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Abstract
Misfolded proteins are continuously produced in the cell and present an escalating detriment to
cellular physiology if not managed effectively. As such, all organisms have evolved mechanisms
to address misfolded proteins. One primary way eukaryotic cells handle the complication of
misfolded proteins is by destroying them through the ubiquitin-proteasome system. To do this,
eukaryotes possess specialized ubiquitin-protein ligases that have the capacity to recognize
misfolded proteins over normally folded proteins. The strategies used by these Protein Quality
Control (PQC) ligases to target the wide variety of misfolded proteins in the cell will likely be
different than those used by ubiquitin-protein ligases that function in regulated degradation to
target normally folded proteins. In this review, we highlight what is known about how misfolded
proteins are recognized by PQC ubiquitin-protein ligases.

1. Introduction
To function properly, cells rely on proteins successfully accomplishing specific actions.
Fundamental to protein action is the acquisition of a protein’s 3-dimensional structure, and
thus the proper folding of a cell’s protein cohort is critical for cells. Due to the central
importance of protein folding, cells have evolved a collection of protein quality control
(PQC) mechanisms that maintain overall cellular protein homeostasis, or proteostasis [1].
PQC systems can be divided into those that function as either primary or secondary PQC
defenses. The cell’s primary PQC defenses are directly involved in repairing or removing
misfolded proteins. Repair systems are chiefly composed of protein chaperones, whereas
removal systems are principally involved in proteolytic destruction either by the proteasome
or via autophagy. In many cases, the PQC repair and removal machinery function together
in a triage hierarchy that has the potential to determine if a misfolded protein is salvageable
and then direct the PQC action towards either repair or removal [2]. In contrast, the cell’s
secondary PQC defenses are adaptive transcriptional responses that balance the primary
PQC capacities with the extent of the cellular burden caused by misfolded proteins. They
can also reduce global translation as a way to attenuate the production of misfolded proteins.
In eukaryotes, PQC systems typically mitigate protein misfolding in a compartment-specific
way, with each subcellular compartment housing a distinct set of PQC repair, removal, and
adaptive capabilities.
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There is now a considerable wealth of information on the different types of cellular PQC,
which we cannot cover in its entirety here. We refer the readers to excellent reviews for
chaperone-mediated folding and repair and for PQC adaptive stress responses [3–7]. Herein,
we will discuss the ubiquitin-dependent PQC removal systems that operate in each
eukaryotic cellular compartment (Figure 1).

1.1 Ubiquitin-mediated proteasomal degradation: regulation versus quality control
Protein degradation by the ubiquitin-proteasome system has two primary purposes in the
cell: 1) the temporal or spatial regulation of normal proteins, and 2) the removal of
misfolded proteins. For each type of degradation, a specific subset of proteins must first be
uniquely distinguished from the global pool of cellular proteins and subsequently
ubiquitylated. Ubiquitylation is canonically achieved via an enzymatic cascade wherein a
ubiquitin-protein ligase (E3) partners with a specific ubiquitin-conjugating enzyme (E2) that
has been charged with ubiquitin by a ubiquitin-activating enzyme (E1) [8]. The ubiquitin-
protein ligase typically confers substrate specificity within each ubiquitylation cascade,
either by possessing intrinsic substrate-binding domains or by recruiting auxiliary proteins
that impart substrate specificity.

One critical aspect of ubiquitylation is the ability of a ubiquitin-protein ligase to distinguish
its substrates from other proteins. In regulated degradation of normal proteins, ubiquitin-
protein ligases typically recognize degrons, which are small specific linear amino acid
sequences located within substrates [9]. The degron recognized by the ligase often varies
based on the auxiliary proteins that are bound to the ligase. For example, cullin RING
ubiquitin-protein ligases (CRLs) are able to recognize many different types of degrons
through the directed binding of distinct adapter F-box proteins [10]. The interaction of a
particular ubiquitin-protein ligase with different substrate-binding auxiliary proteins allows
it to target a larger number of protein substrates. Importantly, these ubiquitin-protein ligases
are still only able to target a limited number of substrates due to this sequence specificity
requirement.

In contrast to the regulated degradation of normal proteins, substrate recognition in PQC
degradation is unlikely to be achieved via the recognition of linear sequence-specific
degrons in misfolded substrates for two key reasons. First, any protein has the capacity to
misfold and most proteins in each cellular compartment share little, if any sequence
homology. Thus, two different misfolded proteins will not likely possess the same sequence-
specific degron. Second, a key purpose of PQC degradation is to destroy structurally
abnormal proteins that share the same linear sequence with their normal counterparts. Thus,
the features of misfolding recognized by PQC ubiquitin-protein ligases must transcend
primary structure. One prevalent hypothesis is that PQC ubiquitin-protein ligases distinguish
abnormal proteins by recognizing the exposure of hydrophobic residues typically buried in
the core of a normal protein. In the subsequent sections, we will introduce the PQC
ubiquitin-protein ligases in each cellular compartment, highlighting what is known about
substrate recognition mechanisms and the features of structural abnormality recognized
within the substrates.

2. Endoplasmic reticulum
The unique properties of the endoplasmic reticulum (ER) present numerous challenges for
PQC ubiquitin-protein ligases in substrate recognition. First, de novo protein folding occurs
in the ER and ER PQC ubiquitin-protein ligases must be capable of differentiating between
nascent polypeptides that are in the process of folding and proteins that have become
misfolded. In addition, the ER is a membrane-bound organelle where structural lesions may
be present in transmembrane segments or in regions located on the luminal or cytoplasmic
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side of the membrane. Thus, ER PQC ubiquitin-protein ligases must have location-specific
recognition mechanisms that can sense where the lesions are relative to the ER membrane.
Another complication in ER PQC substrate recognition is the presence of disulfide bonds
and glycosylation moieties in resident proteins. These posttranslational modifications must
be queried for defects by PQC machinery. Lastly, ubiquitin and proteasomes are not present
in the ER lumen, so ubiquitylation and proteasome degradation can occur only on the
cytoplasmic side of the ER membrane. Accordingly, the ER PQC ubiquitin-protein ligases
must have a means to recognize substrates on the luminal side of the ER membrane while
directing substrate ubiquitylation on the cytoplasmic side of the ER membrane.

2.1 The Hrd1 pathway
The first ubiquitin-protein ligase found to play a role in ER PQC degradation is the yeast
protein Hrd1/Der3 [11, 12]. Hrd1 is an integral ER-membrane protein containing a
transmembrane domain that traverses the ER membrane six times and a cytoplasmic RING
domain that mediates the transfer of ubiquitin to its substrates [12–14]. Several mammalian
homologs of Hrd1 have been identified – gp78, hHrd1 (synovilin), and Rfp2 [15–19], with
their roles in ER PQC degradation explored to varying degrees. Here, we will focus on yeast
Hrd1 as it has been the best characterized.

All Hrd1 substrates require a core group of proteins to mediate substrate ubiquitylation. In
addition to Hrd1, the core complex contains Hrd1’s cognate ubiquitin-conjugating enzyme
Ubc7 [11, 20–22], which is localized to the Hrd1 core complex by the protein Cue1 [23].
Cue1 possesses a single transmembrane span and a cytoplasmic domain that is important for
its interaction with Ubc7. There is no Cue1 mammalian homolog, but gp78 contains a
cytoplasmic CUE domain that is similar to Cue1 [24]. Also in the core Hrd1 complex is
Hrd3 (SEL1L in mammals [25, 26]), which is predominantly luminal with a single
transmembrane span and a small cytoplasmic region [12, 13, 27]. Hrd3 directly binds
misfolded proteins in the ER lumen [28]. Additionally, Hrd3 regulates Hrd1
autoubiquitylation and stability [13]. Hrd1 autoubiquitylation, as well as Hrd1
oligomerization, also depends on the protein Usa1 (Herp in mammals [29, 30]), which
contains two transmembrane spans and interacts directly with Hrd1 [31–34]. For many Hrd1
substrates, this core complex of Hrd1, Ubc7, Cue1, Hrd3, and Usa1 is sufficient for substrate
ubiquitylation [33, 34].

One class of PQC substrates degraded by the core Hrd1 complex comprises proteins with
lesions in their ER-membrane spanning segments and are thus referred to as ERAD-M
substrates (ER-Associated Degradation – Membrane) [34]. ERAD-M substrate recognition
appears to be performed directly by Hrd1 [35]. It has been proposed that the transmembrane
domain of Hrd1 recognizes improperly exposed hydrophilic residues in the hydrophobic
environment of the ER membrane [35]. Mutational analysis of Hrd1’s transmembrane
domain demonstrated that the degradation of Hrd1’s ERAD-M substrates could be disrupted
without affecting degradation of other Hrd1 substrates [35], suggesting separate substrate
recognition mechanisms.

Other Hrd1 substrates contain lesions in their ER luminal domains (ERAD-L substrates
[34]), and their degradation typically requires the core Hrd1 complex and additional
ancillary factors. One such factor is Der1 [36], a transmembrane protein localized to the
Hrd1 complex via Usa1 [32, 34]. Der1 function in substrate recognition is unclear, though
its mammalian homologue Derlin-1 is thought to be involved in postubiquitylation processes
that deliver ER luminal proteins to the cytoplasm [37–39]. Another cofactor required in the
degradation of ERAD-L substrates is the Hsp70 chaperone, Kar2 (also known as BiP) [40].
Kar2 likely couples to the core Hrd1 complex via interaction with a tetratricopeptide repeat
(TPR) domain in Hrd3. Because Kar2 is an Hsp70 chaperone, its involvement in substrate

Fredrickson and Gardner Page 3

Semin Cell Dev Biol. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



degradation suggests that initial recognition of a misfolded protein could be mediated by the
chaperone, which typically involves binding regions of hydrophobicity surrounded by basic
residues [41]. However, exposed hydrophobicity in ERAD-L substrates has not yet been
demonstrated as the abnormal structural feature recognized by the Hrd1 complex.

The decision to fold or degrade ER proteins can depend on posttranslational modifications.
For instance, specific N-glycan moieties on ERAD-L substrates lead to degradation after
their recognition by additional Hrd1 complex factors, such as the lectin Yos9 [42–45] (OS-9
in mammals [46]). Yos9 is coupled to the Hrd1 complex via interactions with Hrd3 and
Kar2 [46–48]. N-glycan interaction with Yos9 depends on Yos9’s mannose-6-phosphate
receptor function and is required for degradation of glycolsylated ERAD-L substrates [42,
49, 50]. The particular location of the glycan modification within the misfolded protein,
including the peptide sequences surrounding the glycosylation site, is important for efficient
recognition [51–53]. Interestingly, Yos9 is involved in the degradation of certain non-
glycosylated substrates [54, 55], suggesting it might have additional substrate recognition
roles.

2.2 The Doa10 pathway
Another PQC ubiquitin-protein ligase in the ER is Doa10, which was initially identified as
the ubiquitin-protein ligase involved in degradation of the MATα2 transcription factor [56].
Doa10 has been subsequently shown to target misfolded proteins in the ER [57]. Doa10
contains a transmembrane domain that traverses the ER membrane fourteen times and a
cytoplasmic RING domain [58]. In mammalian cells, TEB4 is described as a homolog of
Doa10 due to its similar membrane topology [58]. TEB4 has recently been shown to be
involved in the degradation of the ER-resident type 2 deiodinase [59].

Doa10, like Hrd1, functions as part of a larger protein complex in substrate recognition and
ubiquitylation. There are four proteins required for the Doa10 complex to ubiquitylate
substrates: Doa10, the ubiquitin-conjugating enzymes Ubc6 and Ubc7, and Cue1 [60].
Select substrates also require the ubiquitin chain elongator Ufd2 for degradation [61]. The
role of Ufd2 is likely postubiquitylation and not in substrate recognition. Also required for
degradation of certain Doa10 substrates are Hsp70 (of the Ssa class) and Hsp40 chaperones
[57].

The Doa10 complex primarily functions in the degradation of ER PQC substrates with
lesions on the cytoplasmic side of the ER [56, 57] (ERAD-C substrates [34]). Although it’s
not clear how the Doa10 complex recognizes its substrates, the requirement of Hsp70 and
Hsp40 chaperones suggests that substrate recognition could be mediated by the chaperones
binding to exposed hydrophobicity. Some evidence suggests the Doa10 pathway likely
targets hydrophobicity in its substrates. This was revealed from mutational studies of
Doa10’s substrate MATα2, which possesses an amphipathic helix in its N-terminus that is
both necessary and sufficient for Doa10-dependent degradation [62]. The hydrophobic
portion of the amphipathic helix is the critical determinant for Doa10-dependent degradation
of MATα2 [62]. Furthermore, studies examining Doa10-dependent degradation of small
peptides fused to a reporter protein also revealed a hydrophobic requirement for Doa10-
targeting [63–65]. Further work will be required to determine if the Doa10 complex
recognizes hydrophobicity in ERAD-C substrates.

2.3 Late secretory PQC degradation pathways
Golgi-localized ubiquitin-protein ligases have also been implicated as having potential roles
in PQC degradation. The yeast RING-domain ubiquitin-protein ligase Tul1 was found to be
involved in selectively sorting transmembrane proteins with exposed polar residues in their
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transmembrane spans into multivesicular bodies for delivery to the vacuole for degradation
[66]. In addition to Tul1, two studies found that the yeast transmembrane protein Bsd2
recruits the HECT-domain ubiquitin-protein ligase Rsp5 to target membrane proteins with
exposed polar residues in their transmembrane spans for delivery to the vacuole [67, 68]. It
is important to note that Tul1 and Bsd2-Rsp5 also assist in the correct trafficking of normal
proteins to the vacuole [66–68]. Thus, it is unclear if these ubiquitin-protein ligases serve a
PQC function, or if the mutant proteins identified mimic physiological substrates.

3. Cytoplasm
The cytoplasmic environment presents challenges to PQC ubiquitin-protein ligases that are
both similar to and distinct from the ER. Similar to the ER, de novo protein folding occurs in
the cytoplasm and cytoplasmic PQC ubiquitin-protein ligases must have the ability to
differentiate between misfolded proteins and nascent unfolded polypeptides in the process of
folding. Unlike the ER, cytoplasmic PQC does not have to contend with multiple classes of
substrate lesions that present themselves differently in relation to a membrane. It is possible,
however, that there might be specific distinct regions within the cytoplasm in which
misfolded proteins behave differently [69], and these regions could require different
ubiquitin-protein ligases.

3.1 The CHIP pathway
The mammalian protein CHIP is involved in cytoplasmic PQC degradation. CHIP contains a
U-box domain necessary for its ubiquitin-protein ligase activity via interaction with the
ubiquitin-conjugating enzyme UbcH5 [70–72], and a tetratricopeptide repeat (TPR) domain
that is essential for CHIP’s interactions with Hsp70 and Hsp90 chaperones [71, 72].
Through direct interaction with chaperones, CHIP ubiquitylates client proteins that are
bound by the chaperones [73]. While CHIP interacts with both Hsp70 and Hsp90
chaperones, data suggests that CHIP has a preference for ubiquitylating Hsp70-bound
proteins [74]. Although substrate recognition by CHIP is heavily dependent on chaperone
recognition, CHIP itself also appears capable of binding misfolded proteins directly [75].

CHIP’s interactions with chaperones place it at a central decision-making hub that balances
productive folding and PQC degradation of a chaperone-bound client protein. However, an
open question is how CHIP determines if a chaperone-bound protein should be ubiquitylated
and degraded or allowed to continue with productive folding. One possibility is that Hsp70
and Hsp90 accessory proteins mediate this decision. For example, CHIP ubiquitylation of
Hsp70 client proteins is influenced by the BAG class of Hsp70 cochaperones, which contain
a BCL2-associated athanogene (BAG) domain that mediates the interaction with Hsp70
[76]. BAG cochaperones vary in their CHIP-related function from negatively regulating
CHIP-dependent ubiquitylation of Hsp70 client proteins (BAG-2 and BAG-5) [77, 78], to
facilitating the interaction of CHIP-chaperone complexes with the proteasome (BAG-1)
[79], or in helping recruit the protein p62 to the CHIP-chaperone complex for substrate
delivery to the lysosome (BAG-3) [80]. The Hsp70 cochaperone HspBP1 is also known to
negatively regulate CHIP’s substrate-ubiquitylating activity [81].

CHIP’s interaction with chaperones suggests that the feature of structural abnormality
recognized by CHIP is likely the same feature that the Hsp70 or Hsp90 chaperones
recognize. CHIP has also been shown to have a chaperone function itself and is capable of
binding thermally denatured proteins in an Hsp70-independent manner to prevent their
aggregation [75]. However, the structurally abnormal feature that CHIP directly binds in its
thermally denatured substrates is not known.
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3.2 The Ubr1 pathway
In S. cerevisiae there is no identified homolog to CHIP. Rather, the RING-domain ubiquitin-
protein ligase Ubr1 appears to mediate cytoplasmic PQC degradation [82–85]. Originally,
Ubr1 was characterized for its role in N-end rule degradation, in which certain residues at
the N-terminus of proteins serve as degrons [86]. Two specific regions in Ubr1 were
identified that direct the ubiquitylation of substrates containing N-terminal residues of either
type 1 (Arg, Lys, or His) or type 2 (Leu, Ile, Phe, Trp, or Tyr) [86]. It was recently found
that Ubr1 also mediates the PQC degradation of misfolded cytoplasmic proteins [82–85],
and this is independent of its role in the N-end rule pathway [83, 84]. Additionally, yeast
Ubr2 has been shown to mediate cytoplasmic PQC degradation, [83] as well as human Ubr1
[87].

Ubr1-mediated PQC degradation requires the use of the ubiquitin-conjugating enzymes
Rad6 and Ubc4 [83, 84, 88], as well as Hsp70 and Hsp110 chaperones [82–84, 88]. Hsp70
functions to keep substrates soluble [88], but it is not yet clear if these chaperones also direct
substrates to Ubr1 similar to CHIP or if Ubr1 directly binds misfolded proteins. In support
of direct interaction with substrates, Ubr1 is able to ubiquitylate a thermally denatured
substrate in vitro without the aid of a chaperone [83]. Addition of Hsp70 increases the Ubr1-
dependent ubiquitylation of the denatured substrate and robust ubiquitylation only occurs
when Ubr1 is added during thermal denaturation [83]. Additional work will be necessary to
clarify the role of chaperones in Ubr1-mediated PQC ubiquitylation.

3.3 The cytoplasmic Doa10 pathway
In addition to its role in ER PQC degradation, Doa10 is also involved in the degradation of
cytoplasmic proteins that are misfolded [63] or contain an acetylated N-terminus [89].
Doa10-dependent degradation of cytoplasmic misfolded proteins requires cytoplasmic
Hsp70 and Hsp40 chaperones [63]. It is not known if Doa10 recognizes the same features in
cytoplasmic misfolded proteins as it does in ER misfolded proteins.

3.4 The Hul5 pathway
Recently, the HECT-domain ubiquitin-protein ligase Hul5 was shown to function in the
PQC degradation of misfolded cytoplasmic proteins generated after heat shock [90]. Hul5
was previously found to be a component of the 19S regulatory subunit of the proteasome
where it functions to extend polyubiquitin chains on substrates [91], likely to facilitate their
processive degradation [91, 92]. It is not clear if Hul5’s function in cytoplasmic PQC
degradation is to extend polyubiquitin chains initially added by other cytoplasmic PQC
ubiquitin-protein ligases, or if it functions independently as a primary PQC ubiquitin-protein
ligase that directly targets misfolded proteins itself. Because of this, how Hul5 targets its
substrates is unknown.

3.5 The Rkr1/Ltn1 pathway
Translation of nonstop mRNAs is one way in which abnormal proteins are generated.
Nonstop mRNAs can be created through DNA mutation or transcriptional mistakes that alter
the stop codon, or by premature polyadenylation due to errors in processing [93]. Nonstop
mRNAs can result in an aberrant sequence appended to a normal protein by read-through of
the poly(A) tail, which would typically add a poly-Lys residue tract. Polybasic tracts have
been shown to cause translational pausing and arrest [94]. RKR1/LTN1/YMR247C was
initially identified as a gene that suppressed the phenotype of certain translated nonstop
mRNAs [95]. Subsequently, it was demonstrated that Rkr1/Ltn1 is a ubiquitin-protein ligase
[96, 97], and is involved in the degradation of abnormal proteins with a polybasic tract of
Lys resulting from nonstop translation [97]. Furthermore, it was found that Rkr1/Ltn1
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associates with ribosomes and is involved in the degradation of newly synthesized proteins
that have stalled on the ribosome by virtue of a nonstop transcript [97]. However, It is not
yet clear what Rkr1/Ltn1 recognizes: the polybasic tract of a target substrate in the context
of a stalled ribosome or some feature of a stalled ribosome itself.

4. Nucleus
Unlike the cytoplasm, protein biosynthesis does not occur in the nucleus. Instead, nuclear
proteins are typically translated and folded in the cytoplasm and imported into the nucleus.
Thus, PQC degradation systems designed to detect errors in nascent protein folding will
likely be absent in the nucleus. The nucleus does have different subdomains such as
chromatin, the nucleoplasm, the nuclear membrane, and the nucleolus. Thus, different PQC
ubiquitin-protein ligases might be required to manage misfolded proteins that arise in each
of these different subnuclear regions.

4.1 The San1 pathway
In S. cerevisiae, the nuclear RING ubiquitin-protein ligase San1 mediates the PQC
degradation of mutant or misfolded nuclear proteins [98–102]. San1 does not target normal
versions of the same proteins [99–102], establishing a specific role for San1 in nuclear PQC
degradation. While no mammalian homologs of San1 have yet been identified, a S. pombe
homolog was recently identified and its function in PQC degradation established [103].

San1-mediated degradation uses the ubiquitin-conjugating enzymes Cdc34 and Ubc1 [99].
Substrate recognition involves San1 directly binding its substrates through N- and C-
terminal regions that possess multiple substrate-binding sites embedded within highly
disordered sequences [104]. It has been proposed that San1’s unique topology of high
intrinsic disorder interspersed with substrate-binding modules allows San1 to use
conformational plasticity to accommodate the binding of San1 to the diverse array of
misfolded substrate conformations that it is likely to encounter [104].

The abnormal structural feature that San1 recognizes appears to be exposed hydrophobic
residues in substrates. Through the use of a two-hybrid assay, it was found that San1
mediates the degradation of reporter proteins fused to hydrophobic peptides [104, 105].
Further exploration revealed that as few as five contiguous hydrophobic residues in the
peptides defined the minimal recognition motif for San1-mediated degradation [105]. San1
can also target exposed hydrophobicity in larger misfolded proteins [105].

Surprisingly, it was recently found that some presumably cytoplasmic misfolded proteins
become nuclear-localized and are degraded in a San1-dependent manner [82, 84]. It was
found that cytoplasmic Hsp70 and Hsp110 chaperones are required for the nuclear
localization of these substrates [82, 84], suggesting that chaperones might be involved in
misfolded protein trafficking to the nucleus. This could be through a direct action of the
chaperones in the nuclear import process, or an indirect involvement of the chaperones in
maintaining the solubility of the misfolded proteins prior to nuclear import. Due to their
potential role in the nuclear trafficking of substrates and the fact that San1 can directly bind
its substrates, the role of these chaperones in substrate recognition in the San1 pathway is
not clear.

4.2 The nuclear Doa10 pathway
In addition to its PQC roles in the ER and cytoplasm, Doa10 is also involved in nuclear PQC
degradation. The ER membrane and nuclear envelope are contiguous, and a portion of
Doa10 localizes to the inner nuclear envelope [106]. Doa10’s nuclear localization is required
for the Doa10-dependent regulated degradation of the MATα2 transcription factor [106].

Fredrickson and Gardner Page 7

Semin Cell Dev Biol. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Doa10 also selectively recognizes a temperature-sensitive mutant of the nuclear protein
Ndc10 [60]. Mutant Ndc10 is targeted for degradation by exposure of the hydrophobic side
of an amphipathic helix and a hydrophobic C-terminal tail [107], indicating that Doa10
recognizes exposed hydrophobicity in misfolded nuclear proteins.

4.3 The Slx5 pathway
Another potential nuclear PQC ubiquitin-protein ligase is the yeast RING-domain protein
Slx5, which was previously characterized for its role in ubiquitylating sumoylated proteins
[108, 109]. The Slx5 pathway is required for the ubiquitylation and degradation of the
SUMOylated transcription factor Mot1 in its normal form, as well as its mutant form
Mot1-301 [110]. Because Mot1-301 is degraded more rapidly than normal Mot1, Slx5 was
suggested to be involved in nuclear PQC [110]. Enhanced degradation of a mutant protein
compared to its normal form is seen in the PQC degradation of certain abnormal proteins.
For example, 95% of mutant cystic fibrosis transmembrane conductance regulator (CFTR) is
degraded by the ubiquitin-proteasome system, whereas 75% of normal CFTR is degraded
due to slow folding kinetics [111, 112]. Additional PQC substrates will need to be identified
to solidify Slx5’s role in nuclear PQC degradation.

4.4 Potential mammalian nuclear PQC ubiquitin-protein ligases
Two mammalian ubiquitin-protein ligases that are posited to function in nuclear PQC
degradation are UHRF-2 and PML IV [113–115]. UHRF-2 is a RING-domain ubiquitin-
protein ligase that has been shown to be involved in the degradation of a truncated form of
the huntingtin (htt) protein [113]. Both the non-toxic, normal polyglutamine tract version of
truncated htt and a toxic, expanded polyglutamine tract version are degraded in a UHRF-2
dependent manner [113]. Similar to UHRF-2, PML IV has been shown to be involved in the
degradation of a nuclear protein with an expanded polyglutamine tract [114]. PML IV also
associates with the nuclear aggregates formed by expressing polyglutamine-expanded
proteins [114, 115]. It has not yet been shown if UHRF-2 and PML IV can distinguish
between normal and abnormal versions of a protein. Thus, additional studies will be needed
to clarify their roles in nuclear PQC degradation.

5. Mitochondria
Mitochondria present a specific set of challenges for PQC degradation. One challenge is that
mitochondria are bound by both inner and outer membranes that divide the mitochondria
into distinct subcompartments. This means that separate PQC degradation pathways will be
required to recognize misfolded proteins in each subcompartment. Similar to the ER,
ubiquitin and proteasomes are not located inside the mitochondria. Because of this, inner
mitochondria PQC degradation appears to be independent of the proteasome, instead relying
on AAA-ATPase proteases similar to bacterial systems [116]. Another challenge for PQC
degradation in the mitochondria is that there is a continual production of reactive oxygen
species (ROS) as a byproduct of ATP production. An environment with a high level of ROS
can lead to increased protein oxidation and misfolding, which the mitochondrial PQC
degradation machinery will need to mange robustly.

5.1 The Parkin pathway
Parkin is a mammalian PQC ubiquitin-protein ligase associated with the outer mitochondrial
membrane. Inactivation of Parkin is a major cause of juvenile Parkinson’s disease [117].
Parkin contains a RING-in between-RING domain [118], which is required for its ubiquitin-
protein ligase activity [119, 120]. Parkin also associates with CHIP and Hsp70, and this
association leads to increased Parkin-mediated ubiquitylation of unfolded Pael receptor
[121]. Association with CHIP and Hsp70 suggests Parkin may have additional roles in
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cytoplasmic PQC degradation. To date, the abnormal structural feature in the substrates
targeted by Parkin is unknown. Parkin mediates the degradation of specific proteins that are
associated with Parkinson’s disease [122], but it is not known how or why Parkin targets
these substrates.

5.2 The MITOL pathway
Another mammalian ubiquitin-protein ligase associated with the outer mitochondrial
membrane is MITOL (mitochondrial ubiquitin-protein ligase) [123]. MITOL contains a
multispanning membrane domain that passes through the outer mitochondrial membrane
four times [123]. In addition, MITOL possesses a PHD-variant of the RING domain that is
responsible for its ligase activity [123]. Certain point mutants of superoxide dismutase 1
(Sod1), but not normal Sod1 are degraded in a MITOL-dependent manner [124].
Components required for MITOL-mediated ubiquitylation are unknown, and MITOL does
not contain any obvious chaperone-binding motifs. The lack of multiple substrates and
known partners means substrate recognition mechanisms are unclear at this time.

6. Conclusions
In this review, we have attempted to describe the current state of knowledge for how each
ubiquitin-protein ligase implicated in PQC degradation operates in substrate recognition. In
a few cases, the substrate-targeting mechanisms are becoming better understood. In most
cases, however, there is still considerable work that is needed to discover the modes of
substrate recognition for each PQC ligase. In particular, we currently have only a
rudimentary knowledge about how the individual PQC ubiquitin-protein ligases actually
bind their substrates and what they recognize as abnormal within their substrates.

After exploring the literature on the topic of substrate recognition in PQC degradation, we
think there are a few main questions that need to be resolved moving forward. First, it is
clear that the survey of PQC ubiquitin-protein ligases is incomplete, so what are the other
ligases that participate in cellular PQC degradation? Second, what is the purpose for having
multiple PQC ubiquitin ligases in a single compartment? In the ER, Hrd1 and Doa10
recognize structural lesions presented in distinct locations in relation to the ER membrane
making the utility of two pathways obvious. But why, for example, do San1 and Doa10 both
function in nuclear PQC degradation? Do they recognize different abnormal structural
features in their substrates? If so, having two separate PQC degradations systems in the
nucleus would broaden the cell’s substrate recognition capabilities. Or, do they function in
different subcompartments of the nucleus? Consistent with this hypothesis, Doa10 is
membrane bound, while San1 is not. Determining the reasons for multiple PQC degradation
pathways in a single compartment will require a larger pool of substrates for each pathway
and a better understanding of the abnormal structural features recognized by each PQC
ligase.

Highlights

> We review the mechanisms of misfolded protein recognition by ubiquitin-protein
ligases that function in eukaryotic protein quality control degradation.
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Figure 1. PQC ubiquitin-protein ligases in the cell
Schematic representation of the cell with PQC ubiquitin-protein ligases listed in the
appropriate cellular compartment. Yeast PQC ligases are listed as the main example, except
in the cases where there is no yeast homolog.
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