculation only

in the contralateral regions had a more efficient signal to noise

ratio, with a similar amount of computation time, as compared to

the new method (Tables 1 and 2). Although the new method

demonstrates that information needed to delineate areal bound-

aries is readily available inside the region of interest, it does not

provide a more effective way of delineating boundaries, except for

the cases where, for example, only a limited field of view was

scanned for boundary mapping.
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