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The introduction of cytotoxic chemotherapeutic drugs in the 1970’s improved the survival rate of patients with bone sarcomas
and allowed limb salvage surgeries. However, since the turn of the century, survival data has plateaued for a subset of
metastatic, nonresponding osteo, and/or Ewing sarcomas. In addition, most high-grade chondrosarcoma does not respond to
current chemotherapy. With an increased understanding of molecular pathways governing oncogenesis, modern targeted therapy
regimens may enhance the efficacy of current therapeutic modalities. Mitogen-Activated Protein Kinases (MAPK)/Extracellular-
Signal-Regulated Kinases (ERK) are key regulators of oncogenic phenotypes such as proliferation, invasion, angiogenesis, and
inflammatory responses; which are the hallmarks of cancer. Consequently, MAPK/ERK inhibitors have emerged as promising
therapeutic targets for certain types of cancers, but there have been sparse reports in bone sarcomas. Scattered papers suggest
that MAPK targeting inhibits proliferation, local invasiveness, metastasis, and drug resistance in bone sarcomas. A recent clinical
trial showed some clinical benefits in patients with unresectable or metastatic osteosarcomas following MAPK/ERK targeting
therapy. Despite in vitro proof of therapeutic concept, there are no sufficient in vivo or clinical data available for Ewing sarcomas

or chondrosarcomas. Further experimental and clinical trials are awaited in order to bring MAPK targeting into a clinical arena.

1. Introduction

Prior to the era of classical cytotoxic chemotherapeutic
agents in the 1970’s, patients with osteosarcomas or Ewing
sarcomas rarely survived 10 years even after imputative
tumor resection [1]. The introduction of cytotoxic chem-
otherapeutic agents such as doxorubicin or methotrexate
was a paradigm shift in oncology practice in the 1970’s and
1980’s [2]. Chemotherapy allowed limb salvage operations
and prolonged survival in 60-80% of patients suffering from
osteosarcomas and Ewing sarcomas [3, 4]. Despite this initial
leap in sarcoma patient care, about 20—40% of patients with
nonresponding, unresectable, or metastatic sarcomas desper-
ately wait for alternative ways of eliminating their cancer.

Additionally, chondrosarcoma patients compose of a
group that relies on treatment via surgical resection of

primary and metastatic lesions [5, 6]. Many chondrosar-
comas arise in the axial skeletons which provide anatomic
complexities for wide surgical excisions. As a result, there
has been a common notion that chondrosarcomas do not
respond to chemo- and radiotherapy.

Despite an increase in knowledge with regards to sarco-
mas, survival time has not increased over the past 20 years.
However, strong waves of new therapeutic opportunities
have emerged into the sarcoma field by targeting several key
pathways governing oncogenesis and aggressive clinical fea-
tures. One such avenue of targeting is the MAPK/ERK kinase
pathway that relays upstream oncogenic signals from the
Ras/Raf, IGFE, EGE, PDGF, and VEGF to downstream effectors
of cancer-related gene expression [7, 8]. This review paper is
intended to highlight an emerging role of MAPK/ERK target-
ing with respect to the three most common bone sarcomas.
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Ficure 1: MAPK/ERK signaling and the hallmarks of cancers. The MAPK/ERK pathway mediates several upstream signals from well-known
oncogenic growth factors and proinflammatory stimulants. Activation of the MAPK/ERK pathway by growth factors, proinflammatory
stimulants and gain-of-function mutations of Ras/Raf promotes phenotypic changes characteristic of cancer cells [9-14].

2. MAPK Signaling in Cancers

2.1. General Perspectives. Cancer cells have sustainable and
self-sufficient machinery for uncontrolled growth. “The
Hallmarks of Cancer” by Hanahan and Weinberg describe
six unusual characteristics of cancer in comparison to
normal cells [15]. They include sustaining proliferative
signaling, evading growth suppressors, resisting apoptosis,
enabling replicative immortality, inducing angiogenesis, and
activating invasion and metastasis. Recently, Hanahan and
Weinberg proposed 4 additional hallmarks of cancer such as
an abnormal energy metabolism, the evasion of the immune
system, chromosomal abnormalities with genetic diversity,
and inflammation [16]. Inflammation itself consists of a
series of cellular and molecular events that overlap with the
other hallmarks of cancer.

Extracellular Receptor Kinase (ERK) proteins are a family
of protein-serine/threonine kinases that are activated via the
phosphorylation of tyrosine in response to growth factors
such as insulin and nerve growth factor (NGF). ERK is also
known as the Mitogen-activated Protein Kinase (MAPK),
and plays a major role in mediating inflammatory as well as
oncogenic signals. MAPK is activated by MAPK/ERK Kinase
(MEK). Ras/Raf is upstream of MEK. In the classical setting,
MEK is activated by many upstream growth factors/cytokine
receptors in response to radiation, hypoxia, physical forces,
TNE RANKL, and TLR. When gain-of-function mutations

occur in Ras/Raf, a commonly observed phenomenon
in many types of cancers, MEK/MAPK proteins become
constitutively activated. MAPK/ERK signaling fulfills many
cancer hallmarks by the mediation of mitosis and stem-
cell-ness, production of matrix degrading enzymes, Warburg
effect, angiogenesis, bone destruction, cytokine production,
chromosomal aberration, and anergy [9-13] (Figure 1).

Well-known growth factor receptor like IGF, EGF, VEGF,
and PDGF activate the MAPK/ERK pathway. Various other
receptors including TLR, TNFRE and PTH also participate
in its activation. These receptor signaling pathways regulate
gene expression for cytokines, chemokines, growth factors,
cell proliferation, and antiapoptosis. Interestingly, these
major receptor pathways all cross at the MAPK/ERK similar
to Penn Station or Charles de Galle Airport where many
trains or airplanes (i.e., signals) converge. Convergence of
these cellular signals makes the MAPK/ERK pathway an
attractive and powerful therapeutic target given that this
pathways inhibition could disarm several hallmarks of cancer
at a single convergence point (Figure 1). This concept has
been tested recently in experimental and clinical settings.

The expression and activation of the MAPK pathway
correlate with prognosis and influences therapeutic outcome
in several types of cancer. Expression of pRaf (ser 338), an
upstream activator of MEKI, was associated with disease
relapse and decreased overall survival of patients with breast
cancer who were treated with tamoxifen. Thus, MAPK/ERK
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F1cure 2: MAPK/ERK signaling in osteosarcomas, Ewing sarcomas, and chondrosarcomas.

activation may play a role in antiapoptosis and Tamox-
ifen resistance [17]. Patients with metastatic gastric can-
cers expressing p-MAPK/ERK in tumor showed decreased
disease-free overall survival (8.5 months) in comparison to
nonexpressing cancers (13.7 months) indicating p-MAPK as
a negative prognostic indicator in metastatic gastric cancers
[18]. In glioblastoma, heightened p-MAPK expression was
associated with poor response to radiotherapy and worse
overall survival rate [19]. Targeting the MAPK/ERK pathway
in hepatocellular carcinomas, thyroid, hepatobiliary, lung,
and solid cancers using selumetinib (AZD 6244), a MAPK
1/2 inhibitor, has shown promising results [20-22].

3. MAPK Signaling in Bone Sarcomas

There is a relative paucity of literature concerning the
role of MAPK/ERK in bone sarcomas. Various viewpoints
about the significance of MAPK/ERK demonstrate that this
pathway’s role in sarcoma is still being unraveled. It is known
that osteosarcomas, Ewing sarcomas, and high-grade chon-
drosarcomas exhibit heightened pMAPK/pERK1/2 expres-
sion (Figure 2). Therefore, targeting MAPK/ERK1/2 could
develop a modern molecular adjuvant therapy for bone

sarcomas. To understand the therapeutic importance of
RAF-MEK-ERK pathway targeting in bone sarcomas, it is
necessary to update the results of experimental and clinical
trial data.

4. Osteosarcoma

4.1. Limitations of Current Therapy. Osteosarcoma is the
most common primary malignant bone tumor in adolescent
and young adults and accounts for approximately 20% of
all bone malignancies [23]. Current treatment involves a
multidisciplinary approach with surgery and chemotherapy;
however, 20-40% percent of patients does not respond to
conventional treatment and have a dismal 5-year survival
rate. Recent studies have shown that overexpression and
abnormal activation of Raf/MEK/ERK signaling pathway
may regulate tumor proliferation, migration, and metastasis
in osteosarcoma as well as in other malignancies [24-26].

4.2. In Vitro Data. While most studies suggest that the
inhibition of ERK 1/2 leads to increased apoptosis and
decreased metastasis [24—26], some studies conclude that the
activation of RAF/MAPK/MEK/ERK1/2 pathway is required
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TaBLE 1: Therapeutic implications of Ras-Raf-MEK-ERK targeting in bone sarcomas.
Sarcoma types Study design Target Inhibitor types  Results References
. MEK inhibitor o e
*
In vivo pERK1/2 (PD98059) Prolonged survival increase chemosensitivity [24]
In vivo* pERK1/2 RAF 1nh1'b1tors Growth inhibition [36]
(Sorafenib)
Osteosarcoma RAF inhibitors
In vivo pERK1/2 (Sorafenib) Decrease lung metastasis antitumoral activity [35]
Clinical Trial s
(Phase I1) pERK1/2 RAFinhibitors -y, s 1 benefit (PR + MR + SD) >6 months = 29%  [37]
(Sorafenib)
(N =35)
. RAF inhibitors R
*
In vivo pERK1/2 (Sorafenib) Growth inhibition [36]
L . pERK1/2 U0126 .
Ewing’s sarcoma  In vivo PIP3K L[Y294002 Increase chemosensitivity [38]
Clinical trial s
(Phase I) pERK1/2 RAF 1nh1‘b1tors Not reported (ongoing) [39]
(Sorafenib)
(N =34)
Clinical trial o
(Phase II) pERK1/2 RAF 1nh{b1tors Prolonged stable disease [40]
(Sorafenib)
(N =26)
Chondrosarcoma o .
Clinical trial RAF inhibitors
(Phase II) pERK1/2 . Prolonged stable disease for >6 months [41]
(N = 147) (Sorafenib)

PR: Partial response; MR: Minor response; SD: Stable disease, * Human sarcoma xenografts in mice.

for osteosarcoma cells apoptosis [27]. Targeted inhibition of
EGFR, one of the upstream signals, in five osteosarcoma cell
lines reduced motility, colony formation, and invasiveness;
whereas inhibitors of Her-2, nerve growth factor receptor
(NGF-R), and PDGF receptor (PDGF-R) had no effect [28].
The study by Noh et al. [24] examined the therapeutic
effect of PD98059 (an inhibitor of ERK1/2 phosphoryla-
tion) on osteosarcoma cell lines in vitro (Figure2). PD
98059 increased the expression of proapoptotic proteins
such as Bax and induced cell death. Doxorubicin para-
doxically upregulated antiapoptotic proteins such as Bcl-
2 and Bcl-xL by osteosarcoma cells in vitro. ERK1/2 inhi-
bition prevented doxorubicin-induced upregulation of Bcl-
2 and Bcl-xL, thereby increasing doxorubicin sensitivity in
osteosarcoma cells. In human osteosarcoma cell line SaOS-2
cells, MEK/MAPK is a negative regulator of differentiation
while p38 MAPK promotes differentiation [29]. Interac-
tion between stromal cell-derived factor-1 (SDF-1) and its
receptor (CXCR-4) increases motility of osteosarcoma cells
through a pERK pathway [30]. pERK inhibitor PD98059
inhibited motility of human osteosarcoma cells in vitro,
suggesting that pERK inhibitors impede local invasion and
metastasis.

4.3. In Vivo Data. Various targeted inhibitors have been
shown to have antitumor effects in osteosarcoma (Table 1).
An in vivo survival study using 143B human osteosar-
coma cells with elevated Ras activity demonstrated that
PERK targeting with PD98059 resulted in slower tumor
growth and prolonged survival by inducing the production
of proapoptotic proteins. Combinatorial treatment with

doxorubicin and PD98059 further prolonged the survival of
osteosarcoma-bearing mice. These data suggest a potential
benefit of using MAPK/ERK inhibitors as a molecular
adjuvant agent in addition to conventional cytotoxic drugs
(Table 1). Some osteosarcoma cell lines express that func-
tional insulin-like growth factor 1 receptor (IGF-1R) on
their cell surface that, in turn, stimulates proliferation.
The therapeutic efficacy of pharmacologic inhibitors of the
IGF-1R pathways has been explored in bone sarcomas.
IGF-1R inhibition with monoclonal antibodies resulted
in growth retardation and prolonged event-free survival
in osteosarcoma-bearing mice [31-33]. Sorafenib, a small
molecule Raf kinase and vascular endothelial growth factor
(VEGF) receptor kinase inhibitor, which is upstream of
MAPK, is approved by FDA for treatment of renal cell
carcinomas and hepatocellular carcinomas [34]. Sorafenib
treatment caused reduction in tumor volume and lung
metastasis in osteosarcoma xenograft [35].

4.4. Clinical Trials. In osteosarcoma, expression of VEGF-
R3 is associated with poor event-free and overall survival
while VEGF-B correlated with a poor histological response
to chemotherapy [42]. Apparently, there was no statistically
significant correlation between clinical outcome and expres-
sion of MAPK in osteosarcoma [42]. However, immuno-
histochemical expression analyses have inherent limitations
of quantification in archived specimens. A Phase I study
with Sunitinib, a multitargeted tyrosine kinase inhibitor of
signaling downstream of VEGFR, PDGEFR, FLT-3, B-Raf,
and c-Kit, showed no objective responses in bone sarcomas
except one “stable disease” response out of 2 patients with
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osteosarcoma [43] (Table 1). Another multicenter Phase II
trial has shown promising effects of Sorafenib in 35 patients
with relapsed and unresectable high-grade osteosarcoma
following conventional cytotoxic agents [37]. The median
overall survival was 7 months. Sixteen patients (46%) were
free from disease progression after 4 months of therapy. The
overall response rate was 49%. 5 patients (14%) showed
partial (>30% shrinkage in its widest diameter) or minor
response (<30%). 10 out of 35 (29%) patients showed the
clinical benefit of partial and minor response as well as stable
disease. Of 4 patients with stable disease, PET scan showed
decreased FDG uptake in the area of osteosarcoma indicating
cell death within the lesion. There were no patients that
showed complete response suggesting that combinatorial
treatments either with other targeting agents or conventional
cytotoxic drugs are necessary for better outcomes.

5. Ewing Sarcoma

5.1. Limitations of Current Therapy. Ewing sarcoma is the
second most common primary bone tumor occurring in
children and young adults. Treatment consists of chemother-
apy followed by wide resection and may include radiation.
It is considered to have the worst prognosis in bone sarcoma.
EWS is characterized by the t(11;22)(q24; q12) translocation
resulting in EWS-ETS fusion gene, which presents as EWS-
FLI1 in over 85% of cases [44, 45]. EWS/ETS fusions function
as transcriptional regulators that can activate downstream
gene expression.

5.2. In Vitro Data. Oncogenic function of EWS-FLI1 de-
pends on IGF-1 signaling [46]. Ewing sarcoma cells con-
sistently express IGF-1R and insulin receptor (IR) [47, 48].
IGF-1R-mediated pathway appears as a major autocrine
loop in pathogenesis and maintains cell functions for EWS
[49]. The EWS-FLI1 requires the presence of IGF-1R in
order to transform murine fibroblasts [50]. Two major
downstream IGF pathways, that are, MAPK and PI3K, play
an important role in Ewing sarcoma. Activation of mTOR,
ERK and NF-kB was found in Ewing sarcoma tumor cell lines
[51]. PD98059 and U0126 (MEK inhibitor) impaired Ewing
sarcoma cell growth by inducing G1 blockage and reducing
its migratory effect [47] (Figure 2). Another study confirmed
that combined administration of U0126 and LY294002 (PI3K
inhibitor) enhanced actinomycin-D-induced apoptosis in
vitro and in vivo [38]. ERK1/2 proteins are constitutively
activated in transformed NIH 3713 cells expressing EWS/FLI-
1 and ERK inhibition impaired the ability of EWS/FLI-
1 overexpression to transform NIH3T3 [48]. IGF receptor
targeting alone may not be effective since Ewing sarcoma
cells can switch to alternative signaling pathways from IGF-
IR to IR-A to maintain sustained activation of ERK1/2.
It is strategically more advantageous to target MAPK/ERK
at a converging point downstream of growth factor
receptors.

5.3. In Vivo Data. In vivo studies are carried out to assess
the effect of IGF-1R blocker on bone tumor (Table 1). CP-
751,871, a human IGF-1R blocker, showed significant growth

inhibition in Ewing sarcoma-bearing mice. Combinatorial
treatment with rapamycin showed synergistic effects [52].
NVP-AEW541, a dual pan-PI3K-mTOR inhibitor, inhibited
growth of Ewing sarcoma and metastasis in athymic mice
[53]. There was paradoxical activation of pERK most likely
due to activation of alternative pathways following mTOR
inhibition. Sorafenib resulted in tumor growth inhibition in
Ewing sarcoma in vivo model [36].

5.4. Clinical Trials. The outcome of a Phase I trial on
Sorafenib-treated patients with Ewing sarcoma is in progress
and the results have not yet been reported [39]. IGF-1R
receptor signaling is linked to MAPK/ERK. Clinical trials
in patients with Ewing sarcoma showed approximately 10—
15% response rate following single-agent treatment with
IGF-1R antibody targeting EWS-FLI1 or EWS-ERG [54].
In phase I trials, IGF-1R inhibitors (R1507, AMG479, CP-
751, 871) showed sustained remission in patients with Ewing
sarcoma [33, 55, 56]. In a phase II clinical trial, Imatinib
Mesylate targeting multiple kinases including MAPK/ERK
showed only one partial response among 24 patients with
Ewing sarcoma [57]. Resistance eventually develops from
monotargeted therapy because cancer cells utilize alternative
pathways. Many efforts try to downfall resistance by combin-
ing two or more targeted inhibitors. The combined regimen
consisting of IGF-1R and mTOR inhibitors demonstrated
good responses in two patients with refractory EWS after
administration of IGF-1R inhibitors [58].

6. Chondrosarcoma

6.1. Limitations of Current Therapy. The current mainstay of
treatment is wide resection. However, many chondrosarco-
mas arising in the axial skeleton are not amenable to wide
resection [5, 6]. Extensive Grade 1 chondrosarcomas in the
pelvis and spine can lead to mortality due to the destruction
or obstruction of key vital anatomic structures such as
the aorta, vena cava, intestines, kidneys, and liver. Higher
grade (grade 2 or 3) and dedifferentiated chondrosarcomas
are associated with pulmonary metastasis and death [5].
Chemotherapy has been largely ineffective for high-grade
or unresectable chondrosarcoma due to the presence of
inhomogeneous vascularity, low pH and increased interstitial
pressure, p-glycoprotein, and activation of cell survival
pathways all of which potentially impede drug delivery and
pharmacologic action [5, 6].

6.2. In Vitro Data. Low-grade chondrosarcoma cells often
resemble normal chondrocytes in terms of type II colla-
gen and matrix synthesis. Low-grade chondrosarcomas are
avascular. They also share ihh/PTHrP signaling pathways
which tightly control chondrocytic differentiation. Grade II
or III chondrosarcomas lose chondrocytic phenotypes and
have more vascularization. Chondrosarcomas are notorious
for their unusual resistance to radiation and chemotherapy
[5, 6]. Chondrosarcoma cells use growth factor signaling
for enhanced growth [59]. Sorafenib induced dose- and
time-dependent inhibition of pERK and apoptosis in two
different chondrosarcoma cell lines [60]. Sorafenib also



inhibited the expression of cyclin D1, Rb, and antiapoptotic
proteins Bcl-xL. MMP-1 is commonly expressed in locally
invasive chondrosarcomas (Figure 2). Hypoxic condition
results in the upregulation of MMP-1 by chondrosarcoma
cells. pERK inhibition by siRNA prevented hypoxia-induced
MMP-1 upregulation [61, 62]. Osteopontin is a bone
matrix protein that increases the migration and expression
of matrix metalloproteinase (MMP)-9 in grade II human
chondrosarcoma cells through pERK1/2 pathway [63]. Both
PD98059 and U0126 inhibited osteopontin-induced MMP-
9 upregulation and migration of human chondrosarcoma
cells. Integrins are a family of transmembrane-binding
proteins that bidirectionally activate cell signaling pathway
with the extracellular matrix (ECM) to promote tumor cell
proliferation, differentiation, and migration. Integrin alpha
(v) beta3 (avf3) has been shown to be highly correlated
with bony metastasis in multiple cancers [64, 65]. Integrin
avf33 is highly expressed in chondrocytes and is upregulated
on chondrosarcoma cell migration [66]. Integrin avf3 is
regulated by activation of transforming growth factor beta
1 (TGF-f1) and bone morphogenic protein 2 (BMP-2), and
the process depends on PI3K and MEK/ERK signaling [67,
68]. One study showed that chondrosarcoma cell migration
is induced by TGF-51 and BMP-2 through CCN and integrin
avf33 expression leading to activation of FAK/MEK/ERK
pathway. @581 monoclonal antibody and MEK inhibitors
(PD98059 and U0126) inhibited migration of chondrosar-
coma cells [69].

6.3. In Vivo Data. There does not seem to be any in vivo data
on the use of MAPK/pERK targeting in chondrosarcomas in
vivo at the present time.

6.4. Clinical Trials. pERK may have a diagnostic value in
grading chondrosarcomas. Results of immunohistochemical
staining of pERK in pathologic specimens of 45 chondrosar-
comas and 21 enchondromas showed more augmented
PERK expression in higher grade chondrosarcomas [70].
There are no large chondrosarcoma series which provide
meaningful insights into the value of MAPK/ERK targeting.
Available clinical trials were conducted using a mixed bag
of sarcoma cases (Table 1). A Phase II trial of sorafenib
showed prolonged stable disease for duration of 37 weeks
in one patient with chondrosarcoma [40]. Another phase II
study of sorafenib in patients with recurrent or metastatic
sarcoma indicates prolonged stable disease over 6 months in
2 chondrosarcoma patients [41].

7. Future Direction

Targeted therapy for sarcomas is still at an early stage.
In vitro proof of therapeutic concept studies assures that
PMAPK/ERK targeting offers new methods of inhibit-
ing proliferation, invasion, angiogenesis, and inflamma-
tion which are the hallmarks of cancers. In vivo experi-
ments successfully demonstrated the inhibition of tumor
growth and prolonged survival of osteosarcoma-bearing
mice. Recent Phase II clinical trial data showed a clinical
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benefit rate of 30% in patients with relapsed and unre-
sectable high-grade osteosarcomas following MAPK/ERK
targeting therapy. There is a knowledge gap concerning the
efficacy of MAPK/ERK targeting for Ewing sarcomas or
chondrosarcomas in vivo or in a clinical setting. Available
studies also suggest that a single-agent-targeted therapy
may not provide clinically meaningful anticancer effects.
Specific MAPK/ERK inhibitors are emerging as additional
adjuvant repertoires for multimodality therapy. Further in
vivo experiments are needed to provide stronger rationale
for initiating clinical trials. More collaborative multicenter
clinical trials are necessary to recruit a sufficient number of
patients and to draw meaningful conclusions on the efficacy
of combinatorial cytotoxic agents and modern molecular
adjuvant therapy.
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