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Abstract
The slope of the z-transformed receiver-operating characteristic (zROC) in recognition memory
experiments is usually less than 1, which has long been interpreted to mean that the variance of the
target distribution is greater than the variance of the lure distribution. The greater variance of the
target distribution could arise because the different items on a list receive different increments in
memory strength during study (the “encoding variability” hypothesis). In a test of that
interpretation, J. Koen and A. Yonelinas (2010, K&Y) attempted to further increase encoding
variability to see if it would further decrease the slope of the zROC. To do so, they presented
items on a list for two different durations and then mixed the weak and strong targets together.
After performing three tests on the mixed-strength data, K&Y concluded that encoding variability
does not explain why the slope of the zROC is typically less than one. However, we show that
their tests have no bearing on the encoding variability account. Instead, they bear on the mixture-
UVSD model that corresponds to their experimental design. On the surface, the results reported by
K&Y appear to be inconsistent with the predictions of the mixture-UVSD model (though they
were taken to be inconsistent with the predictions of the encoding variability hypothesis).
However, all three of the tests they performed contained errors. When those errors are corrected,
the same three tests show that their data support, rather than contradict, the mixture-UVSD model
(but they still have no bearing on the encoding variability hypothesis).

Keywords
zROC slope of mixing weak and strong targets; unequal-variance signal-detection model; dual-
process signal-detection model

The unequal-variance signal-detection (UVSD) model holds that the memory strength
distributions of targets and lures on a recognition test are Gaussian in form, with the mean
and standard deviation of the target distribution typically exceeding the mean and standard
deviation of the lure distribution (Egan, 1958). The statistical properties of the target
distribution relative to the lure distribution can be estimated by fitting the UVSD model to
confidence-based receiver-operating characteristic (ROC) data or (equivalently, and more
simply) by fitting a straight line to the z-transformed ROC (zROC: Green & Swets, 1966;
Macmillan & Creelman, 2005). If the UVSD model is correct, then the slope of the zROC
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provides an estimate of σlure / σtarget. Typically, the zROC slope is less than one (e.g., Egan,
1958; Glanzer, Kim, Hilford, & Adams, 1999; Ratcliff, Sheu, & Gronlund, 1992), which
suggests that the standard deviation of the target distribution is greater than that of the lure
distribution.

Why would the variance of the target and lure distributions differ in this way? Wixted
(2007) offered one possible explanation: “An equal-variance model would result if each
item on the list had the exact same amount of strength added during study. However, if the
amount of strength that is added differs across items, which surely must be the case, then
both strength and variability would be added, and an unequal-variance model would apply”
(p. 154). Koen and Yonelinas (2010: K&Y, hereafter) dubbed this the “encoding variability
account” and set out to test it by having participants learn words in two conditions. In the
pure condition, 160 study words were presented for 2.5 s each. In the mixed condition, half
the items (80 words) were presented for 1 s each (weak memory), and the other half for 4 s
each (strong memory). Different study durations were used in the mixed condition in an
effort to increase encoding variability compared to the pure condition. Following both lists,
participants made a confidence rating (using a 6-point scale) and a Remember-Know-New
judgment for each test item. Using the obtained data, K&Y applied three different tests to
evaluate the encoding variability account.

In the key test, K&Y assumed that mixing two distributions with different means yields a
mixed target distribution with greater variance than the pure target distribution. If so, and if
encoding variability explains why the zROC slope is usually less than 1, then, in their view,
the slope of the zROC in the mixed condition should be less than that of the pure condition.
Instead, the two slopes did not differ significantly, a result that K&Y considered to be
inconsistent with the encoding variability hypothesis. However, this test and the other two
tests reported by K&Y were compromised by both conceptual and analytical mistakes. Once
the conceptual mistakes are corrected, it becomes clear that their experiment did not test the
encoding variability hypothesis but instead tested a different idea. Specifically, their
experiment tested whether the mixture-UVSD model shown in Figure 1 – which is the
version of the standard UVSD model that applies to their experimental design – adequately
accounts for the data from their mixed condition. K&Y argued that the mixture-UVSD
model did not accurately predict the slope of the zROC in the mixed condition (which they
took as evidence against the encoding variability hypothesis even though it would have
made more sense to take it as evidence against the mixture-UVSD model). However, this
test and the other two tests they reported contained a number of analytical mistakes. Once
those analytical mistakes are corrected, it becomes clear that the mixture-UVSD does
accurately predict the slope of the zROC in the mixed condition – a result that reflects well
on the mixture-UVSD model but is still not relevant to the encoding variability hypothesis.
Before describing the analytical mistakes that compromised their 3 tests, we begin with a
description of the conceptual mistake that led K&Y to believe that they were testing the
encoding variability hypothesis when they were in fact testing the mixture-UVSD model.

Adding Gaussian Random Variables Versus Mixing Gaussian Distributions
The main conceptual mistake in K&Y's effort to test the encoding variability hypothesis is
that they equated adding random variables with mixing distributions. These are quite
different operations, with different implications – facts that become clear when the
mathematics of the encoding variability hypothesis are laid out.

Adding Gaussian Random Variables
The encoding variability hypothesis is based on the notion of adding random variables. It
holds that the memory strength of a target item (T) can be conceptualized as having been
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created by adding memory strength (A) to the baseline memory strength (L) of a lure. Thus,
T = L + A. In the simplest version of this account, both L and A are assumed to be
independent, normally distributed random variables (N):

where μlure and σ2
lure represent the mean and variance of the lure distribution, and μadded

and σ2
added represent the mean and variance of the distribution of strength values added at

study. Adding the Gaussian random variables L and A creates a new Gaussian random
variable representing the strength of a target (T). When independent random variables are
summed, the mean of the resulting distribution is equal to the sum of the means of the
component distributions1. Similarly, the variance of the resulting distribution is equal to the
sum of the variances of the component distributions. That is:

Thus, both the mean of the target distribution (μlure + μadded) and the variance of the target
distribution (σ2

lure + σ2
added) exceed the corresponding values for the lure distribution.

The critical feature of this encoding variability account is that the variance of the target
distribution is greater than that of the lure distribution because the target distribution was
created by adding one Gaussian random variable to another Gaussian random variable. A
target distribution created in this way would remain Gaussian in form. Thus, the target and
lure distributions in this model correspond to the longstanding Gaussian-based UVSD
model. Because both distributions are Gaussian in form, empirical zROC data that are
consistent with this model can be used to estimate the relative variance of the target and lure
distributions. Specifically, under these conditions, the slope of the zROC provides a valid
theoretical estimate of σlure / σtarget. This theoretical connection between the slope of the
zROC and the underlying standard deviation ratio – a connection that holds for Gaussian
distributions – will be a key consideration in our critique of K&Y's effort.

To test the encoding variability hypothesis, one might attempt to add variable amounts of
memory strength to half of the study items on a list (e.g., by using a wide range of normally
distributed study times) and to add less variable amounts of memory strength to the other
half (e.g., by using a constant study duration). If the experimental manipulation were
successful in influencing the distribution of confidence ratings supplied by the participants,
then the encoding variability hypothesis would predict a lower zROC slope for the items that
received the normally distributed study times than for the items that received constant study
times. A test like this could encounter some practical difficulties (e.g., participants could
surreptitiously rehearse the more briefly presented items in an effort to strengthen them), but
at least it would be conceptually in line with the encoding variability hypothesis.

1It seems reasonable to assume that L and A are inversely correlated. The larger that inverse correlation is, the more it would
counteract the increased variance introduced by adding Gaussian random variables. The encoding variability hypothesis assumes that
any such correlation is too small to fully counteract the effect of adding Gaussian random variables.
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Mixing Gaussian Distributions
For reasons that are not clear, K&Y assumed that mixing weak and strong Gaussian
distributions should have an effect analogous to that of adding Gaussian random variables.
However, mixing two Gaussian distributions is quite unlike adding Gaussian random
variables. Most importantly, mixing two Gaussian distributions with different means results
in a non-Gaussian mixture distribution (though one that often remains Gaussian in
appearance, as illustrated in Figure 2). Because a mixed target distribution is non-Gaussian,
the slope of the mixed zROC does not provide a valid theoretical estimate of σlure / σtarget.
Thus, comparing a theoretically valid estimate of σlure / σtarget in the pure condition to a
theoretically invalid estimate of σlure / σtarget in the mixed condition is problematic, but it
was the very essence of the approach used by K&Y. As they put it: “Thus, if encoding
variability increases old item variance, the z-slope should be lower in the mixed list than in
the pure list” (p. 1538).

Whether or not the slope of the zROC is sensitive to the variance of a non-Gaussian mixture
distribution is a purely empirical question, one that does not bear at all on the validity of the
encoding variability hypothesis. Nothing in the encoding variability hypothesis (or in any
other theory, for that matter) predicts that the Gaussian-based slope of the zROC will
faithfully reflect the relative variance non-Gaussian mixture distributions. Thus, by focusing
on the slope of the mixed zROC as their main dependent measure, K&Y addressed a purely
empirical question that does not bear on any theory.

Further complicating matters is the fact that – contrary to intuition – mixing the weak and
strong distributions in K&Y's experiment did not increase the variance of the mixed
distribution to any appreciable degree. We show this later by simply fitting the mixture-
UVSD model to the unmixed data and then using the estimated parameters of the weak and
strong target distributions to computationally determine what the variance would be if those
distributions were combined to create a single mixed distribution. When this is done, it
becomes clear that the variance of the mixed distribution would be nearly identical to the
variance of the weak and strong distributions considered separately, and this was true even
for the 50% of participants for whom the strength manipulation had the greatest effect
(whose data were separately analyzed by K&Y). This means that K&Y's main experimental
objective – namely, to create a high-variance mixed distribution – was not achieved. Thus,
even the purely empirical and theoretically irrelevant question of how the Gaussian-based
mixed zROC slope behaves when the variance of the non-Gaussian mixed distribution
increases cannot be answered by their experiment. Then again, even if they had achieved
their objective, our criticism of their approach would not change because, even in that case,
their experiment would still have addressed a question that differs from the one they
intended to address (as we explain next).

What Question did K&Y's Experiment Address?
The encoding variability hypothesis does not hold that the slope of the zROC is less than 1
because distributions are mixed, so mixing distributions to investigate how the slope is
affected provides no test of that hypothesis. Instead of addressing the encoding variability
hypothesis, the theoretical issue addressed by K&Y's experiment concerns whether or not
the mixture-UVSD model illustrated in Figure 1 can accommodate their findings. Indeed,
the key feature of their experimental design (namely, mixing weak items and strong items on
a single list) corresponds directly to that model. One can accept the validity of the mixture-
UVSD model and can even accept the idea that, in principle, weak and strong target
distributions can be combined to create a high-variance mixture distribution while still
rejecting the essence of the encoding variability hypothesis (i.e., while still rejecting the idea
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that Gaussian random variables are added at study). Thus, the two accounts are not the same,
and K&Y's experiment was properly designed to test only the mixture-UVSD model.

Although it is not the question that K&Y set out to answer, it is certainly legitimate to ask
whether or not the mixture-UVSD model can accommodate their data. The most direct way
to do that would be to simply fit the model to the unmixed data from the weak and strong
conditions of K&Y's experiment. If it can accurately characterize the unmixed data, then it
will automatically characterize the mixed data as well (including the mixed zROC slope).
Indeed, it could be no other way. Thus, after fitting the mixture-UVSD model to the
unmixed data and determining whether or not it fits the data well relative to competing
models, taking the additional step of testing its ability to also account for the mixed data
(e.g., testing whether it can predict the mixed zROC slope) is superfluous. Even so, we will
consider the model's ability to account for the mixed data because that is the issue that K&Y
emphasized, and in so doing, they made several analytical mistakes that we explain and
correct. In addition, we will consider (and correct) other analyses that K&Y put forth to
argue that the dual-process signal-detection (DPSD) model provides a more viable account
of the data than an explanation grounded in signal-detection theory. Later, we simply fit the
mixture-UVSD model to the unmixed data and assess how well it fits compared to the
DPSD model. That simple test highlights what their experiment was really all about.

To investigate these issues as thoroughly as possible, we analyzed relevant data from four
different experiments: (i) K&Y's experiment (i.e., we reanalyzed K&Y's data); (ii)
Experiment 1, which is a replication study where we adopted exactly the same procedure as
that of K&Y's experiment, with 22 participants; (iii) Experiment 2, which differed in that all
three strength conditions appeared on a single list, with the pure condition consisting of
study words presented for 1 s each and the mixed condition consisting of study words
presented for 300 ms (weak) or 2 s (strong) – the complete procedure is reported in the
Appendix; and (iv) Jang, Wixted, and Huber's (2011) experiment in which each study word
was presented for 1 s, and weak (180 words) and strong (180 words) targets were
manipulated by number of presentations (once versus three times, respectively). There was
only the mixed condition in this experiment (i.e., it did not include a pure condition), and
there was no Remember-Know (R-K) judgment task in (iii) and (iv) – only a 6-point
confidence rating was given during the test phase. For each test that we correct from K&Y,
we consider the data from their experiment as well as the relevant data from the additional
experiments we conducted.

Three Tests and Three Corrections
Test 1 Correction

The first test involved a comparison between the observed mixed zROC slope and the
observed pure zROC slope based on the intuition that mixing Gaussian distributions
increased the variance of the mixed distribution beyond that of the component weak and
strong target distributions, in which case it would be reasonable to assume that its variance
was increased beyond that of the pure target distribution as well. However, there is no need
to rely on intuition because it is possible to compute the variance of the mixed distribution
based on the estimated parameters of the weak and strong distributions.

Assuming they are Gaussian in form, the means and standard deviations of the individual
weak and strong target distributions (relative to the standard deviation of the lure
distribution) can be estimated by fitting lines to the weak and strong zROCs. In the weak
condition, K&Y reported that the average zROC slope for the 16 participants who showed
the largest effect of the strength manipulation was 0.72 (σweak = 1 / 0.72, or 1.39) and the
average intercept was 0.77 (μweak = 0.77 / 0.72, or 1.07). These estimates of σweak and

Jang et al. Page 5

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



μweak are scaled in terms of the standard deviation of the lure distribution (i.e., σlure = 1) and
are based on standard signal-detection formulas (and they assume that the average slope and
intercept values are representative of the individuals). In the strong condition, the average
slope was 0.71 (σstrong = 1 / 0.71, or 1.41) and the average intercept was 1.09 (μstrong =
1.09 / 0.71, or 1.54).

What is the standard deviation of the distribution that results from mixing a weak target
distribution having a mean of 1.07 and a standard deviation of 1.39 with a strong target
distribution having a mean of 1.54 and a standard deviation of 1.41? The answer can be
obtained by randomly generating a large number of values from the weak and strong
Gaussian distributions using a MATLAB routine and then simply computing the variance of
those values after mixing them together. Using this method, we found that the resulting
mixed distribution would have a mean of 1.31 and a standard deviation of 1.42. That is,
despite a fairly large difference in the means of the weak and strong distributions (μstrong −
μweak = 1.54 − 1.07 = 0.47), the standard deviation the mixed distribution (1.42) was,
counterintuitively, nearly identical to that of the weak and strong component distributions
(1.39 and 1.41, respectively). Figure 3 provides a further illustration of the counterintuitive
effect of mixing distributions with different means. Obviously, mixing distributions can
result in a mixed distribution with greater variance, but, as shown in Figure 3, the difference
between the means needs to be much greater than intuition would suggest (and much greater
than the difference between the weak and strong means in K&Y's experiment).

This analysis shows that K&Y's strategy of mixing distributions did not create a high-
variance mixed distribution (contrary to what they believed was true), and the fact that the
mixed zROC slope was not reduced compared to the pure zROC slope needs to be
considered in that light. If the mixed zROC slope provides an accurate estimate of σlure /
σtarget for even non-Gaussian mixture distributions, then the results reported by K&Y are
just as they should be. But does the Gaussian-based mixed zROC slope fortuitously provide
an accurate estimate of σlure / σtarget for non-Gaussian mixture distributions even though
there is no theoretical reason why it should? In this particular case, it would seem so. After
all, the variance of the mixed distribution was not increased compared to the pure condition,
and (correspondingly) the mixed zROC slope was not reduced compared to the pure zROC
slope. However, it is easy to find examples where the underlying variance of the non-
Gaussian mixed distribution is quite far removed from a Gaussian-based estimate obtained
from the slope of the corresponding mixed zROC, so the correspondence that happened to
be observed in this case is not likely to generalize. To take one such example, assume that
the means of the weak and strong distributions were the same as before (1.07 and 1.54,
respectively) but their standard deviations differed (1.0 and 1.5, respectively). In this case,
the standard deviation of the mixed distribution based on simulated data drawn from those
weak and strong Gaussian distributions turns out to be 1.30. However, as we show next, the
slope of the mixed zROC for this situation does not reflect that value.

Using the simulated mixed target data drawn from the weak target distribution (μweak =
1.07, σweak = 1.0) and strong target distribution (μweak = 1.54, σweak = 1.5), coupled with
additional simulated data drawn from a hypothetical lure distribution (μlure = 0, σlure = 1),
one can create simulated mixed zROC data and then fit those simulated data with a straight
line. Because the model producing the zROC data in this case involves a non-Gaussian
mixture distribution (i.e., the lure distribution is Gaussian but the mixed target distribution is
not), the data will not trace out a strictly linear path. Thus, obtaining a slope estimate is
somewhat problematic because the estimate changes slightly depending on the range of hit
and false alarm rate data that are included in the analysis. Indeed, this turns out to be the
main source of the analytical error associated with K&Y's Test 2, which we discuss in more
detail in the next section. Although the slope estimate changes with the range of zROC data
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considered (thus, there is no true slope estimate), it does not change much, and the key point
for present purposes is that the mixed slope estimate in this example is never close to what it
should be. Instead, for this case, the mixed zROC slope is generally close to 1.0, which is
quite far from what would be expected given the mixed target standard deviation of 1.30
(i.e., it is quite far from 1 / 1.30, or 0.77).

This exercise shows that the Gaussian-based mixed zROC slope does not provide an
accurate estimate of the underlying standard deviation of non-Gaussian mixed distributions
(of course, there is no reason why it should), and it illustrates why, if the question has to do
with the underlying variance of a mixed distribution, an analysis of the mixed zROC slope
does not yield theoretically relevant results. Neither the mixture-UVSD model nor the
encoding variability hypothesis predicts that the slope of the mixed zROC should faithfully
track the variance of a non-Gaussian mixed distribution. Thus, even if K&Y had succeeded
increasing the variance of the mixed distribution compared to pure condition, their findings
about the effect of that manipulation on the mixed zROC slope would have had no relevance
to the encoding variability hypothesis or the mixture-UVSD account.

Test 2 Correction
In Test 2, K&Y directly compared the observed mixed zROC slope to the value that they
believed was theoretically predicted by the mixture-UVSD model (instead of comparing it to
the slope from the pure condition, as was done in Test 1). Although the theory that was used
to generate the predicted values was the mixture-UVSD model, K&Y nevertheless construed
Test 2 as a test of the encoding variability hypothesis. It is important to emphasize again
that, contrary to what they claimed throughout their paper, their experiment tested the
mixture-UVSD model, not the encoding variability hypothesis.

In any case, the question of how to use the mixture-UVSD model to predict the mixed zROC
slope is nontrivial because (as indicated above) the model is being used to predict a zROC
slope for nonlinear zROC data (and a nonlinear function does not have a linear slope). The
data are predicted to be nonlinear because the mixed target distribution is non-Gaussian (as
illustrated in Figure 2). K&Y were not sensitive to this issue, so they ended up using a
flawed method. The method used by K&Y to compute the predicted mixed slope is
illustrated in Figure 4 and is labeled “method 1”, whereas the appropriate method is labeled
“method 2”. Methods 1 and 2 begin the same way: the mixture-UVSD model is first fit to
the data from the unmixed data for each participant. Here, it is important to fit the full model
to the unmixed weak and strong data using maximum likelihood estimation (MLE) instead
of more simply estimating the distributional parameters by fitting straight lines to the weak
and strong zROC data. The MLE method involves simultaneously estimating 9 parameters
for each participant: 5 confidence criteria, and a mean and standard deviation for both the
weak target distribution and the strong target distribution (with the mean and standard
deviation of the lure distribution set to 0 and 1, respectively). As mentioned above, the
analysis should have stopped right there (with goodness-of-fit assessed against competing
models), but K&Y proceeded to test the model's ability to also describe the mixed data using
method 1 (because, in their view, this offered a test of the encoding variability hypothesis).

In method 1, the Gaussian densities for the weak and strong targets are averaged to create a
non-Gaussian mixture distribution, and the resulting 2-distribution model is used to generate
predicted zROC data by sweeping a criterion from left to right from −5 to 5 in steps of 0.1,
where the values refer to standard deviations relative to the lure distribution (which has a
mean of 0 and standard deviation of 1). This is the method used by K&Y2, and it is
essentially the same method we used in our discussion of Test 1 to show that the slope of the
mixed zROC does not correspond to the underlying standard deviation of the mixed
distribution. As indicated earlier, the problem with this method is that, because the predicted
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zROC data are nonlinear, the slope of the best fitting line will change depending on the
range of hit and false alarm rates used in the zROC analysis.

Figure 5 illustrates this point. The figure shows four zROC plots based on method 1 for the
data shown in the upper panel of Figure 4. The upper panel of Figure 5 shows zROC data
that were generated by sweeping a criterion across the 2-distribution version of the mixture-
UVSD model from −5 to 5 in steps of 0.1 (as K&Y did). The zROC data appear to be linear
(just as a non-Gaussian mixture distribution often appears to be Gaussian: e.g., Panel A of
Figure 2), but they are not. The slope of the best-fitting line is 0.77. The next panel shows
the zROC data generated by sweeping a criterion over a smaller range (from −4 to 4) in
steps of 0.1. Now, the slope of the best-fitting line is 0.78. The slope increases to 0.79 as the
range decreases to −3 to 3, and it increases still further (to 0.80) when a range of −2 to 2 is
used. These changes in slope are not due to error variance because there is no error in these
model-generated points. Instead, the slope changes with the range because the predicted
zROC data are nonlinear (which means that no single predicted estimate can be obtained
using this approach). When fitting the observed zROCs to individual subject data, the range
was typically on the order of −1 to 2 (much less than the −5 to 5 range used to generate the
predicted slope), and it differed for different participants. This explains why K&Y found
that the predicted mixed zROC slope (0.70) differed slightly, but significantly, from the
obtained mixed zROC slope (0.74).

The appropriate way to compute the predicted zROC slope is to simply generate from the
best-fitting model predicted confidence ratings for the three item categories (lures, weak
targets and strong targets), as shown in the lower left panel of Figure 4 for one participant.
These predicted values can be used to compute a goodness-of-fit statistic for each participant
(as is usually done) and can also be used to determine the predicted zROC slope for the
mixed condition by following the same steps that were used for the observed data. More
specifically, just as is done with the observed weak and strong confidence ratings to create
mixed target data (upper panel of Figure 4), the predicted weak and strong confidence
ratings are simply added together (lower panel of Figure 4). Using these predicted data, the
predicted mixed zROC is then plotted and fit with a straight line via least squares regression.
The slope of this line is the zROC slope that is predicted by the mixture-UVSD model. Even
though both the observed mixed zROC and the predicted mixed zROC are theoretically
nonlinear (because they are based on a model that involve a mixed non-Gaussian target
distribution and a Gaussian lure distribution), the slopes of the straight lines fit to the data
can be meaningfully compared because the observed and predicted data for each participant
were treated in exactly the same way (i.e., the range of data and the number of data points
are the same in both cases, so the effect of any nonlinearity in the data will be equated for
each participant).

Table 1 shows the Observed versus Predicted mixed zROC slope values computed on an
individual participant basis for each of the four experiments. Clearly, the observed mixed
zROC slope is always close to the predicted zROC slope, and the slight differences that exist
are never close to being significant. Thus, the results are consistent with the predictions of
the mixture-UVSD model in all four experiments. Figure 6 shows the scatter plots of
observed versus predicted zROC slopes. All four experiments (including K&Y's) show a
close correspondence between the observed and predicted zROC slopes. As described
earlier, this result merely indicates, in an indirect way, that the mixture-UVSD model
provides a good fit of the unmixed data (in which case it will also accurately characterize the

2Koen and Yonelinas (2010) did not explain the method they used for this test. We thank Josh Koen for sending us further
information about their method (which we misunderstood during the review process) and thank Jeff Starns (who read an earlier draft
of our paper) for clarifying the matter for us.
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mixed data). The fact that it provides a good fit does not have any bearing on the encoding
variability hypothesis, but it does lend some credence to the mixture-UVSD model.

Test 3 Correction
In Test 3, K&Y used R-K judgment data to predict the confidence-based zROC slope in the
mixed condition. They argued that the DPSD model could make use of the R-K data to more
accurately predict the mixed zROC slope (based on confidence ratings) than the UVSD
model could. However, the predicted zROC slope was calculated in very different ways for
the two models, and the differing methods introduced a built-in advantage for the DPSD
account. In this section, we show that simulated data generated by the UVSD model, when
subjected to the same test performed by K&Y, are better explained by the DPSD model than
by the model that actually generated the data (the UVSD model). This outcome shows that
the test was uninformative because it was preordained to favor the DPSD model.

Predicting zROC slopes—The parameters of the DPSD model consist of a recollection
parameter, a familiarity parameter, and 5 confidence criteria parameters. To calculate a
predicted zROC slope, the 7 parameters of the DPSD model were first estimated in a way
that made use of the R-K data. However, the R-K judgments were used to estimate only two
of the parameters (the recollection parameter and the familiarity parameter). The
recollection parameter estimate was a probability value obtained by subtracting the
Remember false alarm rate (RFA) from the Remember hit rate (RHit), and the familiarity
parameter estimate was a d' score obtained from the Know hit rate (KHit) and Know false
alarm rate (KFA) after correcting them using the following formulas: KHit / (1 − RHit) and
KFA / (1 − RFA), respectively. The 5 confidence criteria were not estimated from the R-K
data and were instead estimated using the observed false alarm rates associated with each
confidence rating. With the DPSD parameters fully specified in this way, the model was
used to predict 5 hit and false alarm rate pairs from which the predicted zROC slope was
obtained. This test was performed for both the pure and the mixed conditions, but we focus
only on the latter (because the results were the same in both cases).

The method used for the UVSD model was altogether different. To calculate the predicted
zROC slope from the R-K data using the UVSD model: “remember and know judgments
were plotted in z-space as different confidence levels, and the slope and intercept of the best
fitting line was measured” (p. 1540). Note that, in this method, only 2 hit and false alarm
rate pairs were used to compute the predicted zROC slope. One pair consisted of the
Remember hit and false alarm rates, and the other pair consisted of the Remember + Know
hit and false alarm rates. K&Y found that the correlation between the predicted and
observed zROC slopes was much higher for the DPSD model than for the UVSD model (.56
and .17, respectively). On that basis, they concluded that the DPSD model is superior to the
UVSD model and that the “old item variance effect arises because both recollection and
familiarity contribute to old item recognition” (p. 1540). As shown in Table 2, we confirmed
their findings based on a reanalysis of their data, and we also replicated those findings in our
Experiment 1 (see rows labeled “Empirical data”). Thus, both experiments show that R-K
judgments can be used by the DPSD model to more accurately predict the slope of the
mixed zROC than the UVSD model.

Testing simulated UVSD data—Despite appearances to the contrary, this result does not
weigh in favor of the DPSD model. To show this, we generated simulated data from the
UVSD model using the parametric bootstrap sampling technique (so that the true model was
not in doubt) and then performed on the simulated data the same test that K&Y performed
on the observed data. To generate the simulated data, the mixture-UVSD model was fit to
the observed confidence ratings of each individual data set, and then, using the estimated

Jang et al. Page 9

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



parameters, a simulated data set for each individual was generated from the mixture-UVSD
model. This was similar to generating precise predicted values (as in Figure 4), except that
now target and lures were randomly selected from the underlying Gaussian distributions in
numbers equivalent to the number of targets and lures used in the experiments. Thus, the
predicted values were not exact but contained error variance (as real data do). Predicted R-K
data were generated in much the same way. Specifically, we first fit the UVSD model to the
observed R-K data to estimate model parameters for each participant. A saturated UVSD
model can be estimated from such data, yielding 4 parameters: a discriminability parameter,
a slope parameter, an old/new criterion parameter, and an R-K criterion parameter. Using
the estimated parameters, a simulated set of RK data was generated for each individual. The
simulated confidence data and simulated R-K data (both generated from the UVSD model)
were then analyzed in the same way that the real data were analyzed by K&Y (i.e., using
different methods for the two models), and the entire procedure was repeated 100 times for
each individual data set (i.e., 100 simulated experiments).

Because the simulated data were generated by the UVSD model, one would naturally expect
to find that the correlation between the R-K predicted zROC slope and the observed zROC
slope (from the confidence rating) would be greater for the UVSD model than the DPSD
model. However, the opposite was found. As shown in Table 2 (see rows labeled “UVSD
simulated data”), the average correlation across 100 simulated experiments was much
greater for the DPSD model even if the simulated data were generated by the mixture-
UVSD model. The same results were found with the simulated data based on our
Experiment 1. Thus, the DPSD model outperformed the mixture-UVSD model even when
the mixture-UVSD model generated the data. This outcome demonstrates that Test 3 is not a
useful way to differentiate between the models because it is strongly biased to favor the
DPSD model (see also, Jang, Wixted, & Huber, 2009).

How could it happen that the wrong model outperformed the correct model in this simulated
analysis? One possibility is that the number of points used in the linear regressions that were
used to generate the predicted zROC slopes was different for the two models. To predict the
zROC slope for the DPSD model, K&Y used 5 data points. By contrast, to predict the zROC
slope for the UVSD model, only 2 data points were used. A slope estimate based on only 2
points is likely to be much noisier than one based on 5 points, and that alone would be
expected to reduce the correlation between the observed and predicted slopes. Whatever the
explanation, it is clear that K&Y's Test 3 yields the same outcome (in favor of the DPSD
model) even when the data are known to have been generated by the UVSD model. That
being the case, the test is not informative.

Which Model Provides a Better Account of Mixed-Strength Data?
Because the results reported by K&Y are clearly consistent with the mixture-UVSD model,
those results cannot be taken as evidence against that model or against the encoding
variability account of why the slope of the zROC is typically less than 1. In fact, the
mixture-UVSD model and the validity of the encoding variability hypothesis are distinct
issues, and the experiment conducted by K&Y bears only on the former (namely, the
validity of the mixture-UVSD model). The issues are distinct because one can accept the
validity of the mixture-UVSD model without accepting the encoding variability account of
why the two target distributions have greater variance than the lure distribution. In addition,
the results of their third test cannot be taken as evidence favoring the DPSD model over the
mixture-UVSD model because the test was unintentionally biased to favor the DPSD model
(so it chooses the DPSD model as the winner even when it is applied to simulated data
generated by the UVSD model). A more informative way to compare the two models is the
traditional way based on the chi-square goodness-of-fit statistic (after fitting the models to
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the individual data via maximum likelihood estimation). We performed this analysis on the
data from all four experiments considered here. Both models were simultaneously fit to the
data from the weak and strong conditions for each individual (which is possible because
strength was manipulated within list: e.g., Jang et al., 2011), and Table 3 summarizes the
results. As seen in the table, the UVSD model provided a better fit to a majority of the data
(shown in boldface type: 63 out of 106 individual data, 59%, across all four experiments)3

although in K&Y's experiment, 15 versus 17 individuals (out of 32) were better fit by the
UVSD and DPSD models, respectively. The summed chi square of K&Y's experiment was
slightly lower for the DPSD model (UVSD – DPSD = 8.75). Thus, the two models were
effectively tied in their experiment. However, the UVSD model provided a much lower chi
square for the rest of the three experiments (−35.92, −27.06, and −66.03, respectively).
Overall, these results exhibit an advantage for the UVSD model.

Conclusion
The slope of the zROC in studies of recognition memory is usually less than one. K&Y
reported results from three tests that they believed weighed against an encoding variability
account of the UVSD model's interpretation of that common finding (the interpretation
being that the variance of the target distribution exceeds that of the lure distribution). In
addition, they argued that their results favor a dual-process interpretation of the zROC slope
based on the DPSD model. However, we have shown that none of their tests bear on the
encoding variability hypothesis (even in principle) and that all of their tests, which actually
bear on the mixture-UVSD model, contained errors. When those errors are corrected, the
mixture-UVSD model is compatible with all of their findings, and it generally fits mixed-
strength data better than the DPSD model. Thus, it is a mistake to conclude, as K&Y did in
the title of their paper, that “memory variability is due to the contribution of recollection and
familiarity, not to encoding variability.“ Instead, their results reinforce the idea that when
the zROC slope is less than one, it indicates that the memory variability of the targets is
greater than that of the lures (an interpretation that is specific to the UVSD model in the case
of pure targets and to the mixture-UVSD model in the case of mixed-strength targets).
Whether or not encoding variability adequately explains the greater memory variability of
the targets compared to the lures remains to be tested.
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Appendix

Method of Experiment 2
Experiment 2 was similar to Koen and Yonelinas (2010) with a few exceptions, which are
described below.

3One might argue that the superiority of the UVSD model in fitting ROC data is due to the greater flexibility (or complexity) of the
UVSD model compared to the DPSD model (i.e., a more flexible model provides a better fit). Although we did not examine model
flexibility for all data sets of the four experiments, several simulation studies reported that the two models are approximately equal in
flexibility (e.g., Cohen, Rotello, & Macmillan, 2008; Jang et al., 2009; Wixted, 2007). In addition, while generating a large number of
simulation data for each model and assessing relative flexibility between the two models at the individual-data level, Jang et al. (2011,
one data set used in this study) found that the UVSD model was better able to account for recognition memory even after considering
its flexibility. Therefore, it is unlikely that the better fit of the UVSD model resulted from the difference in model flexibility.
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Participants
Eighteen undergraduate students participated for psychology course credit. For data
analysis, one was excluded because it appeared that this participant did not fully understand
the instructions.

Materials
The three-to-seven letter words were pooled from the MRC Psycholinguistic Database
(Coltheart, 1981), and they were high in concreteness, familiarity, and imaginability (i.e.,
ratings between 500 and 700), which yielded 682 total words. For each participant, 300
words were randomly selected from the pool, with 200 words randomly assigned as targets
and 100 words randomly assigned as lures. Additional 16 words were randomly chosen for
the practice trials, which were not included for data analysis.

Procedure
The experiment consists of study and test phases. During the study phase, a fixation mark
first appeared for 250 ms. Following the mark, each study word was presented in random
order. One hundred of the 200 words (randomly selected) were presented for 1 s (pure), one
at a time. Half the remaining 100 words were presented for 300 ms (50 weak targets), and
the other half for 2 s (50 strong targets). Participants were asked to think about as many
related words, concepts, and associations as they could while a word was on the screen.

During the test phase, target and lure words appeared on the screen, one at a time, along
with a 6-point confidence rating scale. A response of 1 through 3 indicated definitely new,
probably new, and maybe new; and a response of 4 through 6 indicated maybe old, probably
old, and definitely old. Using mouse, participants clicked on the rating scale to indicate the
level of confidence that each word was old or new.
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Figure 1.
Illustration of the mixture-UVSD model that applies to the mixed condition from Koen and
Yonelinas (2010). In this model, all three distributions are Gaussian in form.
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Figure 2.
Non-Gaussian mixture distributions produced by mixing two Gaussian distributions, where
the means of the left (L) and right (R) distributions differ by 0.5 (A), 1.0 (B), 1.5 (C) and 2.0
(D) standard deviations (the standard deviation of the left distribution is 1.0; and the
standard deviation of the right distribution is 1.25 in each case). For each panel, the
Gaussian distributions are shown as solid lines, and the resulting mixture distribution is
shown as a dotted line. Note that the mixture distributions are all non-Gaussian even though
the mixture distribution in Panel A appears to be Gaussian in form.

Jang et al. Page 15

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Standard deviation of the mixture distribution as a function of mean difference between two
Gaussian distributions. Four situations are illustrated: an equal-variance case (each standard
deviation of the weak and strong memory distributions is 1.0) and three unequal-variance
cases (the difference in standard deviation is 0.25 or 0.50, which is often seen in empirical
data). As shown in the figure, the effect of mixing targets on the standard deviation of the
mixture distribution is negligible until the difference between the two means is large (at least
1.20).
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Figure 4.
Upper panel: Observed data from the mixed condition from one participant (subject #106
from Koen & Yonelinas, 2010) before mixing (left) and after mixing (right) confidence
ratings made to the weak and strong targets. Middle panel: The mixture-UVSD model
corresponding to the unmixed (left) and mixed (right) data. Lower panel: Predicted data
from the mixed condition from the same participant before mixing (left) and after mixing
(right) confidence ratings made to the weak and strong targets.
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Figure 5.
zROC data generated by sweeping a criterion across the 2-distribution non-Gaussian model
shown in the middle right panel of Figure 2. The criterion was incremented in steps of 0.1.
The only difference across the four zROC plots is the range over which the criterion was
swept (from −5 to 5 in the top panel to −2 to 2 in the bottom panel). The straight lines
represent least-squares fits, and the equation for each best-fitting line is shown on each plot.
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Figure 6.
Scatter plots of the observed zROC slope and the predicted zROC slope of the UVSD
model: (A) Koen & Yonelinas (2010); (B) Experiment 1; (C) Experiment 2; and (D) Jang et
al. (2011).
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Table 1

Observed and the UVSD model's predicted mixed zROC slopes

zROC slope t

Data ss Observed Predicted Observed vs. Predicted

K&Y 32
0.75

a 0.74 0.99

(0.21) (0.21) p = .33

Exp 1 22 0.68 0.68 0.38

(0.16) (0.17) p = .70

Exp 2 17 0.75 0.73 1.31

(0.10) (0.14) p = .21

Jang et al. (2011) 35 0.68 0.68 0.36

(0.14) (0.13) p = .72

Note. Mean values of the zROC slopes across individuals are on the upper row for each data set; Standard deviations are in parentheses; K&Y =
Koen and Yonelinas (2010); Exp = experiment; ss = number of subjects.

a
K&Y reported the mean of 0.74 (p. 1539), but our reanalysis of their data yielded the mean of 0.75.
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