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Abstract

Background: Most of the parasites of the phylum Apicomplexa contain a relict prokaryotic-derived plastid called the
apicoplast. This organelle is important not only for the survival of the parasite, but its unique properties make it an ideal
drug target. The majority of apicoplast-associated proteins are nuclear encoded and targeted post-translationally to the
organellar lumen via a bipartite signaling mechanism that requires an N-terminal signal and transit peptide (TP). Attempts to
define a consensus motif that universally identifies apicoplast TPs have failed.

Methodology/Principal Findings: In this study, we propose a generalized rule-based classification model to identify
apicoplast-targeted proteins (ApicoTPs) that use a bipartite signaling mechanism. Given a training set specific to an
organism, this model, called ApicoAP, incorporates a procedure based on a genetic algorithm to tailor a discriminating rule
that exploits the known characteristics of ApicoTPs. Performance of ApicoAP is evaluated for four labeled datasets of
Plasmodium falciparum, Plasmodium yoelii, Babesia bovis, and Toxoplasma gondii proteins. ApicoAP improves the
classification accuracy of the published dataset for P. falciparum to 94%, originally 90% using PlasmoAP.

Conclusions/Significance: We present a parametric model for ApicoTPs and a procedure to optimize the model parameters
for a given training set. A major asset of this model is that it is customizable to different parasite genomes. The ApicoAP
prediction software is available at http://code.google.com/p/apicoap/ and http://bcb.eecs.wsu.edu.
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Introduction

The apicoplast is a relict plastid that resides in most of the

parasites of the phylum Apicomplexa [1,2]. Members of this

phylum include Plasmodium falciparum, the causative agent of the

most deadly form of malaria, Plasmodium yoelii, another malaria-

causing agent, and Toxoplasma gondii and Babesia bovis, which cause

toxoplasmosis and babesiosis, respectively. The apicoplast is an

essential organelle for the survival of these parasites [3,4].

Moreover, many apicoplast proteins and pathways have pro-

karyotic characteristics due to the organelle’s ancestral relationship

to bacteria [1,5]. Because these proteins and pathways are either

absent or divergent from those of its eukaryotic host, they are seen

as promising drug targets with minimum side effects to the infected

host [6,5]. Most apicoplast proteins are nuclear-encoded and

targeted post-translationally to the organellar lumen [7–10].

Understanding the metabolic activities performed in the apicoplast

is essential for drug target identification, and this requires the

ability to detect apicoplast targeting signals in proteins.

Protein import into the lumen of the apicoplast is facilitated by

a bipartite signaling mechanism that requires an N-terminal signal

peptide (SP) followed by a transit peptide (TP) [9]. Although other

mechanisms may exist [11], the bipartite signaling mechanism is

most easily recognized. Well-established prediction algorithms

exist for determining the existence of an SP in a protein sequence

independent of the organism to which it belongs [12–15]. In

contrast, there is no established computational method that

determines the existence of a TP in multiple organisms. In fact,

attempts to define a consensus motif that universally identifies

apicoplast TPs have failed because preferred amino acids in TP

regions are heavily influenced by the Adenine-Thymidine (AT)

codon bias of parasitic genomes [16]. For example, the genome of

P. falciparum is approximately 80% AT-enriched [16], and

apicoplast TPs are dominated by amino acids such as asparagine

(N) and lysine (K), which exclusively utilize codons lacking

Guanine and Cytosine. PlasmoAP, a rule-based prediction

method, makes use of this bias and suggests that the anticipated

TP region (defined as the region that starts after the predicted SP-

cleavage site with a cutoff of 80 amino acids) of apicoplast-targeted

proteins (ApicoTPs) must contain an NK-enriched sub-region with

a basic to acidic amino acid ratio of at least 5 to 3 [17].

Application of this method to other Apicomplexa with more
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balanced AT content is not considered reliable. As a result,

application of PlasmoAP to the Babesia bovis genome revealed only

a handful of candidate ApicoTPs in comparison to.460 predicted

ApicoTPs in P. falciparum [18]. With the sequence completion of

several Apicomplexan genomes, there is a pressing need to have

a computational method for detecting ApicoTPs that is applicable

to different organisms rather than to a single model organism.

PATS [19] and PlasmoAP [17] are the only computational

methods described in the literature that detect TP regions in

protein sequences. These two methods are specifically designed for

the P. falciparum proteome. PATS follows a black-box approach

that is based on training a neural network over amino acid

content-based features harvested from the anticipated TP region

(defined as the region that starts after the predicted SP-cleavage

site with a cutoff of 78 amino acids). Unlike PlasmoAP, PATS

offers predictions only, without providing any understanding of the

actual prediction mechanism. As a rule-based method, PlasmoAP

holds an advantage over PATS in the sense that it offers insight

into the underlying targeting mechanism and allows the formu-

lation of testable hypotheses.

In this paper, we propose a generalized rule-based classification

model to identify ApicoTPs that use a bipartite signaling

mechanism. Based only on the known characteristics of ApicoTPs,

a parametric model is constructed. Given a training set specific to

an organism, our model, ApicoAP for APICOmplexan Apicoplast

Proteins, employs a procedure based on a genetic algorithm to

tailor a discriminating rule that maximizes the prediction and

generalization performance for the given set. An advantage of

ApicoAP is that it is customizable to different organisms when

training data are available.

Materials and Methods

Selection of a classification model
From a computational point of view, the prediction of a given

protein as an ApicoTP or non-ApicoTP can be stated as a binary

classification problem, for which we choose ApicoTP as the

positive class. It is worth noting that we define the ApicoTP class

such that proteins localizing to multiple organelles including the

apicoplast are members of this class in addition to proteins

localizing only to the apicoplast. In a typical supervised learning

setting, a training set containing positive and negative labeled

instances is used to learn a mapping from the input to the output.

In our case, the goal is to learn a mapping from protein sequences

to the binary class labels: ApicoTP and non-ApicoTP. Our

machine learning approach towards this goal is to assume

a parametric model to define this mapping and estimate model

parameters using a training set such that the error for parameter

estimates is minimized. This estimation process is often called

training. As a result of training, a model with specific parameters,

in other words a classifier, is achieved, which can then be

employed to predict the labels for new instances [20].

After some consideration, we chose a rule-based approach,

similar to the one used by the developers of PlasmoAP [17], as the

basis for our classification model. Properties of ApicoTPs were

used to construct a generalized rule defined by a set of parameters.

After completion of training by means of a genetic algorithm, the

resulting classifier was then used to predict a protein sequence as

ApicoTP or non-ApicoTP. Before explaining the details of our

generalized rule definition, we will discuss the known properties of

ApicoTPs that underlie our model.

Properties of apicoplast-targeted proteins (ApicoTPs). A

typical nuclear-encoded ApicoTP contains an N-terminal signal

peptide (SP) region followed by a transit peptide (TP) region and

amature protein. The SP is removed during co-translational import

into the endoplasmic reticulum (ER) and the TP, which guides the

protein into the apicoplast, is removed from the mature protein

inside the lumen of the apicoplast [9,21].

Apicoplast TPs vary greatly in length and are biased towards

polar (positive charge preferred), basic, and hydrophilic amino

acids [17,22]. A recent study conducted by [23] indicates that TPs

Figure 1. Schematic representation of a typical apicoplast-targeted protein (ApicoTP). A typical ApicoTP with defined regions r and p is
shown, where r is the anticipated TP region that starts immediately after the predicted SP cleavage site and p is the pattern that contains the core
information for predicting an ApicoTP. The pattern p is simply a contiguous sub-region of region r.
doi:10.1371/journal.pone.0036598.g001

Table 1. Breakdown of the labeled datasets into positive
(ApicoTP) and negative (non-ApicoTP) classes.

Dataset

Number of
putative
ApicoTPs

Number of
putative non-ApicoTPs

P. falciparum* 78 27

P. falciparum 47 41

B. bovis 28 29

T. gondii 35 33

P. yoelii 34 36

P. falciparum* refers to the published dataset used in the development of
PlasmoAP. We used only the SP-containing portion of this set.
doi:10.1371/journal.pone.0036598.t001

Table 2. Averaged expected prediction performance of
ApicoAP (standard deviation (sd) in parentheses) for the
labeled datasets.

Dataset
Average
accuracy (sd)

Minimum
accuracy (sd)

Maximum
accuracy (sd)

P. falciparum* 0.88 (0.08) 0.87 (0.09) 0.90 (0.07)

P. falciparum 0.87 (0.06) 0.84 (0.08) 0.91 (0.05)

B. bovis 0.82 (0.06) 0.76 (0.11) 0.87 (0.06)

T. gondii 0.83 (0.10) 0.8 (0.11) 0.86 (0.09)

P. yoelii 0.85 (0.07) 0.82 (0.09) 0.87 (0.06)

doi:10.1371/journal.pone.0036598.t002

Identifying Apicoplast Proteins in Apicomplexa
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are functionally disordered and therefore biased towards amino

acids with low helical propensity as well. In addition, it has been

shown that the absence of negative charge, in other words the

depletion of acidic residues, is important for transit peptide fidelity

[17,22].

Length variance among TP regions of known ApicoTPs points

to the possibility that a smaller sub-region of a perhaps larger TP is

used by the apicoplast for recognition. This smaller sub-region

(hereafter referred to as the pattern p) can be expected to embody

the aforementioned properties of TP regions. PlasmoAP makes use

of this idea by searching for a stretch of 40 amino acids in the

anticipated TP region (with a cutoff of 80 amino acids) that is

enriched and depleted by certain amino acid groups. Selection of

these amino acid groups and cutoff values was performed only for

the model organism, P. falciparum, which is the main limitation of

PlasmoAP for other organisms.

Generalized model for apicoplast-targeted proteins

(ApicoTPs). A schematic representation of a typical ApicoTP

is given in Figure 1. Because the TP region can be variable in

length and in most cases its exact length is unknown, the region r is

introduced, which represents the anticipated TP region. The

region r starts immediately after the predicted SP cleavage site and

has a length of at most Lr. A pattern p with length Lp is assumed to

exist in region r, which contains the core information that indicates

whether the protein under consideration is an ApicoTP. The

pattern p is simply a contiguous sub-region of region r enriched by

amino acids that have low helical propensity or are polar (positive

charge preferred), basic, or hydrophilic and depleted of acidic and

negative amino acids. {H, K, R} are the amino acids that are

polar-positive, basic, and highly hydrophilic. {N, Q} are the

amino acids that are polar-neutral and highly hydrophilic. {S, P,

Y} are moderately hydrophilic amino acids that have low helical

propensity. We refer to these eight amino acids as the preferred

residue set (PRS). {E, D} are the amino acids that are polar-negative

and acidic with high helical propensity. We refer to these as the

avoided residue set (ARS). We determined these sets using Chou-

Fasman [24] helical propensity predictions and the Kyte-Doolittle

[25] hydropathy index.

The preferred residue set score (PRSS) and avoided residue set score

(ARSS) quantify the existence of PRS and ARS elements in an

arbitrary region s. Equations (1) and (2) give the functional forms

of these quantities, where f (x,s) is the frequency of an amino acid

residue x in the region s. The PRSS and ARSS are simply the

weighted sums of these frequencies. The weight sets w1 and w2

determine the relative influence of the residues in the scoring

functions. When a weight is 0, the frequency of the corresponding

residue will have no effect on the score, and when it is 1, it will

have the maximum effect.

PRSS(s,w1)~
X8

i~1

w1i � f (X1i,s),X1~fH,K ,R,N,Q,S,P,Yg ð1Þ

ARSS(s,w2)~
X2

i~1

w2i � f (X2i,s),X2~fD,Eg ð2Þ

As stated earlier, the anticipated TP region r is assumed to

contain a contiguous sub-region p with length Lp that embodies the

core information for identifying an ApicoTP. We refer to the set

containing all contiguous sub-regions with length Lp in r as Sp. In

an ApicoTP, p should have a high PRSS and a relatively low ARSS.

Assuming a linear relationship between the PRSS and ARSS, the p-

criterion function given by Eq. (3) defines the criterion for selecting p

from Sp. Essentially the sub-region with the highest ratio of

preferred residues to avoided residues is the optimum choice.

p{criterion(r,lv,w1,w2)~ argmax
s[Sp

PRSS(s,w1){lv

ARSS(s,w2)
ð3Þ

The limiting value lv is an estimate of the PRSS when e percent

of the residues in a region s of length Ls are from the preferred residue

set (PRS). The reason for including this limiting value is to ensure

that a minimum number of elements from the PRS are present in

the sub-region p. Sole absence of avoided residues is insufficient for

a protein to be an ApicoTP; a minimum number of preferred

residues are required as well. Equation (4) gives the functional

form of lv.

lv(e,Ls,w1)~e � Ls � average(w1) ð4Þ

A rule-based classification model for ApicoTPs. The

generalized model for ApicoTPs discussed above defines a map-

ping from protein sequences to p-criterion values. In order to use

this model as a classifier, a threshold value over p-criterion values

that separates ApicoTPs from non-ApicoTPs must be determined.

This is accomplished via feedback from the training set. We

examine possible locations for the threshold and select the one that

maximizes the prediction performance of the resulting classifier for

the training set. The possible locations for the threshold are the

midpoints of each adjacent pair of p-criterion values in sorted order.

The resulting rule-based classifier classifies a protein sequence with

a p-criterion value exceeding or equal to the threshold as an

ApicoTP.

Geometric interpretation of the classification model for

ApicoTPs. The PRSS and ARSS, given by Eqs. (1) and (2),

Table 3. ApicoAP classifier performance on the labeled
datasets.

Dataset
True positive
count (rate)

True negative
count (rate)

Overall
accuracy

P. falciparum* 73 (0.94) 26 (0.96) 0.94

P. falciparum 46 (0.98) 37 (0.9) 0.94

B. bovis 27 (0.96) 26 (0.9) 0.93

T. gondii 32 (0.91) 27 (0.82) 0.87

P. yoelii 32 (0.94) 33 (0.92) 0.93

doi:10.1371/journal.pone.0036598.t003

Table 4. Comparison of ApicoAP and PlasmoAP for P.
falciparum dataset of 78 positives and 27 negatives.

Classifier
True positive
count (rate)

True negative
count (rate)

Overall
accuracy

ApicoAP 73 (0.94) 26 (0.96) 0.94

PlasmoAP 72 (0.92) 22 (0.81) 0.9

doi:10.1371/journal.pone.0036598.t004

Identifying Apicoplast Proteins in Apicomplexa
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respectively, associated with the sub-region p for a given protein

sequence map the sequence to a plane in which a discriminating

line separates ApicoTPs and non-ApicoTPs. Protein sequences are

mapped to a point in the PRSS-ARSS plane where the ones

appearing on or above the discriminating line are predicted to be

ApicoTPs. The limiting value lv, given by Eq. (4), determines the

PRSS-intercept of the discriminating line. The threshold over p-

criterion values, which is determined via feedback from the training

set, gives the slope of this line.

If the ARSS is zero and the PRSS is greater than or equal to the

limiting value lv, a sequence should be mapped to the ApicoTP

region of the PRSS-ARSS plane, but the p-criterion value is

undefined because the denominator in Eq. (3) is zero. For such

cases, we set the p-criterion to be sufficiently large to ensure

mapping of the sequence into the ApicoTP region. When the PRSS

is smaller than lv and the ARSS is zero, the p-criterion is set

sufficiently low to ensure mapping of the sequence into the non-

ApicoTP region below the discriminating line.

The parameters for the rule-based classification model used in

ApicoAP, including the weights, Lp, Lr, and e, are optimized using

a genetic algorithm as described below, but before discussing our

optimization method we discuss another requirement for identi-

fying an ApicoTP with a bipartite signaling mechanism, the

presence of a signal peptide.

Signal peptide identification. Implicit in our generalized

model is that an ApicoTP contains an SP because the anticipated

TP region r starts from the predicted SP cleavage site. We used

SignalP 3.0 [26] for SP cleavage site prediction, as it is the tool

commonly reported in the literature for Apicomplexan genomes.

We considered using the most recent version of this tool, SignalP

4.0 [12], which is believed to perform better at discriminating SP

regions from transmembrane domains existing downstream from

the N terminus of a sequence. However, we observed that SignalP

4.0 predicts significantly fewer SPs than SignalP 3.0 for

Apicomplexan genomes. For example, according to SignalP 3.0

the P. falciparum genome contains about 1100 SPs, but SignalP 4.0

identifies only about 600 SPs. Neither of these tools is trained or

tested on Apicomplexan genomes because no Apicomplexan

protein has been experimentally confirmed to contain an SP.

Further study is needed on Apicomplexan genomes to assess the

possible causes for the difference in the number of predictions.

Optimizing model parameters
A prediction performance measure calculated with a given

labeled dataset demonstrates how well the classification model

performs on the available data, but it does not predict how well

a classifier can be expected to perform in practice. Instead, for our

optimization criterion we use the expected prediction performance

of a model, i.e., how well it is expected to generalize to new data

instances; this can be estimated using a cross-validation procedure.

In n-fold cross validation, a given dataset is randomly divided into

n subsets of equal size. A classifier is trained n times by setting

aside one distinct set for validation and using the remaining n-1

sets for training. The average prediction performance for the

validation sets gives an estimate of the expected prediction

performance of the classifier [20].

We use Matthews Correlation Coefficient (MCC) as our

performance measure; the MCC is known as a balanced measure

because it weights a true positive prediction and a true negative

prediction equally regardless of how imbalanced a test set might be

[27]. The more commonly used performance measure, accuracy,

is biased toward classifiers that tend to do better on the majority

class. The rule-based classification model used in ApicoAP

requires several parameters: the weights that are used to calculate

the PRSS and ARSS, the region length Lr, the pattern length Lp,

and the limiting percentage e from which the limiting value lv is

determined. An optimization procedure based on a genetic

algorithm is applied to determine the set of parameters that

produces the model with the maximum expected prediction

performance. The problem of choosing the best classification

model parameters among all possibilities is characterized as

a search problem in which the parameter space is examined using

the expected prediction performance as the objective function,

calculated using the MCC measure.

Abrief overview of genetic algorithms. A genetic algorithm

(GA) is a heuristic search method inspired by Darwinian evolution

[28]. Based on the principle of ‘‘survival of the fittest,’’ a GA

maintains a set of candidate solutions called individuals, represented

by a set of genes, and applies combination and transformation

operations on individuals analogous to crossover and mutation

operations in actual genes. A typical iteration for a GA involves

selection of the fittest individuals (solutions with highest objective

function values), application of the crossover operation to these

individuals, generation of random mutations within the newly

produced individuals (offspring), and replacement of a percentage of

the total population by these offspring. This simulation of evolution

on solution instances undergoes several iterations until the stop

condition is reached. At this point, the algorithm returns the optimal

solution achieved via the iterations.

The power of genetic algorithms comes from the employment of

fitness-based selection and genetic operators (crossover and

mutation) during reproduction [29]. Fitness-based selection of

individuals for reproduction enables the fittest ones to have

offspring via the crossover operator, which enables the exchange of

genetic information between parents. If we assume that each

individual ideally captures different features of the global optima,

combining subparts of these individuals from multiple parents on

a single offspring greatly speeds up the process of reaching optima.

This phenomenon is known as implicit parallelism in a GA [30,31].

The mutation operator introduces localized changes in offspring,

which is essential for sustaining exploration in the search space.

Mutations introduce the genetic diversity that is not necessarily

represented in a population but that may be needed to reach

a global optimum.

Many variations of GAs exist in the literature. One can

maintain a single population or multiple populations in parallel. If

multiple populations are evolved in parallel, migration among

them during each iteration can be allowed either for the fittest or

for random individuals. At each iteration, the next population may

or may not overlap with the previous one.

Thegenetic algorithm forApicoAP. In the genetic algorithm

used in ApicoAP, an individual is represented by a real-valued

parameter set containing ten weights, one region length Lr, one

pattern length Lp, and one limiting percentage parameter e. To

Table 5. ApicoAP predictions for SP-containing P. falciparum,
B. bovis, T. gondii, and P. yoelii proteins.

Organism
SP-containing protein count
(excluding training data)

ApicoAP positive
prediction count

P. falciparum 1046 542

B. bovis 515 194

T. gondii 1037 417

P. yoelii 1049 285

doi:10.1371/journal.pone.0036598.t005

Identifying Apicoplast Proteins in Apicomplexa
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simplify the problem, we introduced constraints on the possible

values of each parameter. Weight values can be 0, 0.5, or 1. Region

length values can be between 60 and 90with increments of 5. Pattern

length values can be between 15 and 40 with increments of 1.

Limiting percentage values can be between 0.2 and 0.4 with

increments of 0.05. All ranges were determined by experimentation

with the training portion of the available data. Experiments

conducted with longer region and pattern lengths did not result in

significant differences in the rules or performance indicating that the

lengths chosen are sufficient.

Uniform crossover and point mutation were defined, and the

initial crossover and mutation probabilities were chosen to be 1.0

and 0.1, respectively. Four parallel populations containing 40

individuals were used, and migration was allowed (at each

iteration) for the two fittest individuals. Populations were set to

be overlapping where 15 individuals were replaced by the newly

generated offspring at all iterations. A large number of populations

with many individuals are desirable, but efficiency in the

computational time required for optimization is also a concern.

The replacement percentage and migration limit often determine

how quickly population diversities converge to zero, but reaching

this state too quickly is undesirable because a local optimum rather

than a global optimum is likely to be reached. Maintenance of

diverse populations is important for increasing the likelihood of

reaching the global optimum of the search space. Thus, in

determining parameters there is a tradeoff between time efficiency

and maintenance of diverse populations.

To avoid local optimum traps, we implemented a mechanism to

monitor population diversities and took preventive action when

needed by gradually increasing the mutation rate and by changing

the crossover selection criterion from fittest to random. When 30

generations had passed without achieving an improvement in the

optimal solution, we stopped the search. Although additional

mechanisms were implemented to avoid local optimum traps,

several runs were performed to insure an optimal solution had

been reached.

Datasets
To evaluate the performance of ApicoAP, we used five labeled

sets of protein sequences from P. falciparum, P. yoelii, B. bovis, and T.

gondii, each containing sequences of a single organism. We used the

published dataset employed in the development of PlasmoAP [17]

for the sole purpose of comparing our method with theirs. In

addition, we gathered a new training set for P. falciparum proteins

that incorporates recent experimental findings. We also gathered

novel training sets for P. yoelii, B. bovis, and T. gondii. ApiLoc was

Figure 2. Averaged frequency distributions of preferred and avoided residues for the p regions of the training sequences. This figure
presents the frequency distributions of preferred and avoided residues for the p regions of the training sequences for each organism. p is the
contiguous sub-region with length Lp in the anticipated TP region r that has the maximum p-criterion value, given by Eq. (3). Final ApicoAP classifiers
are used to identify p regions over each sequence. Residue counts over individual p regions are divided by the lengths of the p regions, and the
resulting values are averaged over positive and negative training sets for each organism.
doi:10.1371/journal.pone.0036598.g002

Identifying Apicoplast Proteins in Apicomplexa
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used as the main resource for locating experimentally confirmed

Apicomplexan proteins.

We obtained experimentally-confirmed ApicoTP proteins from

the ApiLoc database (version 3, http://apiloc.bio21.unimelb.edu.

au) and identified orthologs of these proteins from the OrthoMCL

database (version 5) [32]. Proteins verified as having SPs by

SignalP 3.0 were used in our positive training sets. Additional

proteins were added to our training sets from references [17,33–

38]. Because of the scarcity of experimentally-confirmed P. yoelii

and B. bovis ApicoTPs (only three proteins are confirmed to be

ApicoTPs for each organism), we used homology transfer to

establish reasonably sized training sets. CDART (Conserved

Domain Architecture Retrieval Tool) [39] was employed to infer

protein homology relationships by means of domain architecture

similarity. See Tables S1, S2, S3, S4 for detailed information on

the positive training sets.

We obtained proteins tagged as non-Apicoplast from the

ApiLoc database and found orthologs using the OrthoMCL

database. The proteins predicted to have an SP region were used

in our negative training sets. We also found proteins confirmed to

localize to locations other than the apicoplast from the ApiLoc

database. We manually eliminated proteins whose confirmed

localization does not necessarily rule out apicoplast targeting. For

example, we eliminated proteins confirmed to localize to

mitochondria, food vacuoles, and the cytoplasm, as dual

localization incidents have been reported in the literature in-

volving apicoplasts and these locations. Because very few P. yoelii

and B. bovis non-ApicoTPs have been experimentally confirmed,

we added proteins annotated as ‘‘variant erythrocyte surface

antigen,’’ ‘‘merozoite surface antigen,’’ and ‘‘rhoptry related/

associated’’ to the negative training sets to increase their size. See

Tables S5, S6, S7, S8 for detailed information on the negative

training sets.

All protein sequences were obtained from EuPathDB (version

2.13) [40], which is the main biological sequence repository for

eukaryotic pathogens such as Apicomplexans. Table 1 shows the

breakdown of each training set by positive (putative ApicoTPs) and

negative (non-ApicoTPs) classes.

For ApicoAP, only proteins containing an SP were used for

training. The published dataset of proteins for P. falciparum

contains 102 non-ApicoTPs of which 75 lack SPs. As with

ApicoAP, PlasmoAP requires a protein to contain an SP for

prediction as an ApicoTP. Thus, exclusion of the 75 non-

ApicoTPs will not affect comparison of the two methods. In fact, it

Figure 3. Training data mapped onto the PRSS-ARSS plane using final ApicoAP classifiers. This figure shows how training data are
mapped onto the PRSS-ARSS plane when the final ApicoAP classifiers are applied. The preferred residue set score (PRSS) and avoided residue set score
(ARSS) quantify the existence of preferred residue set (PRS) and avoided residue set (ARS) elements in the p regions of the training sequences for each
organism. See Eqs. (1) and (2) for definitions. The discriminating lines are shown on each plot, where the PRSS-intercept of each line corresponds to
the estimated limiting value lv, given by Eq. (4), and the slope of each line corresponds to the estimated threshold value over the p-criterion values,
given by Eq. (3).
doi:10.1371/journal.pone.0036598.g003
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is likely that a negative training set that includes proteins without

SPs may well overstate the actual performance of a classifier given

that the objective of such classifiers is to discriminate ApicoTPs

from non-ApicoTPs when an SP is present.

Results

Evaluation of ApicoAP
ApicoAP was used with the five datasets described in the

previous section. To estimate the expected prediction performance

of ApicoAP, 365 cross validation was employed. A rule-based

classifier is trained on a subset of a labeled dataset, which will be

referred to as the training-validation set. As discussed earlier, this

subset is further divided into training and validation sets, using

365 cross validation, to facilitate calculation of the objective

function value during the parameter optimization phase. The

parameters for our rule-based classifier are optimized in this phase,

and the resulting classifier is applied to the remaining set (test set)

to assess the performance of the model for unknown data. Fifteen

test set samples were used to assess the model performance. The

expected prediction performance of ApicoAP was calculated using

Matthews Correlation Coefficient (MCC) by averaging the

classifier MCCs over these samples.

During parameter optimization, often the parameter set found

with the optimum objective value is not unique. Small perturbations

of one or more parameters result in different parameter sets with the

same optimum objective value. The trained classifiers with these

parameter sets sometimes possess different expected prediction

performances. In Table 2 we report the averages of minimum,

maximum, and average accuracies observed together with the

standard deviations. These reflect the worst-case, best-case, and the

most-likely expected prediction performances, respectively.

The final classifier for each dataset uses a single parameter set.

To form this parameter set we took the averages of the individual

parameters obtained during the cross validation procedure. We

then adjusted the threshold value taking into consideration the

entire labeled dataset. Note that the performance measure used for

threshold determination was also the MCC. The resulting

classifiers for the four organisms were implemented in the

ApicoAP software used for predicting putative ApicoTPs (dis-

cussed in detail in the next section). Table 3 lists the performance

of ApicoAP for the different classifiers. In contrast to the values

given in Table 2, the values in Table 3 do not estimate how well

ApicoAP will perform for unknown data but rather how well it

performs for the available, labeled data.

A comparison between ApicoAP and PlasmoAP for the

published P. falciparum dataset is given in Table 4. The values in

Table 4 show that ApicoAP provides some improvement in both

the true positive rate and the true negative rate, the latter implying

fewer false positive predictions.

ApicoAP predictions
After a given training set is used in the classification model,

a rule-based classifier is obtained that predicts an ApicoTP when

the following criteria are met:

N The protein sequence is predicted to contain an SP.

N The region of Lr amino acids following the SP cleavage site

contains a pattern of Lp amino acids with a p-criterion value

greater than or equal to the determined threshold.

The classifiers obtained using the training data available for P.

falciparum, P. yoelii, B. bovis, and T. gondii are available in the

ApicoAP software package. These classifiers were used to predict

ApicoTPs as described in this section.

Many proteins expressed in the genomes of P. falciparum, P. yoelii,

B. bovis, andT. gondii are predicted to contain SPs. The cardinality of

these proteins for each organism, excluding the ones that are used for

training and testing, is listed in Table 5. The number of proteins

predicted to be ApicoTPs by ApicoAP is also listed in Table 5.

Of the 1046 SP-containing P. falciparum proteins, 358 are

predicted to be ApicoTPs by PlasmoAP. Of these 358, 261 (261/

358=73%) are also predicted to be ApicoTPs by ApicoAP. The

remaining SP-containing P. falciparum proteins (1046-358= 688)

are predicted to be non-ApicoTPs by PlasmoAP. Of these 688,

407 (407/688= 60%) are also predicted to be non-ApicoTPs by

ApicoAP. This leaves 281 (688-407= 281) that are identified as

additional putative ApicoTPs by ApicoAP.

Due to a lack of prediction tools in the literature for B. bovis, P.

yoelii, and T. gondii, we were unable to compare our prediction

results against a reference. Lists of putative ApicoTPs identified by

ApicoAP for the four organisms considered are available in

Tables S9, S10, S11, S12.

Optimized model parameters for ApicoAP classifiers
Figure 2 presents the frequency distributions for the preferred and

avoided residues within the p regions of the training sequences for

each organism. These regions are detected by applying the final

ApicoAP classifiers to the sequences. In general, weight parameter

estimates are found to be proportional to the differences between

the frequency of residues for positive and negative sets. For P.

falciparum, lysine (K) seems to have the greatest effect among the

amino acids contributing to the preferred residue set score (PRSS). The

greatest effect on the PRSS for the P. yoelii and B. bovis classifiers

comes from Arginine (R) and for the T. gondii classifier it comes

from Serine (S). All these estimates seem to be consistent with the

given histograms.

The estimated region length parameter r was found to be 60, 62,

70, and 88 for P. falciparum, P. yoelii, B. bovis, and T. gondii,

respectively. The estimated length of the p regionwas found to be 31,

36, 35, and 28 for P. falciparum, P. yoelii, B. bovis, and T. gondii,

respectively.

Figure 3 shows how training data are mapped onto the PRSS-

ARSS plane when the final classifiers are applied. The discriminating

line is shown, where the PRSS-intercept of this line corresponds to

the estimated limiting value lv, given by Eq. (4), and the slope of the

line corresponds to the estimated threshold value over the p-criterion

value, given by Eq. (3). One interesting observation is that many of

theT. gondii proteins contain p regionswith no acidic residues, i.e. the

ARSS is zero.Misclassifications of negative training data appear to be

associated with this type of p region.

In addition to the content of the p regions presented in Figure 2

we analyzed the locations of these regions among our positive

training data (with cardinality of 144). In about 55% of the

sequences, the p region identified (with max p-criterion value)

appears immediately after or within 5 residues of the predicted SP

cleavage site. For the remaining sequences, the p region appears

(on average) 20 residues away from the SP cleavage site. We

analyzed the region between the predicted SP cleavage site and the

start of the p region, which we refer to as the pre-pattern region. In

order to account for SP cleavage site prediction errors, we assume

a pre-pattern region exists when the p region appears 5 or more

residues away from the predicted SP cleavage site. Our goal was to

compare the acidic residue (D and E) frequencies of these two

regions. Hypothesis testing was applied to confirm that the mean

of the difference differs from zero. For this test and for all the

interval estimates following, we used a p-value of 0.05. The acidic
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residue frequency in the pre-pattern region was observed to be

higher than in the p region by 8% to 11% in 78% of these proteins.

The highest and lowest differences observed were 33% and 1%,

respectively.

We repeated the same analysis on a subset of our positive

training data containing only the experimentally confirmed

ApicoTPs (with cardinality of 70). In 43% of these, a pre-pattern

region existed. The acidic residue frequency in the pre-pattern

region was observed to be higher than in the p region by 6% to

11% in 90% of these proteins. Similar tendencies were also

observed among the ApicoTPs predicted by ApicoAP.

Experimental findings for T. gondii transit peptides (TP) indicate

that the absence of acidic residues in the N-terminal portion of the

TP is important for TP fidelity, even more important than the

presence of positive charge [21]. Tonkin et al. used the acyl carrier

protein (ACP) from T. gondii in these experiments. ApicoAP

identifies no pre-pattern region in this particular protein, which

means that the p region is located immediately after the predicted

SP cleavage site. This indicates that the prediction mechanism of

ApicoAP, based entirely on the p region, which does not

necessarily appear on the N-terminal portion of a TP, does not

contradict the experimental findings.

Discussion

The apicoplast is a unique organelle that resides in a group of

eukaryotic parasites, known as Apicomplexa, which are respon-

sible for a wide range of serious diseases among humans and

livestock. As resistance to commonly used drugs increases in

Apicomplexan parasites, it is important to find new drug targets.

The apicoplast is an essential organelle for the survival of these

parasites and, with its prokaryotic origin, is viewed as a promising

drug target. The majority of apicoplast proteins are nuclear-

encoded and targeted post-translationally to the apicoplast

organelle. Experimental identification of apicoplast-targeted

proteins (ApicoTPs) is a costly and time-consuming task. Accurate

in silico prediction methods are needed to accelerate the

identification of promising drug targets.

The computational approach available for genome-wide

ApicoTP prediction, known as PlasmoAP [17], was developed to

identify ApicoTPs in P. falciparum and, as such, application to other

Apicomplexa is considered to be unreliable. We have developed

an alternative computational model ApicoAP. In ApicoAP, we

conduct a systematic search over a rule space using the expected

prediction performance of a rule on a training set as the

optimization criterion. The rule space is formalized by our

parametric rule definition, and optimization is performed using

a genetic algorithm. A major advantage of our approach to the

genome-wide ApicoTP prediction task is that it is not restricted to

a single organism but rather is customizable to different organisms

for which training data are available.

Performance of ApicoAP is evaluated for labeled datasets of P.

falciparum, P. yoelii, B. bovis, and T. gondii proteins, one of which is

the dataset published in conjunction with PlasmoAP [17]. The

evaluation utilizes cross validation, a common approach used to

validate classification models. The cross-validation procedure

provides an estimate of the prediction performance of a model

by systematically retaining a portion of a labeled dataset and using

this portion to test the model obtained using the remainder of the

dataset. The expected prediction accuracies, i.e., the accuracy for

unknown proteins rather than the accuracy for labeled data, for

the current ApicoAp classifiers for P. falciparum, P. yoelii, B. bovis,

and T. gondii are found to be 87%, 85%, 82%, and 83%,

respectively. The best expected prediction accuracy is achieved

using the P. falciparum training set, the largest of the four training

sets. The larger the training data set, the more robust and accurate

the resulting classifier is expected to be. With the addition of more

training data, the classifiers can be updated to provide greater

accuracy. While the four classifiers are specifically for use with the

four species described, they may assist in the identification of

potential ApicoTPs for related species when the AT-codon biases

of the corresponding genomes are similar.

In this paper we present ApicoAP, the first computational

model capable of identifying ApicoTPs in multiple species of

Apicomplexa. In addition, we provide a user-friendly, Python-

based program that includes the ApicoAP classifiers for P.

falciparum, P. yoelii, B. bovis, and T. gondii. ApicoAP provides

a learning framework for ApicoTP prediction based on a system-

atic approach to finding the rule-based classifier with the best

expected prediction performance over a training set. This

framework can be applied to other domains for which it is

desirable to have a discriminating rule-finding process that is

automated.
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