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Because proteins are the major functional components of cells,
knowledge of their cellular localization is crucial to gaining an un-
derstanding of the biology of multicellular organisms. We have gen-
erated a protein expression map of the Arabidopsis root providing
the identity and cell type-specific localization of nearly 2,000 pro-
teins. Grouping proteins into functional categories revealed unique
cellular functions and identified cell type-specific biomarkers. Cellu-
lar colocalization provided support for numerous protein–protein
interactions. With a binary comparison, we found that RNA and
protein expression profiles are weakly correlated. We then per-
formed peak integration at cell type-specific resolution and found
an improved correlation with transcriptome data using continuous
values. We performed GeLC-MS/MS (in-gel tryptic digestion fol-
lowed by liquid chromatography-tandem mass spectrometry) pro-
teomic experiments on mutants with ectopic and no root hairs,
providing complementary proteomic data. Finally, among our root
hair-specific proteins we identified two unique regulators of root
hair development.
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Multicellular organisms use specialized cell types to perform
activities that are integral to their function. Cellular tasks

are usually achieved by proteins, which act in signaling cascades,
provide structural support, and catalyze enzymatic reactions vital
to growth and metabolism. Knowledge of protein cellular locali-
zation and abundance using proteomic approaches is thus crucial
to our understanding of biological systems (1, 2). Proteome data
can be visually represented in a map, which highlights the spatial
relationships of proteins at the level of cell type, tissue, or organ.
Proteome maps are useful representations of the complex
“building plan” of a biological system and also serve as valuable
tools for the discovery of new cellular functions (2, 3). Proteomic
studies of single cell populations isolated from a variety of mul-
ticellular organisms have recently been achieved, including the
oocytes of worms and mice (4–6); pollen grains (consisting of two
sperm and one vegetative cell) and stomatal guard cells of plants
(7, 8); and sperm cells of mice and flies (9, 10). These cell types
were relatively accessible because they either reside on the surface
and can be purified in large quantities using biochemical frac-
tionation (e.g., guard cells) or are large and can easily be collected
(e.g., Caenorhabditis elegans oocytes). However, similar proteo-
mic studies of internal cell populations have been more difficult
and are usually only partially represented in proteomes of whole
organs owing to signal dilution (e.g., refs. 11–16).
The Arabidopsis thaliana root is an excellent model for in-

vestigating cellular functions internal to an organ because it is
transparent, radially symmetric, and cell types can be isolated by
FACS to allow molecular profiling (17). The goal of this study was
to investigate cell-type function by generating a proteomic map of
the Arabidopsis root, at cell-type resolution. We performed FACS

followed by GeLC-MS/MS (in-gel tryptic digestion followed by
liquid chromatography-tandem mass spectrometry) proteomic
analysis to identify the proteins in individual root cell types. The
resulting proteome map of cell types revealed cellular functions
andmany proteins that are absent in the whole root proteome (11),
supporting the importance of our cellular-level approach. We also
compared our cellular proteome map with the RNA expression
map of the same cell types (18) and found positive but low cor-
relations between protein and RNA profiles. We observed im-
proved correlations when we used a quantitative label-free
proteomic approach, more specifically peak integration, of the
same cell populations. This proteome map of the cell types of an
organ highlights the potential of cell-type proteomics to provide
new hypotheses about cellular functions and useful biomarkers.
Focusing on root hairs, we performed GeLC-MS/MS proteomics
on mutants with either ectopic or no hairs. We tested the hy-
pothesis that cell type-specific proteins are involved in cell identity
and identified two unique developmental modulators of root hairs.

Results and Discussion
Root Cellular Proteome Reveals Cellular Functions and Spatial
Patterns. To build an organ proteomic map at cell-type resolution,
we isolated by FACS 1 × 106 root cells from each of six different
Arabidopsis GFP-marked cell populations that roughly cover the
Arabidopsis root cell types (Fig. 1 A and B). To identify as many
proteins as possible, we performed a total of 435 MS runs from
these cell-type samples in a GeLC-MS/MS proteomic approach (SI
Appendix, Fig. S1). We identified 1,995 unique proteins at a false-
discovery rate (FDR) of 3% requiring that two unique, high-con-
fidence peptides (PeptideProphet≥90%confidence interval)match
each protein (SI Appendix, Tables S1 and S2). As expected, our root
cellular proteome data constitute a small portion (<10%) of the
Arabidopsis proteome; however, this protein representation in sin-
gle cell populations was sufficiently high to warrant further study.
We first examined how cellular localization differed between

root cell types in our proteome map. Although 13% of the
proteins were found in all cell types, more than 35% of the
proteins were identified in a single root cell population. Only 2%
of the proteins we identified were previously reported as root
organ biomarkers (Fig. 1 C and D and SI Appendix, Tables S3
and S4) (11). These results provided the initial evidence that
isolating individual cell types from an organ can lead to insights
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into tissue-specific protein expression. Several proteins found in
a single cell type have been validated to be localized and/or func-
tion in that cell type (SI Appendix, Table S5). For example, mutants
in COBRA-LIKE9 (COBL9) and VARICOSE have characterized
developmental defects in root hairs and vasculature, respectively
(SI Appendix, Table S5). Similarly, we detected the PINFORMED
(PIN) membrane proteins that facilitate the transport of the plant
growth regulator auxin (19) in cells corresponding to their reported
localization (SI Appendix, Fig. S3 and Table S5). To reveal cell-type
functions, we next examined Gene Ontology (GO) term enrich-
ment, focusing on proteins identified in a single cell type (Fig. 1E
and SI Appendix, Table S7). For example, “auxin polar transport”
and “tropism” were enriched in vascular and columella cells,
respectively, consistent with the reported function of these cell
types (Fig. 1E) (20–25). We also found the cellular function
“nutrient reservoir activity” specifically in vascular cells (Fig.
1E). We hypothesize that mobilization of storage proteins to fuel

vascular-specific development occurs in a different spatiotem-
poral manner than in other cell types; intriguingly, this has re-
cently been reported in tobacco (26). Together, these examples
suggest that proteomic profiling at cell-type resolution provides
insights into cellular functions.
We also examined the spatial distribution patterns of the

proteins we identified. There are 64 possible nonredundant
combinations of protein presence or absence across cell types,
and we probed these clusters for cellular functions by GO
analyses (SI Appendix, Figs. S4 and S5). One cluster (cluster 1, SI
Appendix, Fig. S4) has proteins found in both root hairs and
columella cells. GO enrichment for toxin and starch catabolism
in this cluster might reflect the external, differentiated nature
and function of these cells. Other clusters suggest that differ-
ential subunit localization is important for cellular function. For
instance, subunits of the Tailless Complex Polypeptide 1 (TCP1)
complex implicated in cell-cycle progression and unfolded
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Fig. 1. The Arabidopsis root cellular proteome. (A) Confocal images of cell populations covering the major cell types of the Arabidopsis root. Upper (left to
right): External cell populations of the root: root hairs, nonhair epidermis, and columella marked by the GFP reporters COBL9, WER, and PET111, respectively.
Lower (left to right): Internal cell populations of the root: cortex, endodermis-quiescent center, and vasculature marked by the GFP reporters CORTEX, SCR,
and WOL, respectively. (B) Schematic depicting the cellular coverage of the Arabidopsis root profiled by FACS and proteomics. Orange, pink, light yellow,
blue, and purple denote the epidermal, cortex, endodermal-quiescent center, vascular, and columella cells, respectively, covered by the markers in A. (C)
Distribution of the number of cell types in which proteins were identified. (D) Distribution of the proteins identified in a single cell type. (E) Cell-type
functions uncovered by GO analyses. The heat map depicts GO term enrichment in individual cell types; yellow indicates enrichment (P < 10−3).
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protein response are found in complementary cell types, which
suggests that protein movement or cell type-specific proteins are
important for Tailless Complex function (SI Appendix, Fig. S3;
clusters 28, 29, and 42, SI Appendix, Figs. S4 and S5) (27–29). We
conclude that the Arabidopsis root cellular proteome captures
the complexity of the root at the cellular level, facilitating
mechanistic understanding of cellular processes underlying root
organ development and function.

Data Integration Uncovers Metabolic Processes, Support for
Interactome Data, and Correlations of Protein and RNA Profiles.
Metabolic pathways in plants are well characterized from genetic
and physiological experiments. To place our results in a func-
tional context, we examined the overlap of our root cellular
proteome and the Arabidopsis Plant Metabolic Network (30, 31).
We found that 25% of the proteins we identified are enzymes in

metabolic pathways, with some localized to single cell types (Fig.
2A and SI Appendix, Table S8). For example, flavonoid bio-
synthetic enzymes were found predominantly in the cortex, and
the GO term “UV response” was found in the cortex (Figs. 2A
and 1E, respectively). Flavonoids are beneficial to human nutri-
tion and play various roles including UV protection in plants (32),
which suggests the possibility that flavonoid biosynthesis in the
cortex is important for UV protection of light-grown roots. Al-
ternatively, flavonoids were recently shown to regulate the lo-
calization of PIN proteins, which are required in the cortex during
gravitropic responses of the root (31, 32). In another example, we
detected peroxidases in specific cell types, suggesting that regu-
lation of cellular redox homeostasis occurs at the level of in-
dividual cell types (Fig. 2B). These examples suggest that certain
enzymatic processes are enriched in individual root cell types,
likely reflecting the specific cellular tasks of different cell types.

Fig. 2. Data integration with metabolic pathway and transcriptome data and quantification of the root cellular proteome. (A) Flavonoid biosynthetic
enzymes found in the cortex. (B) Peroxidases found in specific cell populations. Blue, pink, and yellow indicate localization in one, two, or three or more cell
types, respectively. (C) Comparison of the root cellular proteome and transcriptome. The PCC between the RNA and GeLC-MS/MS or peak-integration protein
profiles, respectively, are shown for each cell type. (D) RNAs with longer CDS are more highly correlated with GeLC-MS/MS protein profiles. The PCC of short
(top row) or long (bottom row) CDS, respectively, are given for each cell type. (E) The protein intensities (sum of eight peptides) for the protein encoded by
At5g60520 from peak-integration proteomic data are an example showing significant enrichment in a single cell type, the columella. Error bars indicate the
SD of three technical replicates of each cell type.
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Protein–protein interaction (PPI) maps are being generated in
various organisms, includingArabidopsis (33). Of the 4,896 unique
protein interactors annotated in The Arabidopsis Information
Resource (TAIR) and BioGRID databases, 641 were found in the
root cellular proteome (SI Appendix, Table S9). We reasoned that
if both interactors were found in the same cell type this would
provide support for the in vivo cellular function of these PPIs. To
test this, we examined the localization of 113 PPI pairs for which
both proteins were in our root cellular proteome (SI Appendix,
Table S9).We found 90% of interacting proteins were colocalized
in at least one root cell type. This finding was significant over
proteome data of randomized protein pairs (P = 0.069), but not
strongly. This is perhaps not surprising given the low number of
interactions currently reported. Intriguingly, some identical lo-
calization patterns were found for interacting proteins pairs. For
instance, P-glycoprotein1 and PIN1 were found only in vascular
cells, and the interaction of these proteins has been functionally
demonstrated to mediate auxin transport in HeLa and yeast cells
(34). We conclude that our data support the colocalization and
thus in vivo relevance of some Arabidopsis PPIs.
Available transcriptome data of the same cell types as profiled

in our root cellular proteome afforded a unique opportunity to
assess the relationship between RNA and protein expression
profiles. To do this, we compared our root cellular proteome with
transcriptomic data of the same cell types (18) by computing the
Pearson correlation coefficient (PCC). We first converted the
mRNA expression data to binary, presence/absence calls and then
compared the presence or absence of mRNA and protein for the
different cell types. We found low PCCs for each cell type (0.19–
0.36; Fig. 2C), in agreement with other studies reporting low,
positive correlations between RNA and protein profiles (35–39).
We were also interested in the correlations between RNA and
protein profiles of specific features: short vs. long 5′UTRs, coding
sequences (CDS), and 3′ UTRs in our data. We found higher
correlations for RNAs with long vs. short CDS for all cell types,
and this was consistent over a range of cutoffs (Fig. 2D and SI
Appendix, Table S10). A small possibility exists that these data
support a previously reported suggestion that RNA expression is
less variable and often tissue specific for long CDS (40–42), which
might lead to more consistent protein expression. However,
a more likely explanation for our results is that low-molecular-
weight proteins are sampled less frequently in GeLC-MS/MS
experiments (43), and these proteins thus seem to be poorly
correlated with transcript levels in our binary comparisons.
To determine the correlation using continuous values for pro-

tein abundance acquired by an alternative proteomic method, we
FACS-isolated the same cell populations and used peak in-
tegration, a label-free quantitative proteomic approach (SI Ap-
pendix, Fig. S2).We identified and quantified 434 proteins at<1%
FDR (SI Appendix, Tables S11 and S12); 85% of these proteins
were also detected by GeLC-MS/MS proteomics (SI Appendix,
Table S13). Taken together with the distinct grouping of the bi-
ological and technical replicates of the samples and the striking
differences between cell-type profiles (SI Appendix, Fig. S6), these
data highlight the reproducibility of the datasets and point to the
strength of our cell-type approach. Further supporting this, we
also identified proteins enriched in a single cell type using peak
integration (Fig. 2E).We next computed the correlations between
peak-integration proteomic and RNA expression profiles using
continuous values for both and observed positive correlations that
were higher than those found with the GeLC-MS/MS proteomic
data (Fig. 2C). Although proteomic technologies are improving,
RNA technologies sample the nearly complete transcriptome,
whereas only a fraction of the proteome is found by proteomic
strategies. Our detection of less than a tenth of the Arabidopsis
proteome supports this idea. Therefore, comparisons between
RNA and protein profiles represent a small, potentially biased,
snapshot of the correlation between the complete Arabidopsis

transcriptome and proteome. Many biological reasons also exist
for the differences between mRNA and protein abundances:
miRNA regulation, antisense transcription, mRNA transcript
stability, translational rates, and protein stability and movement.
Despite these considerations, we found that there is a definite
positive correlation between protein and mRNA abundance.
However, these correlations are modest at best.

GeLC-MS/MS Proteomics Reveals Unique Root Hair Regulators and
Candidate Cell Type Biomarkers. We hypothesized that proteins
identified in a single cell population could play important func-
tional roles in that cell type (SI Appendix, Table S3). We focused
our functional analyses on root hairs where the majority of can-
didates existed. Some of these candidates were also identified in
previous transcriptome analyses of root hairs (SI Appendix, Table
S14) (44–46). Five of the 238 candidate root hair biomarkers were
previously shown to control root hair development. To uncover
unique root hair regulators, we performed a reverse genetic screen
on 66 of the remaining candidates (SI Appendix, Tables S3 and
S15) (47). Three insertional mutants exhibited root hair defects:
one in COBL9 served as a control in our phenotypic assay (Fig.
3A); two were in proteins encoded by At1g01910 and At4g13050,
respectively, and displayed reductions in root hair outgrowth (Fig.
3A).At1g01910 encodes a protein with anion-transporting ATPase
and RAS GTPase domains (48), suggesting a unique role in root
hair morphogenesis. At4g13050 encodes an acyl-ACP thioesterase
that terminates fatty acid biosynthesis and is important in com-
mercial plant oil production (Fig. 3A) (49). These examples sup-
port the functionality of candidate root cell type biomarkers.
We also wanted to take a complementary strategy to identify

proteins in root hairs. We isolated and profiled 1 × 106 cells of the
following by GeLC-MS/MS proteomics: whole roots of werewolf
myb23 mutants producing excessive root hairs, caprice triptychon
mutants that largely lack root hairs, and wild-type plants (Fig. 3B)
(50). We reasoned that comparing these genetic samples would
reveal proteins enriched in root hairs. We identified 1,136 proteins
at a FDR of 1% (SI Appendix, Tables S16 and S17) and examined
the overlap between wild-type, hairy, and hairless mutant root
proteins. We found more than 200 root hair proteins that were in
wild-type and/or hairy mutant roots and were not found in hairless
mutant roots (Fig. 3C and SI Appendix, Table S17). Fewer than five
of these proteins are found from transcriptional profiling of these
mutant roots (18), which suggests that transcriptomic profiling of
mutants produces different results. A few of these proteins were
also identified in previous transcriptome analyses of root hairs (SI
Appendix, Table S14) (44–46). Ten of these proteins were also root
hair specific in the root cellular proteome (SI Appendix, Table S18),
suggesting that the two strategies are complementary. However,
a large portion (36%) of proteins was found in all three genetic
samples (Fig. 3C). Furthermore, known regulators of root hair
development were not found using samples from different genetic
backgrounds, and it is less feasible, if not impossible, to profile ge-
neticmutants by proteomics for certain cell types.We conclude that
although using FACS samples for proteomic profiling is advanta-
geous, using samples from different genetic backgrounds provides
a complementary approach to identifying root hair proteins.
Proteins identified in specific cell types are promising bio-

marker candidates; however, it is possible that these proteins are
present in other cell populations below our detection levels or fail
to meet our statistical cutoffs. We thus report cell type biomarkers
as proteins that were identified in a single cell type and were also
enriched in that cell type in transcriptome data (SI Appendix,
Tables S19 and S20). Notably, these 61 cell type biomarkers in-
clude known regulators, such as PIN1, COBL9, and PIN3 of
vascular, root hair, and columella cells, respectively (SI Appendix,
Tables S5 and S20). The biomarkers and the cellular proteins
identified here are potentially valuable resources for future ap-
plied research. For example, root hair proteins we identified from
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genetic mutants or FACS isolation might function in water and
nutrient uptake relevant to studies assessing heat and drought
stress effects (51). Additionally, fifty of the cellular proteins we
report are associated with cell wall production and processes that
might be relevant to biofuel research (SI Appendix, Table S21)
(52). Besides cell type biomarkers, our cellular proteomic map
of a developmental model organ is an important resource of ex-
pression data for nearly 2,000 proteins, more than 200 of which
lack cellular RNA expression information (SI Appendix, Table
S6). Our root cellular proteome also revealed support for tran-
scriptome and interactome data. This type of data integration is
critical for determination and manipulation of regulatory net-
works that control biological systems and also for future appli-
cations in crop improvement and biofuel production (52–54).

Materials and Methods
Plant Materials, Growth Conditions, and Phenotypic Analyses. A. thalianawild-
type plants and all plant marker lines (COBL9, WER, CORTEX, SCR, WOL, and
PET111) are in the Columbia-0 (Col-0) accession (18, 55–59). The wer-1 myb23-1
mutations are also in Col-0, and cpc-1 try-82mutations are in amixedbackground
derived from the accessions Col-0, Landsberg carrying the erecta mutation [La
(er)], and Wassilevskaya-0 (Ws-0) (18). The following Salk insertion lines were
obtained from theArabidopsisBiological Resource Center (47) and are in the Col-
0 background: cobl9 (Salk_09333C) in At5g49270, (Salk_012980C) in At1g01910,
and (Salk_111046C) in At4g13050. Primers used to verify that each mutant line
was homozygous were as follows: cobl9, 549270LF 5′-CCTGCTTTGGTAGGA-
AATGG-3′ and 542970R 5′-GGATGATAGAGTCGTTGAAGA-3′; Salk_012980C,
101910L2F 5′- GAGGCGACAGTACAGAACAT-3′ and 101910R 5′-TCAATCACATC-
TTTCAAGCCC-3′; Salk_111046C, 413050LF 5′-GGTGGAGGCAATTGATCTAGG-3′
and 413050R 5′-TCTTCCATCAATCGACCAAAC-3′. The genotyping primer used to
detect the left border of the insertional element in each line was LB1.3 5′-
ATTTTGCCGATTTCGGAAC-3′.

For all proteomic profiling experiments seeds were sterilized using 50%
(vol/vol) bleach and 0.1% Tween for 5 min and then rinsed three times with
sterile water. For all other experiments seeds were sterilized using a solution
of 30% (vol/vol) bleach and 1 μL/1 mL 20% (vol/vol) Triton-X100 for 10 min
and then rinsed four times with sterile water. All seeds were plated on
standard MS media [1× concentration Murashige and Skoog salt mixture
(Caisson Laboratories), 0.5 g/L Mes, 1% sucrose, and 1% agar (Difco) and
adjusted to pH 5.7 with KOH) with (for proteomic profiling experiments) or
without (for phenotyping) mesh. All plated seeds were stratified at 4 °C for
2 d before germination on vertically positioned square plates in a Percival
incubator with 16 h of daily illumination.

For verification of GFP marker line expression, each marker line (GFP
reporters of COBL9, WER, CORTEX, SCR, WOL, and PET111) was grown on MS
plates for 6 d. Plant roots were then stained in 10 μM propidium iodide and
imaged by laser scanning confocal microscopy using the 25× objective of
a Zeiss LSM 510 confocal microscope.

Phenotypic analyses of the 85 insertionalmutant lines, corresponding to 66
genes, were performed as follows: 10 plants of the wild type and also of
a given insertional mutant line were plated side by side on an agar plate, and
roots of 7-d-old mutant plants were examined for root hair defects that were
absent from the control (wild-type) roots grown on the same plate using
a Leica dissecting microscope (Leica MDG30 transmitted light base equipped
with a Leica Z6 APO zoom macroscope). Identical phenotypic analyses of the
85 insertional mutant lines were performed a second time using seeds col-
lected from the first analyses (i.e., second generation). Mutant insertion lines
with consistent root hair phenotypes in both assays (≈20 mutant plants total
of each line) were assayed a third time. All root hair defects were imaged
using identical magnification settings under the Leica dissecting microscope
fit with a Qimaging RETIGA Ex camera.

Cellular Isolation and Sorting. For cellular isolations used for GeLC-MS/MS
proteomics, 6-d-old roots were cut into pieces, treated with protoplasting
solution, and sorted as described previously (17, 60). All sorting was imme-
diately halted when 1 × 106 cells were collected for each biological replicate.
This strategy allowed us to identify GFP in each sample and reduce sample

Fig. 3. Root hair proteins identified by GeLC-MS/MS proteomics. (A) Functional roles of root hair proteins. Left to right: bright-field images of wild-type and
homozygous insertional mutant 7-d-old root hairs. Roots of wild-type grown on the same plate as mutants of the root hair biomarker cobl9 (Salk_09333C) and
the newly identified root hair mutants Salk_012980C and Salk_111046C, respectively. (B) Left to right: 7-d-old root hair phenotypes of wild-type, caprice
triptychon, and werewolf myb23, respectively, used for GeLC-MS/MS proteomics. (C) Venn diagram of the overlap of the samples in B.
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complexity before MS. The same procedure was used for cellular isolations
from whole roots of wild-type, caprice tryiptycon, and werewolf myb23
seedlings, except the gate for fluorescence was not used. For peak-in-
tegration proteomic experiments the procedure was identical, except BSA
was not used in the sorting solutions.

Protein Profiling by GeLC-MS/MS Proteomics. One million sorted root cells of
each sample were gently pelleted by centrifugation. After centrifugation, the
supernatant was removed and the cells were flash frozen and stored at −80 °C
for future protein isolation and proteomic profiling. Sequential protein ex-
traction was performed by homogenizing the sample in a Mixer-Mill using
glass beads and then resuspending the homogenized sample consecutively in
50 μL of a salt-based soluble buffer [100mMKCl, 50mMTris·HCl, 1.4 μMPMSF,
and one tablet of protease mixture inhibitor (Roche Diagnostics)], a urea-
based buffer (10 mM Tris·HCl, 5 mM EDTA, 0.1% SDS, 6 M urea, 1 M thiourea,
andone tablet of proteasemixture inhibitor), and/or a detergent-based buffer
(125mMTris·HCl, 2% (wt/vol) SDS, 10% (vol/vol) glycerol, 50mMNa2S2O5, and
one tablet of protease mixture inhibitor). Between each buffer, the sample
was centrifuged (30 min at 20,000 × g at 17 °C) and homogenized using an
electric pestle. Each protein sample fraction was loaded individually onto
a 0.75-mm, 12% SDS PAGE minigel (Mini-PROTEAN 3 Cell; Bio-Rad) and sep-
arated by one-dimensional SDS/PAGE. Gels were cut into ≈12 slices of 0.4 cm
with a custom-made gel cutter. Gel slices were sequentially treated with 10
mM DTT (30 min, 60 °C), 50 mM iodoacetamide (30 min, room temperature,
dark), and then used for in-gel digestionwith trypsin overnight at 37 °C (8). MS
was performed as described in ref. 8 with a 2D linear ion trap, Finnigan LTQ
(Thermo Electron Corporation), equippedwith an Ultimate NanoHPLC System
(Dionex ).

Data Analysis of GeLC-MS/MS Proteomic Samples. All MS/MS spectra were
processed and analyzed using the Trans-Proteomic Pipeline (TPP) (61). Briefly,
mzXML outputfiles were searched using the Sequest search algorithm against
the A. thaliana reference protein database TAIR9 (TAIR, release 9), concate-
nated with a decoy database (the reversed TAIR9 database) to estimate the
overall FDR (62, 63), plus roughly 260 additional known contaminants (i.e.,
porcine trypsin, various keratins). The searches were performed allowing for
semitryptic peptide identification using a mass tolerance of 3 Da, and methi-
onine oxidation and cysteine 29 carbamidomethylation as variable mod-
ifications. PeptideProphet and ProteinProphet were then used to identify and
validate peptide and protein search engine results, respectively (64–66). Only
peptides with MS/MS spectra matching with >90% confidence at the peptide
level were reported (SI Appendix, Tables S1 and S16). We report and consider
only those proteins that were uniquely identified by two or more unique
peptides that match MS/MS spectra with >90% confidence (SI Appendix,
Tables S2 and S17). Our datasets are available in SI Appendix and have also
been uploaded for public release at www.proteomecommons.org/tranche
under the project “The Protein Expression Landscape of theArabidopsis Root”
(SI MS/MS Spectra). The hash for each tranche submission is listed in SI Ap-
pendix. Overall FDR at the protein level was then calculated as the number of
proteins identified in the reversed TAIR9 decoy database divided by the total
number of proteins identified from the TAIR9 reference protein database,
multiplied by 100 to express FDR as a percentage. Candidate root cell type
biomarkers and spatial clusters of protein cellular localization were de-
termined by representing our high-confidence protein identifications as bi-
nary matrices (SI Appendix, Figs. S4 and S5 and Tables S2 and S17). In these
matrices, presence of a protein in a particular cell population, encoded by “1”
in the matrix, was determined if a protein was identified using the afore-
mentioned stringent criteria in one ormore of the serial extraction fractions of
a given cell population; absence, encoded by “0” in the matrix, indicates
failure of a protein to be identified using the same criteria in any of the serial
extraction fractions of a given cell population. Heat maps of the resulting
spatial clusters of the root cellular proteome were generated using Multi-
ExperimentViewer software (version4) (67, 68). To calculate enrichment ofGO
terms for the proteins identified solely in each individual cell population, as
well as protein members of individual spatial clusters of the root cellular
proteome, we used software using the hypergeometric distribution, which
tests whether GO terms are found in a list more frequently than expected by
chance and then calculates a P value that is corrected for multiple hypothesis
testing (69, 70). Heat maps of GO enrichment were generated using Multi-
Experiment Viewer software (version 4) (67, 68).

Data Integration Using GeLC-MS/MS Proteomic Profiles. To integrate our root
cellular proteome with Arabidopsis metabolic pathway information, we
compared the loci from the root cellular proteome with those annotated in
Arabidopsis metabolic pathways (AraCyc) (30, 31). AraCyc pathways were

bulk downloaded from the Plant Metabolic Network (http://www.plantcyc.
org/) on May 5, 2010. The file used is now found at ftp://ftp.plantcyc.org/
Pathways/OLD/aracyc_dump.20091014.

We integrated our root cellular proteome data with available interactome
data from TAIR and BioGRID databases (71). The file of PPIs curated by TAIR
(file last updated February 1, 2011) was bulk downloaded and is at ftp://ftp.
arabidopsis.org/home/tair/Proteins/nbrowse_interactions. The file of Arabi-
dopsis PPIs deposited in BioGRID (version 3.1.75, file last updated February 1,
2011) (71) was bulk downloaded on March 6, 2011 and can be obtained
from http://thebiogrid.org/download.php. We removed interactions that were
reciprocal, with At1g80690, and self-self because these interactions artificially
increased the level of colocalization (i.e., the number of colocalizing pairs was
inflated owing to double counting of a reciprocal interaction). We imple-
mented a randomization strategy to evaluate the significance of the observed
level of colocalization of the PPI pairs relative to a randomly paired set. Coloc-
alization is definedasprotein coexpression inoneof the six studied cell types.Of
the 113 PPIs pairs in the TAIR and BioGRID databases for which both interactor
proteins are in our root cellular proteome, we quantify the level of colocaliza-

tion for each pair by the following statistic: ti ¼ eð12Þi

maxðeð1Þi ;eð2Þi Þ; where eðjÞi is the

number of cell types in which member j from protein pair i is found, and eð12Þi

denotes the number of cell types in which both members of protein pair i are
detected. To summarize the overall evidence of concordance between coloc-
alization and PPI for the entire dataset we define Tobs ¼ P

i∈I ti where
the set of indexes to sum over includes all PPI pairs that do not contain a
ubiquitously expressed member (expressed in all six cell types), that is,
I ¼ fi ∈ f1; . . . ; 113g such that eð1Þi <6 and eð2Þi < 6g. Next we constructed a null
distribution that preserves the overall localization matrix of the individual
proteins, randomizing the individual colocalization partners. This is achieved by
randomly permuting the pair assignment of the 226 individual proteins B times
and estimating the corresponding evidence T*1 ; T*2 ; :::; T*B : Thefinal estimate of
the significance of the observed colocalization in the given protein expression

context is quantified by the empirical P value: pemp ¼
PB

i¼1
1½Tobs ≤T*i �

B : Using B =
100,000 permutations, the estimated significance is 0.0688 (random seed:
123456789). An implementation of the above-described randomization pro-
cedure in the programming language Ruby is available from the authors upon
request. Note that in the randomization procedure described above we focus
on the observed relevant colocalization (normalized for ubiquitous expression)
because it is important to take into account the fact that a large fraction of the
PPIs are ubiquitously expressed (36% of the pairs contain at least one ubiqui-
tously expressed member), which results in high a priori expectation of back-
ground colocalization.Hence,wenormalize the contributionof eachpair to the
overall significance score by dividing by the number of cell types in which
coexpression could potentially take place. Nonetheless, the resolution for
finding interesting patterns in terms of colocalization is limited owing to the
small dynamic range of observed proteins—mostly at the high end of the
spectrum—which gives us additional confidence that the P value of 0.069
reflects strong evidence against a putative random relationship between
colocalization and the PPIs.

To compare RNA and protein expression profiles from the root cellular
proteome and the microarray data of Dinneny et al. (18) of the cell pop-
ulations of root hairs (COBL9), nonhair epidermis (WER), cortex (CORTEX),
endodermis-quiescent center (SCR), vasculature (WOL), and columella
(PET111), we first normalized the Affymetrix microarray data of the same
cell populations using a mixed-model ANOVA normalization (18, 69, 72). We
then extracted the RNA expression profiles corresponding to the loci iden-
tified in our root cellular proteome (SI Appendix, Table S2). Of the 1,995
proteins in the root cellular proteome, 1,835 proteins had RNA expression
profiles detected by Affymetrix microarrays. For the RNA expression value of
each locus in each cell type, the mean value was then converted to a binary
value (“1” denotes presence and “0” denotes absence) at the same specified
mean RNA expression value. For example, if the cutoff was “3,” then all
mean values ≥3 and <3 were converted to “1” and “0,” respectively. The
resulting binary matrix of RNA expression values was then compared with
the matrix of binary root cellular proteome values for each cell population.
These matrices were of the same dimension, and the order of loci was
identical. The PCC was then computed using the correlation function in the
statistical programming language R (version 2.6.2) for each cell type. This
process was then repeated using a conversion cutoff of the normalized
microarray values that spanned the full range of the mean RNA expression
values of the RNA profiles (0–57) in 0.1 increments. We report the highest
PCC calculated for each cell type that had a single, stable cutoff value. To
determine whether the microarray normalization used affected the PCC, we
also normalized the data using the Robust Multichip Average (RMA)
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normalization (RMA express, version 1.0.5) (73–75) and repeated the anal-
ysis; we did not observe differences in the PCCs of each cell type from RMA
and those obtained using ANOVA.

Protein Profiling by Peak Integration. One million sorted root cells of the wild
type (two biological replicates) and each of the GFP marker lines—COBL9
(root hairs), WER (nonhair epidermis), CORTEX (cortex), SCR (endodermis
and quiescent center), WOL (vasculature), and PET111 (columella)—were
gently pelleted by centrifugation and resuspended in 100 μL of 0.5% Rapi-
gest SF Surfactant (Waters Corp.). Samples were then sonicated constantly
for 10 min on the high setting of a Bioruptor UCD-200 sonicator (Dia-
genode). After sonication, the samples were incubated for 5 min at 90 °C
and then spun at maximum speed for 10 min to remove debris. Protein
samples were then quantified by standard Bradford assays and also using
Micro BCA Protein Assay kit (Thermo Scientific) that was analyzed using
a Thermo Scientific Original Multiskan EX Plate Reader. Using our isolation
procedure on 1 × 106 root cells, the total amount of protein ranged from 10
to 30 μg for each sample. After quantification, protein samples were stored
at −80 °C until they were profiled by MS at the Duke Proteomics Core Fa-
cility. Samples were thawed at 37 °C for 10 min with vortexing, and 15 μg of
protein from each sample was concentration-normalized to ≈1.0 mg/mL
using a mini-Bradford assay (Bio-Rad). Cysteine residues were reduced with
10 mM DTT and alkylated with 20 mM iodoacetamide. Proteins were
digested with sequencing grade modified porcine trypsin (Promega) at
a 1:50 wt/wt enzyme to substrate ratio overnight at 37 °C. Rapigest was
hydrolyzed with the addition of trifluoroacetic acid and acetonitrile to final
concentrations of 1% and 2% vol/vol, respectively; samples where heated to
60 °C for 2 h to ensure complete hydrolysis. Samples were cooled to 4 °C,
centrifuged to remove particulates, and the supernatant was isolated and
stored until analysis by LC-MS/MS.

For peak integration, label-free LC-MS/MS were collected from peptide
digests that were analyzed using a nanoAcquity UPLC system coupled to
a Synapt HDMS mass spectrometer (Waters Corp.). Approximately 1 μg of
peptide material was first trapped at 20 μL/min for 2 min in 99.9% water with
0.1% vol/vol formic acid on a 20 μm × 180 mm Symmetry C18 column. Sepa-
rations were then performed on a 75 μm × 250 mm column with 1.7 μm C18
BEHparticles (Waters Corp.) using a 90-mingradient of 5–40%acetonitrilewith
0.1% formic acid at a flow rate of 0.3 μL/min and 45 °C column temperature.
Wefirst conducted a single data-dependent analysis (DDA) of each sample that
was used for column conditioning and complimentary identifications but not
for quantification. The DDA experiments used a 0.9-s MS scan followed byMS/
MS acquisition of the top three ions with charge >1. MS/MS scans for each ion
used an isolation window of ≈3 Da, a maximum of 4 s per precursor, and dy-
namic exclusion for 120 s within 1.2 Da. For simultaneous qualitative and
quantitative analysis, we then conducted three data-independent (MSE) anal-
yses of each sortedwhole root or cell type sample.MSE runs of all samples were
performed in a statistically randomized fashion to avoid systematic temporal
bias. MSE acquisition used a 0.9-s cycle time alternating between low collision
energy (6 V) and high collision energy ramp (15–40 V).

Data Analysis of Peak Integration Data. For robust peak detection and label-
free alignment of individual peptides across all sample injections, the com-
mercial package Rosetta Elucidator v3.3 (Rosetta Biosoftware) with the
PeakTeller algorithm (76) was used, in a manner similar to a number of re-
cent publications (77–84). After alignment and annotation, chromato-
graphic peak intensities belonging to the same precursor mass in the MSE

aligned chromatograms were then used to calculate the relative peptide and
protein abundance on a sample-by-sample basis. Three MSE analytical rep-
licate intensities for each peptide were combined by averaging after robust
median scaling, to generate one intensity measurement per peptide for each

sample (SI Appendix, Table S11), and individual peptide intensities were
summed to yield protein intensities. The values were then log(10) trans-
formed for statistical analysis (SI Appendix, Table S12).

We used both MS/MS DDA and MSE to generate peptide identifications.
For DDA files, searchable peaklists were produced in Elucidator v3.3, and
searches were then submitted to and retrieved from the Mascot v2.2 (Matrix
Science) search engine in an automated fashion. For MSE data, ProteinLynx
Global Server 2.4 (Waters Corp.) was used to generate searchable files that
were then submitted to the IdentityE search engine (Waters Corp.), after
which result files were then imported back into Elucidator. Both DDA and
MSE data were searched against the TAIR9 database (31,221 entries,
downloaded June 19, 2009 from ftp://ftp.arabidopsis.org/home/tair/Proteins/),
with full 1× reverse database appended for peptide FDR determination and
the addition of the sequence of ADH1_YEAST because this was used as an
internal standard in the samples. Precursor ion mass tolerance was 20 ppm
for both PLGS and Mascot searches, and product ion tolerance was 0.1 Da for
Mascot and 40 ppm for PLGS. Tryptic enzyme specificity and a maximum of
two missed cleavages were allowed. Carbamidomethyl cysteine was included
as a fixed modification, and variable modifications included oxidized me-
thionine and deamidated asparagine and glutamine.

To enable global spectra scoring across results from both search engines,
all search results were concurrently validated using the PeptideProphet and
ProteinProphet algorithms in Elucidator using independent reverse decoy
database validation (64, 85). Peptides with PeptideProphet scores >0.76 were
then annotated; this score corresponded to a 1% peptide FDR. Overall, 3,212
peptides were identified to 878 proteins, 434 with two or more peptides to
match. Individual peptide scores are reported in SI Appendix, Table S11. Each
peptide identified was allowed to be assigned to a single protein entry, and
these assignments were made by ProteinProphet according to the rules of
parsimony, and ProteinProphet scores are also provided in SI Appendix,
Table S11. Database search results and spectra have been uploaded in the
form of Scaffold 3 files (.sf3; Proteome Software) to the Tranche database
(https://proteomecommons.org/tranche/) and can be accessed using the in-
formation available in SI Appendix.

Data Integration Using Peak-Integration Proteomic Profiles. Protein and RNA
expression profiles from peak integration and the microarray of (18), re-
spectively, the cell populations of root hairs (COBL9), nonhair epidermis
(WER), cortex (CORTEX), endodermis-quiescent center (SCR), vasculature
(WOL), and columella (PET111) were compared by first normalizing the
Affymetrix microarray data of the same cell populations using the mixed-
model ANOVA normalization (18, 69, 72). Of the 434 proteins in the root
cellular proteome obtained by peak integration, 371 proteins had RNA ex-
pression profiles detected by Affymetrix microarrays. The matrices of log
transformed RNA expression values and the log protein intensity values
were of the same dimension, and the order of loci was identical. The PCC
was then computed using the correlation function in the statistical pro-
gramming language R (version 2.6.2) for each cell type.
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