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The metabolic genotype of an organism can change through loss
and acquisition of enzyme-coding genes, while preserving its
ability to survive and synthesize biomass in specific environments.
This evolutionary plasticity allows pathogens to evolve resistance
to antimetabolic drugs by acquiring new metabolic pathways
that bypass an enzyme blocked by a drug. We here study
quantitatively the extent to which individual metabolic reactions
and enzymes can be bypassed. To this end, we use a recently
developed computational approach to create large metabolic
network ensembles that can synthesize all biomass components
in a given environment but contain an otherwise random set of
known biochemical reactions. Using this approach, we identify
a small connected core of 124 reactions that are absolutely super-
essential (that is, required in all metabolic networks). Many of these
reactions have been experimentally confirmed as essential in
different organisms. We also report a superessentiality index for
thousands of reactions. This index indicates how easily a reaction
can be bypassed. We find that it correlates with the number of
sequenced genomes that encode an enzyme for the reaction.
Superessentiality can help choose an enzyme as a potential drug
target, especially because the index is not highly sensitive to the
chemical environment that a pathogen requires. Our work also
shows how analyses of large network ensembles can help un-
derstand the evolution of complex and robust metabolic networks.
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The metabolic networks of free-living organisms are complex
and comprise hundreds to thousands of chemical reactions.

Most of these reactions are catalyzed by enzymes encoded in
genes. A metabolic network’s most important function is to syn-
thesize all small-molecule precursors of biomass that are necessary
for the growth and survival of an organism. For well-studied free-
living organisms, these comprise precursors some 50 different
small molecules, including amino acids and nucleotides (1).
The metabolic genotype of an organism comprises all enzyme-

coding genes. It determines the enzymatic reactions in a meta-
bolic network. This genotype can change dramatically without
affecting themetabolic phenotype (that is, the ability to synthesize
biomass in a given environment). For instance, loss of function
mutations in many enzyme-coding genes can leave the metabolic
phenotype unaffected (2–8). In addition, reactions can get added
to a metabolic network through horizontal gene transfer of en-
zyme-coding genes, a process that is especially frequent in pro-
karyotes. The deletion and addition of multiple reactions over
time may lead to metabolic networks that differ in many reactions
but can still sustain life in the same chemical environment.
This enormous genotypic plasticity has implications for the

evolution of metabolism. It means that reactions or entire path-
ways necessary for life in one organism may be dispensable in
another organism. For example, the isoprenoid pathway synthe-
sizes isopentenyl diphosphate, which is important for synthesis of
cell wall constituents. This pathway is essential in Bacillus subtilis,
but it is replaced by the mevalonate pathway in Staphylococcus
aureus, where the mevalonate pathway is essential (9, 10). Neither
of the pathways would be essential in an organism possessing both
of these metabolic routes. For the purpose of our work, we define
a biochemical reaction as essential if its elimination abolishes the
network’s ability to synthesize all biomass molecules in a given

environment. A reaction is nonessential if an organism has the
ability to bypass that reaction through alternate reactions or
metabolic pathways or if the product of the reaction is not needed
in a given environment. We emphasize that reaction essentiality
depends on the environment. Earlier analyses (11–15) have ex-
plored the extent to which reaction essentiality varies among
environments. However, these studies focused on a single meta-
bolic network and its genotype. They did not take into account
that metabolic networks with the same phenotype can vary in
their genotype. Such genotypic variation can also lead to variation
in reaction and gene essentiality. The reactions in the isoprenoid
andmevalonate pathways mentioned above provide one example.
Another example is the existence of essential genes unique to
particular strains of S. cerevisiae (16).
Enormous investments are necessary to develop new antibiotic

drugs that combat pathogens (17). The genotypic plasticity of
metabolic networks has very practical implications for these
efforts and the long-term success of the drugs that they produce.
Multiple existing drugs target the metabolism of pathogens, such
as sulfonamides, fosmidomycin, and isoniazid (18–21). An ideal
enzymatic drug target has to fulfill several criteria, among them
that the target is essential for the pathogen’s survival. Only in this
case can the drug suppress the pathogen. However, as we pointed
out, whether an enzyme is essential may depend on the metabolic
network of which it is a part. The same enzyme can be essential in
one metabolic network that can sustain life in a given environ-
ment but nonessential in a different network. Drugs targeting
such enzymes are vulnerable to pathogens that evolve resistance
against them (for example, through horizontal gene transfer).
Which reactions in a metabolic network may be most easily

bypassed? Which reactions cannot be bypassed? We do not know
the answer to these questions, which is not surprising. Answering
them would require examining many different metabolic geno-
types and evaluating the essentiality of reactions in each of them.
This process cannot be done systematically with current experi-
mental technology, and it requires new computational approaches.
We have recently developed an approach that can answer these
questions (22, 23). It uses flux balance analysis (FBA) to compute
the phenotype of a network from its genotype. This phenotype is
the ability of the network to sustain life in an environment or a set
of environments. FBA has been shown to predict gene essentiality
with an accuracy of nearly 90% (12, 13). Mismatches between
FBA predictions and experimental data can often be attributed to
enzyme misregulation, wherein regulatory constraints prevent
enzymes from being expressed at optimal levels (24–26). Such
constraints are easily broken in laboratory evolution experiments
(24–26) and are of limited relevance to our work, because we are
concerned with a more fundamental question, namely how the
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presence or absence of some reactions (enzyme-coding genes)
affects the essentiality of other reactions.
Even more central to our approach than FBA is our current

considerable knowledge of the universe of biochemical reactions.
This known universe currently comprises more than 5,000 stoi-
chiometrically defined reactions (27, 28) that are known to take
place in some organisms. Based on this information, our ap-
proach can generate random samples of metabolic genotypes
(metabolic networks) with a given phenotype (22, 23) (SI Ap-
pendix, SI Methods). We refer to such genotypes as random vi-
able metabolic networks. Briefly, we here generate large samples
of such networks, examine the reactions in them, and determine
whether they are essential. We then use the concept of reaction
superessentiality (23) to estimate a superessentiality index for
each reaction. This index indicates the fraction of random met-
abolic networks with a given phenotype in which a reaction is
essential. Reactions where this index is low are easily bypassed,
reactions where this index is high are difficult to bypass, and
reactions where this index is maximal are impossible to bypass
based on our current knowledge. The word superessentiality is
motivated by the fact that reactions can be more than just es-
sential. They can be essential in many, most, or all metabolic
networks with a given phenotype. Our analysis focuses on carbon
metabolism, because carbon is central to life.
In this context, we ask fundamental questions about essential

reactions and the extent to which they are also superessential.
Which are the reactions that cannot be bypassed? How many
reactions cannot be bypassed? To what extent does their essen-
tiality depend on the environment? We relate the outcome of
these and other analyses to metabolic evolution and the problem
of finding drug targets with high superessentiality and thus, low
propensity for resistance evolution.

Results
Core of Absolutely Superessential Reactions in Carbon Metabolism.
We begin our analysis with a single carbon source phenotype, an
aerobic minimal environment that contains glucose as the only
carbon source (SI Appendix shows all of the environmental
metabolites that we study). Our point of departure is the biomass
composition of Escherichia coli, because it is well-understood;
additionally, its major components are representative of other
free-living organisms (1, 12). Starting from the set of all currently
known reactions, we generated a metabolic network that we call
the universal network. This network comprises all known 5,906
biochemical reactions with well-defined stoichiometry (SI Ap-
pendix, SI Methods details construction of the universal network).
Not surprisingly, this network can produce all biomass compo-
nents in a glucose minimal environment. For any one metabolic
reaction, the universal network contains all possible alternative
pathways that could bypass a reaction. Because the reactions of
any viable network (including the E. coli network) are a subset of
this universe of reactions, an essential reaction in this network
cannot be bypassed in any network that uses reactions from the
known universe of reactions. That is, if a reaction is essential in
the universal network, no known pathway can bypass this re-
action and render it nonessential. We analyzed each reaction in
the universal network for its essentiality, and thus, we identified
133 reactions essential for growth on glucose. This set of 133
essential reactions forms an irreducibly essential set of reactions.
We call it the superessential core of metabolism for viability on
glucose (Dataset S1).

Broad Distribution of Reaction Superessentiality. As opposed to
reactions in the superessential core, which are essential regard-
less of which other reactions occur in a network, the essentiality
of many reactions may depend on other reactions. Although the
universal network allowed us to identify absolutely superessential
reactions, it does not allow us to understand how reaction es-

sentiality depends on other reactions in a network. To this end,
we took a different approach; we evaluated the essentiality of
each reaction in a large number of genome-scale metabolic
networks that contain an otherwise random assortment of known
reactions but are viable on a given set of environments. Starting
from the E. coli metabolic network, we used the approach de-
tailed in SI Appendix, SI Methods to generate random samples of
metabolic networks that can synthesize all E. coli biomass pre-
cursors in an aerobic minimal environment containing glucose as
the only carbon source. Briefly, this approach relies on Markov
Chain Monte Carlo sampling from the set of all metabolic net-
works that can be formed using 5,609 known biochemical reac-
tions. Our method ensures that the resulting networks have the
same number of reactions but are otherwise unrelated to the
starting network; additionally, they have a randomized reaction
content relative to each other. We refer to these networks as ran-
dom viable networks. We generated 500 such random viable net-
works and identified all essential reactions in each such network.
These reactions are reactions where removal abolishes a network’s
ability to synthesize all biomass components in this environment.
On average, only 283.59 reactions (20.3%) were essential in net-
works of our sample, with a low SD of 8.51 reactions.
To quantify a reaction’s superessentiality with this approach,

we define its superessentiality index (ISE) as the fraction of
networks in which the reaction is essential. The maximum value
of ISE is one for reactions that are essential in all networks of the
sample—we call such reactions absolutely superessential. The
lowest value of ISE is zero for reactions nonessential in all net-
works. An ISE of 0.002 would indicate that a reaction was es-
sential only in 1 of 500 random viable networks. Of the total
number of 5,906 chemical reactions that occurred in at least 1 of
our 500 random viable networks (SI Appendix, SI Methods), 1,400
(23.7%) reactions were essential in at least one network. Fig. 1A
shows a rank plot in which reactions are ranked according to
their superessentiality index. It indicates that different reactions
can vary widely in their superessentiality.
Comparing the results of this approach to our previous de-

termination of the superessential core from the universal network
allows us to validate the network sampling approach. Specifically,
sampling identified 139 reactions (2.3%) as absolutely super-
essential (ISE = 1; that is, they cannot be bypassed in any of our
500 random networks viable on glucose). These reactions corre-
spond to the plateau on the left side of Fig. 1A. Based on the
universal network, we had found that 133 reactions formed the
superessential core for viability on glucose. Most importantly,
these 133 reactions are all contained in the set of 139 absolutely
superessential reactions identified by sampling (Dataset S1).
In other words, only six reactions that sampling identified as ab-
solutely superessential are artifactually identified as absolutely
superessential because of insufficient sampling. This observation
shows that even modest samples of 500 random metabolic net-
works can provide good estimates of reaction superessentiality.
How many of the essential reactions in E. coli can potentially be

bypassed by reactions from the reaction universe? Two hundred
and forty reactions are essential in E. coli for growth in the glucose
minimal environment; of these 240 reactions, 133 reactions are
absolutely superessential in the universal network. This finding
means that 55.4% (133 of 240) of the essential reactions from
E. coli are, in fact, absolutely superessential and thus, irreplaceable.
The remaining 44.6% of reactions have an ISE < 1, meaning that
an organism could bypass such reactions by acquiring new meta-
bolic genes through mechanisms such as horizontal gene transfer.

Examples of Superessential Reactions. We next discuss a few
examples of reactions in the superessential core. The first of
them is phosphoglucosamine mutase (Blattner number b3176)
(29), which catalyzes a reversible conversion between glucos-
amine-1-phosphate to glucosamine-6-phoshate. This enzyme plays
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an important role in the synthesis of UDP-N-acetyl-D-glucosamine,
which is used in peptidoglycan and lipid IVA biosynthesis (30).
Second, nicotinamide adenine dinucleotide (NAD) kinase (Blatt-
ner number b2615) is important in the generation of nicotinamide
adenine dinucleotide phosphate from NAD in an ATP-dependent
manner. NAD kinase, thus, may play an important role in de-
termining the size of a cell’s nicotinamide adenine dinucleotide
phosphate pool and its turnover in the cell (31). A third example is
diaminopimelate decarboxylase (Blattner number b2838), which
generates L-lysine from meso-diaminopimelate. This enzyme cata-
lyzes the last reaction in the L-lysine biosynthesis pathway. It is
essential if L-lysine is not supplied by the environment.
In addition to absolutely superessential reactions (ISE = 1),

reactions with lower superessentiality index (ISE < 1) can also
shed light on the structure of metabolism. For example, if a re-
action is nonessential in a fraction (1 − ISE) of random viable
networks, this fraction indicates how easily the reaction can be

bypassed by alternate metabolic pathways based on known
reactions. For instance, glucose-6-phosphate isomerase (Blattner
number b4025), although not essential in E. coli (11), has an ISE of
0.314, indicating that it is essential in 31.4% of networks. This
finding means that it is bypassed in 68.6% of the networks in our
sample. Our analysis of reactions shows that reactions from cen-
tral pathways such as glycolysis, citric acid cycle, or pyruvate me-
tabolism tend to have low superessentiality indices, whereas
reactions from amino acid synthesis, such as histidine metabolism,
tend to have especially high superessentiality indices (Dataset S2).
Individual networks may contain reactions that do not con-

tribute to biomass production, for example, because they are part
of an isolated pathway fragment or a pathway that does not
contribute to biomass synthesis in a given environment. Such
reactions and pathway fragments do occur in well-annotated
metabolic models like the model of E. coli (12). They are also
inevitable consequences of unbiased Markov Chain Monte Carlo
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sampling of random viable networks (SI Appendix, SI Methods).
We refer to such reactions as blocked reactions (23, 32). To
identify them, we computed the maximum allowable flux through
each reaction for viability on glucose for each network in our
sample of 500 random viable networks (SI Appendix, SI Methods)
(32). If this flux was below a threshold of 10−8, we consider the
reaction blocked. When considered together, the number of
networks in which a reaction occurs, its superessentiality index
ISE, and the number of networks it is blocked in can indicate the
extent to which a reaction and its alternate pathways coexist and
are functional in a sample of random networks. As mentioned
earlier, glucose-6-phosphate isomerase is essential in 31.4% of
networks. However, it is present in 44.2% of networks (and
blocked in none). Together, these proportions mean that 12.8%
(44.2% − 31.4% − 0%) of the random networks in our sample
have more than one functional route for this particular reaction.
The penultimate reaction in histidine biosynthesis is carried out
by histidinol dehydrogenase (Blattner number b2020). It is
present in 87% of the networks, essential in 84.6% of networks,
and blocked in 0.6% of networks, meaning that it coexists along
with its alternate pathways only in 1.8% (87% − 84.6% − 0.6%)
of networks. This measure of superessentiality is complementary
to the ISE index in providing information on how easily a reaction
is bypassed. We report it for all E. coli reactions in Dataset S2.

Metabolic Networks Have Many Environment-General Essential
Reactions. Thus far, we discussed reaction essentiality for a sin-
gle carbon source phenotype. How do our observations gener-
alize to multiple carbon source phenotypes? Our definition of
phenotype regards the ability of a network to sustain life on
a given number of sole carbon sources. Networks with a multiple
carbon source phenotype can sustain life on many sole carbon
sources and any subset of these carbon sources, such as sources
that might occur in an environment that changes over time. The
highest numbers of carbon sources for a multiple carbon source
phenotype that we consider are the 54 different sole carbon
sources in which E. coli is known to be viable from experiments
(SI Appendix) (12). We can represent the phenotype of viability
on 54 carbon sources as a binary string of length 54 in which all
entries are equal to one. A deletion of a reaction that abolishes
viability on carbon source i would change the value of entry i in
this string to zero. We define a reaction as essential in this
multiple carbon source phenotype if it abolishes viability on at
least one carbon source. Deletion of some reactions abolishes
viability in all 54 environments. We refer to such reactions as
environment-general essential reactions. Deletion of other reac-
tions abolishes viability only in a few environments. We refer to
these reactions as environment-specific essential reactions.
We next revisit (for a multiple carbon phenotype) the concept

of a superessential core of metabolism—the set of absolutely
superessential reactions. As in our analysis with the universal
network for a single carbon source phenotype, we identified
absolutely superessential reactions for growth on all 54 carbon
environments from our universal reaction network of 5,906
reactions. This approach yielded 148 absolutely superessential
reactions. We note that only 15 additional reactions became
absolutely superessential as our analysis moved from the single
carbon source to the multiple carbon source phenotype (148 vs.
133 absolutely superessential reactions). This observation argues
for a common core of superessential reactions that does not
depend on the actual environment considered. Indeed, we find
that 125 of 148 reactions in the superessential core are envi-
ronment-general, meaning that deleting these reactions abol-
ishes growth in all 54 different environments.
We next identified all essential reactions (as defined above)

with our sampling approach (that is, in each of 500 random
networks that were viable on 54 carbon sources) and determined
each reaction’s superessentiality index (ISE; we note that this

index disregards the number of environments in which a reaction
is essential). The number (1,569) of reactions that were essential
in at least one network was only 12% higher than the 1,400
reactions essential for growth on glucose that we discussed ear-
lier. SI Appendix, Fig. S1 shows a rank plot of ISE for these 1,569
reactions. Its shape is very similar to the curve in Fig. 1A, and its
left side also contains a plateau of 155 (9.9%) reactions that were
absolutely superessential for growth on each of the 54 carbon
sources. In sum, we identified only seven more reactions as ab-
solutely superessential through the sampling approach compared
with the 148 reactions from the universal network. The 148 true-
positive reactions are shown in Dataset S3.
Although deletion of some reactions abolishes growth on one

or few environments, deletion of other reactions abolishes
growth on all 54 environments. Which of these two types of es-
sential reaction is more prominent? Fig. 1B shows the distribu-
tion of the proportion of a metabolic network’s reactions that are
environment-specific and -general. The data are based on 500
random networks viable on 54 different sole carbon sources. Fig.
1B clearly shows that many more essential reactions are envi-
ronment-general (mean = 0.18 or 251 reactions) than -specific
(mean = 0.0755 or 105 reactions). That is, most essential reac-
tions abolish viability on all carbon sources. Fig. 1C shows the
average number of environment-specific essential reactions per
network that abolishes viability on a given range of carbon
sources when deleted. The number of reactions that abolishes
growth on fewer than eight sources when deleted is, by far, the
highest (about 42 reactions per network; SEM = 4 reactions),
whereas reactions that abolish growth on 45–53 sources are next,
with 12 reactions per network (SEM = 3 reactions). Also, there
are fewer reactions (one to three reactions per network, SEM =
1 reaction) that abolish growth on 9–45 environments. In sum,
most essential reactions in a metabolic network fall into two
categories: those reactions whose deletion abolishes viability in
very few environments and the vast majority of reactions whose
deletion abolishes viability in all environments.

Superessentiality Index of a Reaction Is Not Very Sensitive to the
Environment. Our analysis thus far also suggests that most essen-
tial reactions are essential, irrespective of the number of different
environments and regardless of the specific carbon source ex-
amined. For example, SI Appendix, Fig. S1 shows that 1,569
reactions are essential in at least one network for viability on at
least 1 of 54 alternative carbon sources, whereas Fig. 1A shows
that 1,400 reactions are essential in at least one network for
growth on glucose. Thus, of 1,655 unique reactions that are es-
sential for life on either glucose or at least 1 of 54 carbon sources,
1,314 reactions (79.4%) are essential for both kinds of pheno-
types. In addition, the superessentiality index of reactions is
similar for both the single carbon source and the multiple carbon
source phenotype. Fig. 1D shows that a strong correlation
(Pearson’s r = 0.95, P value < 10−300, n = 1,314) exists between
the superessentiality index ISE in the single and multiple carbon
source phenotypes. A comparison between essential reactions of
the phenotype requiring growth on 54 carbon sources and simpler
phenotypes that require growth on 5, 10, 20, 30, and 40 alternative
carbon sources yields correlations as high as those correlations
seen in Fig. 1D (Pearson’s r > 0.92, P value < 10−300, n ≥ 1,409 in
all five cases). Moreover, as we already discussed, most essential
reactions in a network are essential for growth in more than one
environment (Fig. 1 C and D). Taken together, this finding means
that a reaction’s superessentiality index ISE does not depend
strongly on the number of carbon sources on which it can support
viability. The same finding holds, therefore, for how readily a re-
action can be bypassed; it does not depend strongly on the en-
vironment for most reactions. In SI Appendix, SI Results, we
discuss some notable exceptions, such as reactions that can have
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high superessentiality in 54 different minimal environments but
low superessentiality in a glucose-minimal environment.

Absolutely Superessential Reactions Are Enriched in Anabolic Path-
ways. As mentioned earlier, we found 133 reactions that are ab-
solutely superessential for growth on glucose and 125 reactions
that are absolutely superessential and environment-general for
growth on 54 alternative sole carbon sources. We asked whether
reactions in these two superessential cores preferentially derive
from specific pathways (SI Appendix, SI Methods). We found that
both cores were significantly enriched for reactions in pathways
that synthesize several amino acids (histidine, valine, leucine,
isoleucine, tyrosine, and tryptophan) and cell wall components. In
contrast, the cores were not enriched for pathways that synthesize
murein, threonine, lysine, and methionine as well as membrane
lipids. The results are similar for both superessential cores (SI
Appendix, Tables S2 and S3). Reactions from central metabolism
such as glycolysis or the citric acid cycle are notably absent from
the superessential cores (Datasets S1 and S3). Taken together,
this finding means that most absolutely superessential reactions
are anabolic in nature, whereas catabolic reactions from pathways
such as glycolysis can be more easily bypassed. This observation
agrees with experimental and computational studies of essential
reactions in E. coli and S. cerevisiae (6, 11, 33, 34). It is also
consistent with our earlier observation that reactions from these
pathways generally have low superessentiality indices (Dataset
S2). We speculate that the reticulate structure of some parts of
metabolismmay be the reason why one or more pathways, such as
central carbon metabolism, are not enriched for superessential
reactions, although these pathways are very important (35)
(Datasets S1 and S3). In contrast, some amino acids, such as his-
tidine or tryptophan, are synthesized through more linear path-
ways, which may, thus, not be as easy to bypass. In SI Appendix, SI
Results, we show that the environment-general superessential core
is a compact and highly connected part of metabolism.

Genes Responsible for Superessential Reactions Occur in Most
Prokaryotic Genomes. If a reaction is frequently essential for
preserving a phenotype in random viable metabolic networks,

then the corresponding enzyme-coding gene should also occur
frequently in many prokaryotic genomes. This line of reasoning
will fail if either our knowledge of the universe of metabolic
reactions is incomplete or our understanding of an organism’s
enzyme complement is partial. The extent to which it fails can
shed light on the imperfection of our current metabolic knowl-
edge. With these observations in mind, we analyzed the relation-
ship between reaction superessentiality and reaction occurrence
in prokaryotic genomes. To this end, we defined the genome oc-
currence index (IGO) of a reaction as the fraction of genomes
that carry a gene with a product that is known to catalyze this
reaction. For each reaction in the universe of reactions, we used
Kegg orthology numbers (http://www.genome.jp/kegg/ko.html)
(36) to estimate the fraction of prokaryotic genomes that encode
an enzyme catalyzing the reaction (SI Appendix, SI Methods).
We first focused on absolutely superessential reactions (ISE = 1)

for a single carbon source phenotype (viability on glucose) and for
multiple carbon source phenotypes. Fig. 2A shows a rank plot of
the genome occurrence index IGO for these reactions. If our cur-
rent understanding of metabolism was perfect, we would expect
that the IGO values of all absolutely superessential genes are equal
to one. However, the rank plot shows that this expectation is not
the case. We highlight two features of this plot. First, the plots for
single carbon source and multiple carbon source phenotypes are
very similar and nearly congruent. This finding corroborates our
earlier observation that most superessential reactions are envi-
ronment-general. It suggests that differences in the environment
in which different species live cannot account for most differences
in genome occurrences among absolutely superessential reactions.
Second, of the 155 absolutely superessential reactions for growth
in 54 carbon sources, 57% (88 reactions) occur in more than 75%
of genomes (820 genomes); 73.5% (114 reactions) of 155 reactions
occur in more than 50% of genomes (IGO ≥ 0.5). This finding
means that a majority of absolutely superessential reactions occurs
in most prokaryotic genomes sequenced to date. This association
between superessentiality and genome occurrence (IGO) is highly
significant with a P value smaller than 10−5 (n = 105, permutation
test) (SI Appendix, Fig. S3). The 125 absolutely superessential and
environment-general reactions also showed a highly significant
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Fig. 2. Absolutely superessential reactions occur in most prokaryotic genomes. (A) The vertical axis shows the genome occurrence index of absolutely
superessential reactions for growth on glucose and 54 carbon sources. The curves are almost congruent, underscoring that most absolutely superessential
reactions are environment-general. Furthermore, a majority (73.5%) of 155 absolutely superessential reactions for growth on 54 carbon sources has a high
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105 of 125 reactions have a genome occurrence of more than 50% (○), whereas after improvement, this number increases to 118 (94.4%; ●). See Genes
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association with genome occurrence. Specifically, of 125 reactions,
105 reactions (84%) occurred in more than 50% of genomes
(P value < 10−5, n = 105). We next expanded our analysis to in-
clude reactions with lower than absolute superessentiality (ISE <
1) and determined whether there exists a statistical association
between a reaction’s superessentiality index and its genome oc-
currence. Such an association indeed exists (Spearman’s ρ = 0.4,
P value < 10−300, n = 5,609). SI Appendix, Fig. S4 shows that this
correlation in the observed data is significantly different from the
correlation in randomized data (P value < 10−5, n = 105), sug-
gesting that the association that we see between superessentiality
index and the occurrence of a reaction’s enzyme-coding genes
does not occur by chance alone.
These observations indicate, on the one hand, that our ap-

proach of characterizing reaction superessentiality in random
viable networks reveals biologically relevant information. On the
other hand, they also show that our knowledge of metabolism
and its enzymes is still incomplete. For example, as we discussed
earlier, 114 of 155 absolutely superessential reactions occur in at
least 50% of genomes. Of the remaining 41 reactions, about one-
half are environment-specific reactions, whereas other reactions
have low genome occurrences. The reasons for apparently low
occurrence of highly superessential reactions highlight various
limitations in existing genome annotation and database in-
formation, which a few examples will show.
Glycerol-3-phosphate acyltransferase, encoded by plsB, plays

a role in phospholipid synthesis and is essential in E. coli (11)
and S. typhirium (37) in the murine in vivo infection model. The
enzyme uses fatty acyl-ACP or acyl-CoA thioesters to form acyl-
glycerol-3-phosphate, and it is mainly limited to γ-proteobacteria
(38), which explains its low genome occurrence index. Other
prokaryotes contain a similar enzyme that uses acyl-phosphate to
synthesize acyl-glycerol-3-phosphate (encoded by the gene plsY),
but the Kegg reaction database does not distinguish between
these reactions. It only contains the E. coli variant. If both var-
iants were taken into account, the reaction would occur in
a much larger fraction (0.91) of genomes. The glycerol-3-phos-
phate acyltransferase reaction seems superessential, because the
other pathway (encoded by plsY) is absent from the set of known
reactions that we used. Another example concerns the coaA gene
encoding the enzyme pantothenate kinase. Pantothenate kinase
catalyzes the first step of CoA biosynthesis, an essential and
ubiquitous cofactor in almost all biological organisms. Prokar-
yotes can have two different types of pantothenate kinases
encoded by the gene coaA or coaX. These genes do not share
sequence similarity (39), but they, nonetheless, encode enzymes
that catalyze the same reaction. The enzyme encoded by coaA is
of type I, whereas the enzyme encoded by coaX is a type III
enzyme (39, 40). The existence of the alternative coaX explains the
low genome occurrence of coaA, but it also reinforces the essen-
tiality of the reaction. If we take both variants into account, the
reaction occurs in 83% of the genomes that we analyzed. Another
case in point is reactions catalyzed by promiscuous enzymes,
such as the enzyme pyrimidine phosphatase (PMDPHT).
PMDPHT catalyzes the transformation of 5-amino-6-(5′-phos-
phoribitylamino) uracil to 4-(1-D-Ribitylamino)-5-aminouracil with
the release of one inorganic phosphate (12), and it is essential in the
riboflavin biosynthesis pathway (1). PMDPHT is absolutely super-
essential and environment-general, but the enzyme-coding gene
responsible for PMDPHT has not yet been identified. It, therefore,
has the minimum genome occurrence of zero.
In sum, missing information about relevant enzymes and genes

can lead to low apparent genome counts, even for reactions with
high superessentiality. We identified the reasons for low genome
occurrence for those 20 of 125 environment-general reactions in
the absolutely superessential core that occur in fewer than 50%
of genomes. Fig. 2B shows a comparison of the genome occur-
rences before and after a correction for such discrepancies based

on (limited) independent information. After correction, 94.4%
(118 of 125) of absolutely superessential reactions occur in more
than 50% genomes. The reasons for these discrepancies are
similar to those listed in the above examples. They include mis-
leading assignments of orthology, undiscovered enzymes, and
nonorthologous gene displacement (41–45) (SI Appendix, SI
Results and Dataset S4).

Most Absolutely Superessential Environment-General Reactions
Remain Superessential in Complex in Vivo and Rich Environments.
So far, we have used 54 minimal environments distinguished by
their sole carbon source to characterize reaction superessen-
tiality. Although the use of minimal environments makes our
analysis simpler, it raises the question of the extent that reaction
superessentiality would be similar in the complex chemical envi-
ronments that many pathogens need to survive. To answer this
question, we used the universal network approach to identify
absolutely superessential reactions in the complex environments
known to sustain in vivo growth of Salmonella typhimirium LT2
(46), Mycobacterium tuberculosis H37Rv (47), Pseudomonas aer-
uginosa PAO1 (48), and Mycoplasma pneumoniae (49) as well as
a synthetic complete medium (50) (SI Appendix, SI Methods).
These environments consist of various nutrients such as amino
acids, cofactors, fatty acids, and nucleotides. In addition, we
supplemented each environment with all 54 carbon sources that
we studied here to render our identification of absolutely super-
essential reactions conservative, because additional nutrients will
lead to a reduction but never an increase of reaction super-
essentiality. Nonetheless, we found that, in each of the five sup-
plemented environments, a majority (at least 77.6%) of the 125
absolutely superessential reactions that we had previously iden-
tified (Dataset S3) is still superessential (Dataset S5). Among the
absolutely superessential reactions that this approach identified
(101 reactions on average for the five environments), every single
one is contained in our previously identified set of 125 abso-
lutely superessential environment-general reactions. Furthermore,
about 83% of 101 reactions are represented in more than 50% of
prokaryotic genomes (P value < 10−5, n= 105 for each of the five
environments) (SI Appendix, SI Results and Table S4). The latter
observation indicates not only the importance of these reactions,
but it also indicates that this importance is not restricted to
organisms with a biomass composition similar to E. coli; the
organisms in which these reactions occur are taxonomically di-
verse and may vary widely in their biomass composition. To val-
idate this assertion (that is, that the superessentiality of reactions
is not highly sensitive to biomass composition), we also studied
reaction superessentiality for different biomass compositions
(SI Appendix, SI Results). We found that the relative magnitude of
superessentiality indices is highly correlated between different
biomass compositions (Spearman’s r = 0.8, P value < 10−13, n =
1,561) (SI Appendix, SI Results).

Discussion
The metabolism of an organism can evolve through elimination
of reactions because of loss of function mutations and by addi-
tion of new reactions by horizontal gene transfer. Several studies,
experimental and computational alike, have identified essential
reactions (3–6, 11–14, 51) in different organisms or genome-
scale metabolic networks. Most such studies are organism-
specific, and they do not address the question of how readily
a reaction could be bypassed through alternate reactions or
pathways based on our current knowledge of metabolism. This
question is important not only to understand the evolutionary
plasticity of metabolic networks but also to identify those enzy-
matic targets for antimetabolic drugs where the risk of evolving
resistance is smallest. Our approach of universal network anal-
ysis allows us to identify absolutely superessential reactions that
are essential in any metabolic network. Random viable network
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sampling, in addition, allows us to quantify superessentiality for
many reactions and study its causes in individual networks. Both
approaches are complementary and can be to used cross-validate
each other.
One might argue that an analysis like ours should ideally use

many reconstructed metabolic networks from diverse prokar-
yotes (52) instead of random viable network samples. However,
the number of high-quality reconstructed networks suitable for
FBA is currently still too low. In addition, all sets of such net-
works would be related through a common evolutionary history,
which creates a bias in data that random viable network samples
can avoid. Finally, random viable network samples can be di-
rectly used for statistical hypothesis testing (22, 23, 53). For our
analysis, random viable metabolic networks are, thus, currently
an indispensible tool.
We focused here on metabolic networks with a size that is

identical to the size of E. coli and with a viability that is defined
as the ability to synthesize all E. coli biomass precursors. We did
so because the E. coli biomass composition is well-studied, and
many of its components—amino acids, nucleotides, etc.—are
representative of biomass precursors in most other free-living
organisms. Moreover, E. coli is an environmental generalist and
thus able to survive in multiple different environments. This
feature allowed us to compare reaction superessentiality for
networks viable in one and multiple environments. In this regard,
we focused on minimal environments that vary in their sole
carbon sources because carbon is life’s most central chemical
element. Specifically, we compare networks viable in a minimal
environment with glucose as its sole carbon source with networks
that are viable on 54 different sole carbon sources. We refer to
these two types of networks as networks with multiple and single
carbon source phenotypes.
We began by identifying a core of absolutely superessential

reactions (Datasets S1 and S3). These are reactions that occur
and are essential in all networks that we study. This core com-
prises 133 reactions for the single carbon source phenotype and
148 reactions in the multiple carbon source phenotype. The vast
majority of reactions in this core are not specific to a given
carbon source, but they are required for viability on all carbon
sources. They also form a statistically highly significant con-
nected component in a graph-based representation of metabo-
lism. The properties of this core show that the reactions that are
most difficult to bypass do not allow the organism to survive in
specific environments, but they are essential to life in multiple
environments. Computational and experimental studies have
tried to identify common essential reactions across a small
number of organisms to develop antibiotics (37, 54). Our iden-
tification of an absolutely superessential core of reactions goes
beyond these analyses. It carries important implications for drug
target identification. It predicts that antimetabolic drugs targeted
to enzymes that are most difficult to bypass will not come from
pathways that mediate adaptation to specific environment but
rather, from anabolic pathways responsible for the synthesis of
cell wall components and amino acids.
The next step of our analysis focused on the superessentiality

of reactions for single and multiple carbon source phenotypes.
First, we showed that reaction superessentiality in single minimal
and multiple minimal environments is highly correlated. This
finding again showed that a reaction’s superessentiality derives
mostly from reactions not specific to an environment. Second, we
analyzed the relationship between a reaction’s superessentiality
and how frequently genes encoding known enzymes for this re-
action occur in 1,093 prokaryotic genomes; 94.4% (118 of 125) of
reactions in the environment-general superessential core occur
in more than 50% of prokaryotic genomes, a number much
greater than expected by chance alone. In addition, the statistical
association between the superessentiality of a reaction and the
number of genomes encoding it is much higher than expected by

chance alone. Not unexpectedly, this association explains only
a modest fraction of the variance in genome occurrence, which
reflects our incomplete knowledge about metabolism and cell
biology. For example, a highly superessential reaction catalyzed
by several nonorthologous enzymes may show a low genome
count if genes encoding some of these enzymes have not yet been
identified (41–43). Other reasons for high superessentiality and
low genome count involve promiscuous enzymes that catalyze
more than one reaction but are not known to do so (44, 45) or
unknown biochemical pathways that can bypass a reaction (45).
Conversely, an enzyme with high genome count and low super-
essentiality may have important nonmetabolic functions. Exam-
ples that we discuss in SI Appendix, SI Results include the glycolytic
enzyme enolase (for its role in the RNA degradasome) or thio-
redoxin reductase (for its indirect but essential role in reducing
important cytoplasmic enzymes and regulatory proteins).
We also studied how rich environments and environments

known to support the life of pathogens inside a host affect the
complement of absolutely superessential reactions. We found
that a majority of reactions from a set of 125 absolutely super-
essential reactions needed for life on 54 carbon sources
remained absolutely superessential in these environments. This
observation is consistent with our earlier observations that most
superessential reactions are environment-general. Moreover,
enzyme-coding genes of 114 of 125 absolutely superessential
reactions have experimentally been confirmed as essential in at
least one of three well-studied organisms, namely S. enterica
serovars (37, 55), M. tuberculosis H37Rv (56, 57), and P. aerugi-
nosa (58, 59) (Dataset S6). Furthermore, a significantly larger
number of absolutely superessential reactions than expected by
chance alone (mean = 83%) is encoded by a majority of se-
quenced prokaryotic genomes. This finding indicates that these
reactions are not just highly superessential, because they support
synthesis of biomass molecules highly specific to one organism,
such as E. coli. All of the above means that the superessential
core is not highly sensitive to the chemical composition of an
environment and of biomass.
As knowledge about metabolism accumulates, our estimates of

reaction superessentiality will become ever more accurate. Al-
ready at the present time, the estimates that we obtained can
help guide the selection of drugs targeting metabolism. That is,
although our observations do not answer the question of how to
inhibit a specific enzyme, they can help answer which essential
enzymes are the best candidates for inhibition based on how
difficult it is to bypass the reactions that these enzymes catalyze.
The main idea is that enzymes with reactions that have high
superessentiality (large ISE) are good drug target candidates,
because cells cannot easily evolve resistance by rerouting me-
tabolism around these enzymes (60). This finding holds even
more so for reactions with high superessentiality and high ge-
nome count. One example is methionine adenosyltransferase
(Blattner number b2942), an absolutely superessential enzyme
present in 97% of prokaryotic genomes. Other examples include
shikimate kinase (ISE = 1, IGO = 0.86) and chorismate synthase
(ISE = 1, IGO = 0.89), enzymes that are already being explored as
possible targets (61, 62). As another example, Fig. 3 shows
a more detailed analysis involving the diaminopimelate (DAP)
pathway. The DAP pathway is responsible for meso-2,6-Dia-
minopimelate (m-DAP) synthesis. m-DAP is an important pre-
cursor to L-lysine and peptidoglycan synthesis in prokaryotes,
both of which are not synthesized in humans (this characteristic
is important, because the ideal drug targets the pathogen but not
the host). DAP epimerase [enzyme commission number (EC)
5.1.1.7], the final enzyme involved in the production of m-DAP,
is actively being explored as a drug target (63–66). Although
DAP epimerase is essential for growth on all 54 carbon sources in
E. coli, it is essential only in 54.2% of random viable networks,
because many microbes can synthesize m-DAP through dia-
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minopimelate dehydrogenase (EC 1.4.1.16) (67). In other words,
inhibition of this enzyme could be ineffective in the long run,
because there is a known route of resistance. A better target in
the same pathway would be dihydrodipicolinate synthase (EC
4.2.1.52), which is superessential, environment-general, and
present in 92% of prokaryotic genomes. In addition, its product,
L-2,3-dihydropicolinate, is not essential in humans, making
dihydrodipicolinate synthase an ideal drug target. In sum, the
analysis of superessential reactions may be one of several worthy
starting points to development of drug targets that block or slow
down the evolution of antidrug resistance (68–70).
We next discuss potential caveats to our study. First, as noted

above, estimation of reaction superessentiality depends on our
knowledge about the universe of all feasible enzyme-catalyzed
metabolic reactions. If future work adds reactions and pathways
to the known universe, then the superessentiality of individual
reactions may decline. However, we expect that the ranking of
superessentiality of many reactions will remain similar over time.
If so, a reaction with superessentiality that is much higher than the
superessentiality of another reaction would still be a better can-
didate drug target. Second, our comparison of essential reactions
with enzyme occurrence in organisms with sequenced genomes
depends on the quality of available metabolic genome annotation
(28, 36). This annotation currently has numerous limitations,
which we discussed. Third, completely unknown spontaneous (not
enzyme-catalyzed) reactions could lower the superessentiality of
enzyme-catalyzed reactions. They could, thus, contribute to some
of the yet unresolved low genome occurrences of absolutely
superessential reactions. However, based on our knowledge of
known spontaneous reactions, which constitute a very small

fraction (1.3%) (SI Appendix) of all known reactions, this effect
may be minor. Fourth, there are uncertainties in biomass com-
position. We carried out our analysis with the biomass composi-
tion of a free-living organism in mind, and the majority of biomass
molecules that we consider would be found in typical free-living
organisms. However, some minor biomass components may be
restricted to some organisms and may not be required in others.
A potential example is siroheme, a molecule that is part of E. coli
biomass but may not be needed in other organisms (46, 52, 71–
73). In an organism that does not need this molecule, 1.6% (two
reactions) of our absolutely superessential reactions lose this
status. However, even when taking some variation in biomass
composition into account, the relative order of superessentiality
among reactions would be largely preserved. To show this, we
used the biomass composition of SEED models, metabolic
models of diverse organisms that are created with a semi-
automatic procedure from genomic and other information (52).
Specifically, we recalculated the superessentiality index (ISE) of
reactions for a biomass composition that contains molecules
found in a majority of these SEED models. The rank correlation
coefficient between superessentiality indices for the E. coli bio-
mass and this biomass composition exceeds 0.8. This finding
means that the superessentiality index is not highly sensitive to
biomass composition. Fifth, the generation of random viable
networks, especially for multiple carbon source phenotypes, is
computationally expensive (22, 74). Only limited sample sizes are
currently feasible. However, we note that even these limited
sample sizes yield results that are in agreement with comple-
mentary approaches (for example, the identification of absolutely
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superessential reactions from the universal network that we
analyzed).
In sum, our analysis sheds light on the evolution and genotypic

plasticity of metabolic networks. It shows that metabolic net-
works contain a core of absolutely superessential reactions re-
gardless of their metabolic genotype. The composition of this
core is not highly sensitive to the environment in which viability
is required. More generally, reactions vary broadly in their
superessentiality and thus, in how readily they can be bypassed by
alternative pathways. A comprehensive evolutionary approach
like ours may help identify putative drug targets and develop
effective antibiotic therapies. We hope that our data on reaction
superessentiality (Datasets S1, S3, S4, and S5) will become
broadly useful resources to other researchers.

Methods
Monte Carlo Markov Chain Random Walk. We generate random metabolic
networks through long random walks that leave a metabolic network’s
ability to synthesize biomass unchanged. Each step in a random walk

consists of the addition of a randomly chosen reaction from the known
universe of biochemical reactions followed by the deletion of another
randomly chosen reaction. After each step, we use flux balance analysis to
predict the viability of a network in one or more chemical environments.
We accept the step if the network remains viable after deletion; other-
wise, we reject the step and carry out another step. Sequential addition
and deletion of reactions ensure that the size of the network remains
constant throughout the random walk. We generated 500 random net-
works for each phenotype that we consider.

Essential and Absolutely Superessential Reactions. We define a reaction as
essential for a given phenotype if its elimination causes cessation of bio-
mass synthesis. To identify essential reactions in a given network, we
eliminate each reaction and use FBA to assess whether nonzero biomass
growth flux is still achievable. If not, the reaction is called essential for this
network and growth environment. We call a reaction absolutely super-
essential if it is essential in a given environment in all metabolic networks
that we considered.

Methods are described in greater detail in SI Appendix.
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