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Abstract
Conventional antimicrobial strategies have become increasingly ineffective due to the emergence
of multidrug resistance among pathogenic microorganisms. The need to overcome these
deficiencies has triggered the exploration of alternative treatments and unconventional approaches
towards controlling microbial infections. Photodynamic therapy was originally established as an
anti-cancer modality and is currently used in the treatment of age related macular degeneration.
The concept of photodynamic inactivation requires cell exposure to light energy, typically
wavelengths in the visible region that causes the excitation of photosensitizer molecules either
exogenous or endogenous, which results in the production of reactive oxygen species. ROS
produce cell inactivation and death through modification of intracellular components. The
versatile characteristics of PDT prompted its investigation as an anti-infective discovery platform.
Advances in understanding of microbial physiology have shed light on a series of pathways, and
phenotypes that serve as putative targets for antimicrobial drug discovery. Investigations of these
phenotypic elements in concert with PDT have been reported focused on multidrug efflux
systems, biofilms, virulence and pathogenesis determinants. In many instances the results are
promising but only preliminary and require further investigation. This review discusses the
different antimicrobial PDT strategies and highlights the need for highly informative and
comprehensive discovery approaches.
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Introduction
The 20th century saw the discovery of antibiotics and led to a wide array of successful
methods for preventing and controlling infectious diseases. This fostered a mindset that the
war against infectious microbes had been won and research efforts were shifted to more
pressing matters such as cancer, diabetes, and heart disease. In the 1980s the consensus
among pharmaceutical companies was that there were enough antibiotics already on the
pharmacy shelf and they began to redirect their research efforts accordingly [1]. Optimism
transformed into skepticism, however as outbreaks and epidemics of new, re-emerging, and
drug--resistant infections arose. The microorganisms responsible for these infections
possessed effective and dynamic pathogenic capabilities and gave rise to the term
“superbugs”. Infectious diseases in the twenty-first century continue to be a dangerous
threat. Each year over 13 million deaths worldwide are attributed to the emergence of new
infectious diseases or to the re-emergence of diseases previously thought to be under
control.

Addressing this challenge requires rational as well as unconventional antimicrobial
discovery efforts [1]. A prominent player in these efforts is likely to be the light-based
technology known as antimicrobial photodynamic inactivation or photodynamic therapy [2],
which uses harmless visible light in combination with non-toxic photosensitizers to control
infections. Antimicrobial PDT was accidentally discovered over 100 years ago with the
observation that Paramecium spp. protozoans stained with acridine orange died upon
exposure to bright light[3]Historically PDT has been more prominent in the cancer setting
and is currently used for the treatment of age-related macular degeneration.[4] Recent years
have seen the migration of PDT research efforts and ophthalmology settings towards being
used as a discovery and treatment alternative for localized infections [5].

PDT involves the use of harmless visible light combined with a light-sensitive dye – the
photosensitizer – and oxygen present in and around cells. After illumination with the light of
the appropriate wavelength, the PS is energized to an excited state that can undergo
molecular collisions with oxygen, resulting in the formation of reactive oxygen species
(ROS), including singlet oxygen by energy transfer or hydroxyl radicals by electron transfer.
The high selectivity of PDT for rapidly growing and thus hyperproliferating malignant cells
[6] suggested it should be useful for microbial cell destruction [7]. Studies of antimicrobial
PDT have focused on: (i) exploring the photophysical and photochemical properties of the
approach (ii) exploring chemical properties to develop more effective and clinically
compatible PSs (iii) bypassing the microbial permeability barrier and investing in novel
delivery methodologies (iv) preclinical and clinical investigations of PDT applications.

PSs are usually organic aromatic molecules with a high degree of electron delocalization.
They contain a central chromophore with auxiliary branches (auxochromes) which add

Vera et al. Page 2

Photochem Photobiol. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



further electron delocalization to the PS and thus alter the absorption spectra [8]. Porphyrins,
chlorins, bacteriochlorins, phthalocyanines as well as a plethora of dyes with different
molecular frameworks have been proposed as antimicrobial PSs [9,10]. These dyes include
halogenated xanthenes (e.g. Rose Bengal (RB)), [11] perylenequinones (e.g. hypericin) [12],
phenothiazinium salts, (e.g. toluidine blue O (TBO) and methylene blue (MB)) [13], cationic
fullerenes (e.g. derivatives of C60), [14, 15] and psoralens (e.g. furanocoumarins) [16].

In just 20 years antimicrobial PDT has emerged as a discovery and development platform
inspiring a proliferation of light-based antimicrobial explorations worldwide. However, the
potential for microbial resistance development using PDT remains under-investigated.
Studies of resistance have been sporadic but they are rapidly increasing, with recent reports
examining key elements of the microbial phenotype. These include multidrug efflux
systems, biofilm, spore formation, virulence and pathogenicity determinants. The emerging
consensus is that the effectiveness of PDT may be profoundly impacted by all these systems,
but the exact mechanisms of these effects remain elusive. This review aims to summarize
and provide critical commentary around these aspects of antimicrobial PDT. It also aims to
highlight the mechanistic similarities and differences between PDI and conventional
antimicrobials. Collecting this diverse information may transform PDI from an alternative
discovery platform to a dynamic anti-infective countermeasure.

Efflux and Antimicrobial PDT
Efflux mechanisms are major components of resistance to many classes of antimicrobials as
well as chemotherapeutic agents [17]. Efflux results from the activity of membrane
transporter proteins, widely known as multidrug efflux systems (MES) [18, 19]. These
systems perform essential roles in cellular metabolism and they differ in membrane
topology, energy coupling mechanisms, and, most importantly, in substrate specificities
[20]. Identifying natural substrates and inhibitors of efflux systems is an active and
expanding research topic [21].

Based on their sequence similarity, efflux systems were classified into the following six
super-families: ATP-binding cassettes (ABC), major facilitators (MFS), resistance-
nodulation cell division (RND), small multidrug resistance family (SMR), multi-
antimicrobial extrusion protein family and multidrug endosomal transporters (MET). The
first five families were found in microorganisms while the MET family appears to be
restricted to higher eukaryotes. Representatives of all groups are expressed in mammalian
cells [22]. ABC transporters are the largest super family, containing seven subfamilies
designated A to G based on sequence and structural homology [23]. The best-studied
families of fungal MES are from Saccharomyces cerevisiae, especially those responsible for
pleiotropic drug resistance (PDR). Members of this family are highly conserved and are
often responsible for drug resistance among pathogenic fungal species [24, 25].

A challenging clinical scenario involves MES in Pseudomonas aeruginosa [26]. Sequence
analysis of the P. aeruginosa genome has revealed the presence of MES from all five super
families, with the largest number of predicted pumps, a total of 12, belonging to the RND
family [27]. X-ray crystal structures of most transporter families were reported in a variety
of organisms [28–36],

Studies into the effects of efflux in antimicrobial PDT have only recently commenced.
Structural similarities exist between efflux substrates and a number of PSs, most notably
their amphipathic nature. The participation of MES in PS mediated PDT has been observed
with ABC mammalian systems. Primary evidence came initially from investigations with
porphyrins and the system ABCG2 (or Breast Cancer Resistance Protein BCRP). Transport
of phytoporphyrin (phylloerythrin) was blocked by the ABCG2-specific inhibitor
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fumitremorgin C (FTC) in human embryonic kidney cells transfected with full length human
ABCG2 [37, 38]. Serum-dependent export of protoporphyrin IX by ABCG2 in T24 cells
was also demonstrated [39]. In a more comprehensive study a series of conjugates of
substrate PSs with varying groups attached to different positions on the tetrapyrrole
macrocycle were designed. Pyropheophorbides and purpurinimides were found to be
substrates for ABCG2 which affected the phototoxic response of a side population of stem
cell-like cancer cells to PDT [40]. This was also the case for hypericin and ABG2 and
ABCC1 (or multidrug resistance-associated protein 1, MRP1) where both systems affected
the outcome of hypericin-mediated PDT in HT-29 adenocarcinoma cells [41]. In these two
systems it is clear that MES affect PDT for a variety of PS chemotypes. In contrast, for
ABCB1 (P-glycoprotein, P-gp) the evidence for PS substrates is sporadic and contradictory.
For example, it has been shown that the multidrug resistance modulator and Cyclosporine A
Analogue SDZ-PSC 833 potentiates the photodynamic activity of chlorin e6 independently
of P-gp in multidrug resistant human breast adenocarcinoma cells [42]. Furthermore,
psoralen inhibits the function of the transporter in the dark [43]. A hypericin-mitoxantrone
(MTZ, chemotherapeutic) cocktail plus illumination with blue light potentiates cytotoxicity
in bladder and breast cancer cells that -overexpress P-gp [44].

Phenothiazinium dyes MB and TBO are amphipathic cations and physicochemically similar
to the antibacterial alkaloid berberine, a well-characterized substrate of MFS efflux systems
in Gram-positive bacteria [45, 46]. This raised the possibility that phenothiazinium PSs
could also be substrates of microbial efflux systems. Recent experimental evidence indicated
that phenothiaziniums were NorA (MFS) substrates in Staphylococcus aureus and possibly
MexAB (RND) substrates in P. aeruginosa [47]. This evidence was not supported by a
model study using 60 P. aeruginosa clinical isolates overexpressing efflux systems it was
demonstrated that antibiotic-resistant P. aeruginosa cells are as susceptible to TBO-mediated
PDI as susceptible strains [48].

The observation that ABC transporters and not MFS affect MB-mediated PDI in the
pathogenic yeast Candida albicans is perplexing [47, 49]. Furthermore, the structurally
related phenothiazines thioridazine and chromazine have been characterized as inhibitors as
opposed to substrates of a variety of pathogen efflux systems [50–52]. A recent study
identified a sigma factor network responsive to cell-envelope damage by thioridazine in
Mycobacterium tuberculosis suggesting roles other than efflux inhibition or anti-
mycobacterial activity for the compound [53]. One plausible explanation for this complex
behavior comes from the promiscuous substrate specificities of efflux systems. For example,
clinically important PDR transporters include C. albicans Cdr1p (CaCdr1p) and CaCdr2p,
which are orthologs of S. cerevisiae Pdr5p (ScPdr5p) and mammalian ABCG2 and ABCC1
transporters. Fungal PDR efflux pumps have relatively promiscuous substrate specificities
that are thought to be defined primarily by their transmembrane domains. These specificities
often partially overlap among family members in a particular organism and thus provide
broad-spectrum protection against xenobiotic threat, including that posed by the widely-used
and well-tolerated azole and triazole drugs. Both RND and ABC systems expel a wealth of
potential substrates. This overlap in substrate specificity highlights the obstacles to blocking
pumps efficiently.

The well documented promiscuity may explain the additional scattered reports for the
interaction of porphyrins with microbial efflux systems. Porphyrin uptake and efflux seem to
be regulated by the TolC system in E coli [54]. In Streptococcus agalactiae, two coregulated
efflux transporters modulate intracellular heme and protoporphyrin IX availability [55]. In
contrast the PDI pattern of amphipilic protoporphyrin diarginate PPArg in a variety of efflux
related S. aureus strains showed no correlation for the PS with MES [56].
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This wealth of contradicting information prompt us to apply a combination of first principles
Quantum Mechanics calculations (QM) together with a docking protocol to understand
whether the two phenothiazinium dyes MB and TBO are a priori candidates of being
substrates of an ABC transporter. We used the ABCB1 mammalIan P-gp as a paradigmatic
structural model. Despite its homology with other yeast and bacterial ABC transporters, the
mouse P-gp is the only eukaryotic ABC experimental structure [30], crystallized in a drug-
binding competent state [57]. We compared the docking properties of phenothiaznium dyes
with berberine. The methodology and results are summarized on Figure 2 and Table 2. It
was found that MB and berberine have a strong binding affinity with ABCB1 where as TBO
showed less affinity. TBO had also a second binding site with less than 1 kcal/mol of
difference in energy with respect to the main site. Both dyes share the site with berberine
(Figure 2), in their lowest and most populated cluster of conformations. This pocket involves
hydrophobic and aromatic residues mainly from TM 4, 5 and 6.

The use of small molecules known as multidrug efflux pump inhibitors (EPIs) that block
MES in combination with conventional antibiotics has been proposed as an approach for
circumventing efflux-mediated antimicrobial resistance. Biochemical approaches have
yielded a number of promising EPIs in several pathogenic systems [58]. This concept of
synergistic action has been exploited in PDT to potentiate the phototoxic action of
phenothiazinium PSs [59]. The PDT effect of MB or TBO was substantially enhanced by
small molecule EPIs in S. aureus that affect NorA as assessed by both reduction of viable
cells and fluorescent dye accumulation. The potentiation is less pronounced against P.
aeruginosa with MexAB.

It has been shown that near-infrared light can cause selective photodamage to multidrug
resistant pathogens [60]. In a recent study, it has been demonstrated that photodamage of
multidrug-resistant Gram-positive and Gram-negative bacteria by near infrared (870 nm/930
nm) light potentiated the action of erythromycin, tetracycline and ciprofloxacin [61].
Although the antibiotics used in this study are MES substrates, and it is therefore reasonable
to assume that near infrared light may play role in efflux inhibition, the experimental
evidence is weak and this requires further exploration. The potentiation mechanism is
hypothetical at this stage and not clearly distinct from PDI, as it may involve an optically
mediated mechano-transduction of cellular redox pathways, decreasing DeltaPsi and
increasing ROS.

Development of Microbial Resistance to PDT and analogies with
bacteriocidal antibiotics

The first step towards addressing microbial resistance development to PDT is understanding
the mechanisms and their implications. PDT leads to the production of singlet oxygen and
other ROS through a variety of photochemical mechanisms resulting in cell death. This
mechanism is by default analogous to bacteriocidal antibiotics but recent reports suggested
that the analogy may go much deeper. It has now been demonstrated that the three major
classes of bactericidal antibiotics (quinolones, b-lactams and aminoglycosides) regardless of
drug-target interaction, stimulate the production of hydroxyl radicals in Gram-negative and
Gram-positive bacteria, which ultimately contribute to cell death [62]. In the same report it
was observed that bacteriostatic drugs do not produce hydroxyl radicals. The mechanism of
hydroxyl radical formation induced by bactericidal antibiotics is the end product of an
oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient
depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of Fenton
chemistry. The same group at Boston University employed systems-level approaches and
phenotypic analyses to elucidate the pathway by which the aminoglycosides kanamycin and
gentamycin ultimately trigger hydroxyl radical formation. In brief, the pathway involves
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mistranslation and misfolding of membrane proteins and signaling through the envelope
stress-response two-component system, with the redox-responsive two-component system
playing an associated role [63].

As three of the main resistant components to antimicrobials (permeability barrier, multidrug
efflux systems and drug availability) have been extensively explored, the focus had naturally
shifted to the remaining two, target and pathway modification. The non-selective nature of
PDT and the lack of specific molecular targets for the ROS produced during PDT means that
it is unlikely that a specific microbial resistance pathway could develop. Reports discussing
the potential for microbes to develop resistance to PDT are scattered and provided no clear
conclusions. In a study of routine stress exposure followed by re growth, the photosensitizer
5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)-porphyrin triiodide (Tri-
Py(+)-Me-PF) was employed against Vibrio fischeri and E. coli model cells. After ten cycles
of partial inactivation followed by regrowth, neither of the bacteria developed resistance to
the photodynamic process [64]. Giulianai et al subjected P. aeruginosa, S. aureus and C.
albicans to 20 consecutive PDI treatments with cationic Zn(II) phthalocyanine RLP068/Cl,
but did not find any resistant mutants [65]. Only S. aureus showed increased MIC in dark
conditions, but even in this case, the susceptibility of the mutated bacteria to PDI was not
affected by their MIC increase.

Up regulation of the key oxidative stress enzyme superoxide dismutase has been observed
following protoporphyrin-mediated PDT in S. aureus and RB-mediated PDT in S. mutans.
This correlated with induction of GroEL, the bacterial heat shock protein responsible for
refolding denatured proteins and stabilizing lipid membranes during stress [66]. Expression
of the bacterial heat shock protein Dnak was also increased after sub-lethal PDI stress [67].
In the same study, heat pre-treatment (a positive up regulator) prior to PDI for E. coli and
Enterococcus faecalis conferred stress tolerance, increasing E. coli cell viability by 2log10
and E. faecalis cell viability by 4log10. PDI with RB in the yeast S. cerevisae demonstrated a
role for Yap1p and Skn7p in defense against singlet oxygen insult [68].

Efflux Pump Inhibitor-Photosensitizer Hybrids and their Potential use in
PDT

The interaction between efflux systems and some but not all the molecular classes of PS was
documented. The potentiation of PS mediated PDI by EPIs is emphatically demonstrated at
least for Gram-positive bacteria and fungi. As MES also play a role in invasion, adherence
and colonization by microbial cells, a PDT-EPI based combination approach may in some
cases reduce bacterial virulence in vivo. A major obstacle, however, may arise from the fact
that efflux systems manipulation could cause unexpected toxicities due to the multitude of
physiological roles MES may play in human cells. In this context, efforts directed at
specifically inhibiting efflux pumps operating only in prokaryotes may offer a greater
chance of therapeutic success. Interestingly, it has been shown that target bacteria respond to
clinical challenge with EPIs by developing resistance mutations that decrease the efficacy of
the EPI [69, 70]. Recently it was demonstrated that reserpine can select multidrug resistant
Strepotococcus pneumoniae strains [71].

The threat of cross-resistance to various different antibiotics elevates the complexity of EPI
discovery ventures. Addressing this requires that efflux substrates and inhibitors be clearly
differentiated, particularly with respect to PS for use in antimicrobial PDT. It also demands
rational approaches that simultaneously address both the photochemical mechanistic aspects
of PDT and efflux phenotypic variations. A reported strategy of “dual antimicrobial action”
targeting NorA in Gram-positives may serve as a useful precedent for addressing these
issues. A hybrid compound (SS14) created by fusing the plant antimicrobial berberine to the
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synthetic NorA EPI INF55 was found to be an effective antimicrobial against S. aureus,
including mutant strains that over express NorA [72]. MIC’s for SS14 against S. aureus
were 2–16 times lower than berberine and combinations of berberine with INF55. The
hybrid rapidly accumulated in bacterial cells and showed higher efficacy than vancomycin
in a Caenorhabditis elegans model of enterococcal infection [72]. Analogs of SS14 exhibited
similar antimicrobial activities [73, 74] suggesting that significant structural changes can be
made to these hybrids without adversely affecting their ability to block MES or their
antibacterial activity. Such hybrids are predicted to have an advantage over separate
compound administration in terms of synchronous or near synchronous delivery of both
agents to the appropriate bacterial target sites.

The physicochemical similarites between berberine and the phenothiazinium
photosensitizers MB and TBO (i.e. both amphipatic cations) and evidence that they are
overlapping substrates for various efflux pumps (e.g. NorA [47,59]) suggested that an
analogous strategy might be successfully applied in antimicrobial PDT. For example,
hybrids which link EPIs to phenothiaziniums may decrease efflux of the PS leading to
increased microbial cell killing upon illumination Hybrids of this type are currently under
investigation in our laboratories (Figure 3).

Biofilm Inactivation
Chronic infections are most often associated with the formation of biofilms, [75, 76]. The
dense protective environment of biofilms along with the significant differences in properties
compared to free-floating or planktonic bacteria of the same species have been implicated to
confer biofilm bacteria with as much as 1000-fold higher resistance to detergents, antiseptics
and antibiotics [77]. The eradication of microbial biofilms remains a key challenge in the
antimicrobial discovery arena and new discoveries are required to address a number of
clinical conditions. PDT studies have been explored to some degree as an alternative
treatment for several recalcitrant infections. For example, PDT has been used to target dental
plaques, [78] periodontitis, [79] gingivitis, endodontics, [80] osteomyelitis [81], infections in
cystic fibrosis, [82] infections of permanent indwelling devices such as joint prostheses and
heart valves and implants [83] and oral candidiasis [84]. Peri-implantitis involves the
biofilm colonization, of implant surfaces and may lead to patient infection and damage to
the implant surface. Dörtbudak et al. used TBO PDT to successfully decontaminate implants
with bacterial colonization in 15 patients, leading to the reduction in bacterial counts by
approximately 2 log10,[85].

It is important to compare PDI with conventional antibiotics both in terms of mechanism
and efficacy when targeting biofilms. Biofilms generally do not restrict penetration of
antibiotics [86], but they do form a barrier to the larger components of the immune system
[87–89]. There is a wealth of literature describing PDT-based anti-biofilm strategies which
focuses mostly on the use of different PSs against a variety of microbial species [90]. In
contrast there are only a limited number of studies exploring the effects of PDT on
phenotypic biofilm elements (e.g. adhesins). Moreover, there is no consensus as to which is
the most reliable model for evaluating PDT efficacy against biofilms. The majority of
published reports use methodologies where biofilms are grown in/on plastic or silicon
microtiter plates and surfaces. These bioassays have been repetitively criticized for lack of
robustness and occasionally yield inconsistent results. A very recent report [91] discussed
the impact of PDT on the viability of Streptococcus mutans cells in an artificial biofilm
model that used sterile chambered cover glasses, to form a salivary pellicle layer. PDT using
phenothiazine chloride and red laser gave a significant reduction of biofilm bacterial
viability as measured by Live-Dead assay. PDT studies with clinically relevant multi-species
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biofilms are virtually non-existent with the notable exception being studies of dental plaque-
derived biofilms and endodontic polymicrobial infections in vitro [92, 93].

By using isogenic pairs of wild-type and transposon mutants of Staphylococcus epidermidis
and S. aureus deficient in capsular polysaccharide and slime production it has been shown
that the cationic PSs pL-c(e6) and MB can overcome the protective effect of extracellular
slime and stationary bacterial growth to PDI [94]. TBO has a substantial impact on PDI of
staphylococcal biofilms which it decreases cell numbers (5log10 after irradiation with red
light), disrupts biofilm architecture and damages bacterial cell membranes [95]. PDI with
merocyanine 540 has a comparable effect on the viability of biofilms from Gram-positive
pathogens when 400 J/cm2 green light is used [96, 97]. Tri-meso (N-methyl-pyridyl), meso
(N-tetradecyl-pyridyl) porphine (C14) has a significantly greater PDI effect in eradicating S.
epidermidis biofilms compared with the parent tetra-substituted N-methyl-pyridyl-porphine
(C1) [98]. TBO mediated PDI affects Streptococcus mutans biofilms in different stages of
maturity (4 log10 with red light for mature biofilms) [99] as well as mature S. sobrinus and
S. sanguinis biofilms [100]. Erythrosine was found to inactivate S, mutans biofilms better
than MB and protoporphyrin with the effect enhanced to 2 log10 by light fractionation [101,
102]. Erythrosine is also more potent than MB against Aggregatibacter
actinomycetemcomitans biofilms as are the anionic PSs RB and TBO [103, 104]. PDT with
5-ALA and TMP at different concentrations can inactivate P. aeruginosa biofilms [105,
106].

Although the PDT results in many systems seem promising they don’t address the central
problem. The paradox of chronic biofilm infections is that they are often unresponsive to
antimicrobial therapy even when caused by a pathogen that is not resistant to the
antimicrobial agent. The simple explanation is that the agent fails to effectively reach at least
some cells in vivo, resulting in a relapsing infection [107]. As light delivery is location
specific and dependent this has been implied in a few PDT explorations. For example
Helicobacter pylori, a Gram-negative spiral bacterium that forms biofilms on the gastric
mucosae, naturally accumulates porphyrins, which may then act as endogenous PSs [108].
In H. pylori infected patients the application of 405 nm endoscopic light alone is capable of
reducing CFU counts by about 90% [109].

The bulk of cells in biofilms are actually highly susceptible to killing by antimicrobials and
it is indeed only a small fraction of cells known as persisters that remain alive following
antimicrobial treatments [110]. Persisters represent a subpopulation of cells that
spontaneously go into a dormant, non-dividing state. When a population is treated with a
bactericidal antibiotic, regular cells die but the persisters survive. According to the persister
cell model of chronic relapsing infections, antimicrobial agents working in concert with the
immune system are able to eliminate all regular and persister cells from the bloodstream,
along with regular cells from the biofilm [111]. The only remaining live cells are then
persisters present in biofilms and it is these persisters that repopulate causing the infection to
relapse once the level of the bactericidal agent drops. This model seems to be more realistic
and is partially supported by PDT explorations. For example, optimal light dosimetry was
required to simultaneously maximize bacterial killing and allowed neutrophil accumulation
into the infected site when for Photofrin-mediated PDT with red light was tested in a murine
MRSA bacterial arthritis model [112]. Additionally, PDT employed a three
dimethylpyrrolidinium functionalized C60-fullerene in a mouse wound P. aeruginosa
biofilm infection did not enhance survival but when the PDT was combined with a
suboptimal dose of tobramycin a synergistic therapeutic effect was observed, with 60% of
mice surviving compared to 20% with tobramycin alone [113]. PDT with the cationic
porphyrin, tetra-substituted N-methyl-pyridyl-porphine (TMP) resulted in almost complete
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eradication of staphylococcal biofilms when they were exposed to vancomycin or subjected
to the phagocytic action of whole blood [114, 115].

PDI inter-relationship with the “microbial phenotype”
The broad-spectrum activity and what appears to be non-specific action of antimicrobial PDI
should be explored deeper in alignment with the complexity of the microbial phenotype.
There is no documented evidence whether or not PDI can disrupt sophisticated microbial
defensive lines. We have to take into account that PDI is able to eradicate microorganisms
without producing resistant isolates, both in planktonic and biofilm forms. This is in concert
with the potential of localized photooxidative stress to inactivate virulence factors in the
absence of any documented conventional resistance mechanism. PDI with the
phenothiazinium MB inhibits in a dose -dependent manner the biological activities of the
proteinaceous virulence factors V8 protease, alpha-haemolysin and sphingomyelinase in S.
aureus TBO has a similar effect in the two key bacterial virulence factors in both E. coli and
P. aeruginosa, lipopolysaccharide (LPS) and proteases [116, 117]. A single antimicrobial
PDT treatment in vitro inactivated protease activity and resulted in a 4-log10 reduction in the
viability of P. gingivalis. Dose and time-of-exposure experiments revealed that protease
inactivation occurred at lower concentrations of PS and less time of light exposure. Also,
antimicrobial PDT treatment has been shown to functionally inactivate IL-1 beta and TNF-
alpha [118].

A series of pathways, components and phenotypes that may serve as potential alternative
and attractive targets for antimicrobial drug discovery are under investigation. One
alternative approach is targeting the bacterial communication system (quorum sensing, QS)
with emphasis the signal molecules that bacteria produce and detect and thereby coordinate
their behavior in a cell-density dependent manner (quorum sensing inhibitors, QSI [119].
There is no evidence for the effect of PDI to QS although the action of PDT with a QSI
seems like an attractive has been a plausible combinatorial alternative. In some bacteria QS
and RND efflux pump expression are linked. For example, the extracellular autoinducer
concentration was significantly reduced when BpeAB-OprM in Burkholderia pseudomallei
and MexAB-OprM in P. aeruginosa were knocked out [120] suggesting that inhibition of
these efflux pumps could be useful therapeutically. Recent studies have dissected
intercellular interaction at the molecular level through analysis of both synthetic and natural
microbial populations. These approaches have revealed novel molecular mechanisms that
stabilize cooperation among cells and define new roles of population structure for the
evolution of cooperative interactions. This knowledge of interaction parameters is changing
the view of microbial processes, with emphasis on pathogenesis and antibiotic resistance,
and suggests new ways to fight infection by exploiting social interaction [121].

Conclusion
PDI is not a conventional drug discovery platform as it is usually understood, since three
elements (PS, visible light and oxygen) are essential for successful deployment. Many of the
elements of the bacterial phenotype may come to play an important role as PDI evolves. A
set of technical challenges will have to be met using sophisticated tools and approaches to
address complex biological questions regarding resistance mechanisms, biofilm inactivation
and persister cell formation. There are no validated examples of biofilm photoinactivation or
PDT being used in reliable polymicrobial infection models. Minimal information exists for
the design of host-pathogen studies exploring the ability of PDT to interfere with virulence
determinants. One example is a report of a host-parasite model to assess intracellular
targeting specificity of novel phthalocyanines against Leishmania parasites infecting
macrophages and dendritic cells [122].
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Figure 1.
Schematic illustration of photodynamic acion. The PS initially absorbs a photon that excites
it to the first excited singlet state and this can relax to the more long lived triplet state. This
triplet PS can interact with molecular oxygen in two pathways, type I and type II, leading to
the formation of reactive oxygen species (ROS) and singlet oxygen respectively. In the
absence of oxygen the PS may interact with a substrate (R) in a pathway known as Type III.
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Figure 2.
Left: superimposed Van der Waals (VdW) models of the lowest energy docked structures of
berberine [75] TBO (yellow) and MB (magenta) in apex of the inverted "V" depicted by the
transmembrane α-helices 4 and 6 as they separate from top to bottom (in this orientation the
extracellular side at the top; cartoon representation of the protein colored according to the
sequence, from red to blue). Right: MB showed a clear specificity for the site overlapping
with berberine, the calculated binding energies being practically indistinguishable. The
hydrophobic pocket of negative electrostatic potential is rich in hydrophobic and aromatic
residues, mainly form helices 4, 5 and 6.
The structure of the dyes were optimized with the method for fundamental vibrational
frequencies B3LYP/6-311+G(d,p level of theory using the gaussian03 [129] package in a
model polar solvent (PCM acetonitrile) [130]. The structures were docked onto the whole
chamber formed by the twelve Transmembrane Domains (TMs) of the protein at the height
to which they span the cell membrane in order to locate their binding sites, using a
Lamarckian genetic algorithm implemented in Autodock 4.2.3. Afterwards, the whole
protocol was applied in a smaller region comprising their main binding site. Their highly
delocalized charge distribution was modeled from the QM results instead of the default
program charges [131].
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Figure 3.
Extension of the hybrid antimicrobial approach [72, 74] to compounds for use in
antimicrobial PDT

Vera et al. Page 22

Photochem Photobiol. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Vera et al. Page 23

Table 1

Combinatorial antimicrobials based on PDT and representatives of the dual antimicrobial platform

PDT-
combinations

Synergist Microorganism(s) Target(s) Reference

Polycationic conjugates of chlorin visible light S. aureus, E. coli, P.
aeruginosa, C. albicans

non specific reactive
oxygen species (ROS)

[123]

Methylene Blue (MB), Tolouidine Blue
(TBO)

visible light, EPIs S. aureus, P. aeruginosa, C.
albicans

ROS [49, 59]

TBO visible light, EPIs E. faecalis biofilms ROS [124]

functionalized C60-fullerene-tombramycin visible light P. aeruginosa biofilms ROS [113]

     Dual Action Antimicrobials

Chitosan-silver nanoparticle - P aeruginosa, P. mirabilis, A.
baumannii

membrane [125]

Berberine-Indole Derivatives - S. aureus, E. faecalis, E.
faecium, B. anthracis, B.

cereus

DNA and membrane [72, 126, 127]

Oxazolidinone-Quinolone - S. aureus, E. faecalis, E.
faecium E. coli, H. pylori

DNA gyrase and
topoisomerase IV

[128]
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Table 2

Summary of molecular docking results for MB, TBO compared to berberine.

Compound Binding Energy (kcal/mol)

Berberine −5.38

MB −5.29

TBO −4.40
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