
Dynamic Heterogeneity and Life Histories

Shripad Tuljapurkara and Ulrich K. Steinera

a Department of Biology, Stanford University, Stanford CA

Abstract
Biodemography is increasingly focused on the large and persistent differences between individuals
within populations in fitness components (age at death, reproductive success) and fitness related
components (health, biomarkers) in humans and other species. To study such variation we propose
the use of dynamic models of observable phenotypes of individuals. Phenotypic change in turn
determines variation among individuals in their fitness components over the life course. We refer
to this dynamic accumulation of fitness differences as dynamic heterogeneity and illustrate it for
an animal population in which longitudinal data are studied using multi-state capture-mark-
recapture models. For our empirical example we use reproduction as the phenotypic character to
define stages though our approach can be applied to any characteristic. We indicate how our stage-
structured model describes the nature of the variation among individual characteristics that is
generated by dynamic heterogeneity. We conclude by discussing our ongoing and planned work
on animals and humans. We also discuss the connections between our work and recent work on
human mortality, disability and health, and life course theory.
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INTRODUCTION
An early focus of evolutionary ecology and demography was the “typical” age-pattern of
mortality and reproductive status of individuals within species.1 In recent years, increasing
attention has been paid to the large and persistent differences between individuals within
populations in age at death and reproductive success, as observed in humans and other
species.2, 3, 4 Demographers come at these questions by decomposing variation into
contributions from demographic, socioeconomic and biological characteristics of individuals
and groups. Such decompositions now exploit results from mechanistic biology that suggest
how causal relationships between genotypes, phenotypes, and environment may translate
into observed variation in death and reproduction.5, 6 Evolutionary biologists have tended to
focus on comparing variation among individuals within and between populations and
species, and on explaining the results of such comparisons in terms of the forces of
evolution,7, 8 as they play out in particular biological and environmental settings. These
studies concern one or more levels of biological organization. Within a species, we are
interested in describing variation among individuals and populations, the forces responsible
for maintaining this variation, and in predicting the response of individuals to environmental
change. Across species, we are interested in differences in both average patterns and
variation in life histories, as well as species-level responses to environmental change. This
paper focuses on variation among individuals, and argues that a key task of biodemography
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is to understand how variation among individuals is created and maintained across
generations. Such an understanding is essential if we are to influence and reshape either
phenotypic change at the individual level or population dynamics, in contexts as disparate as
human health and ecological responses to global climate.

An influential argument says that variation in fitness-related traits such as age at death may
be due to variation in fixed individual traits that affect relative fitness over life.9, 10 Such
fixed traits are typically assumed to be fixed at birth and to affect fitness throughout life,
may often be unobserved (or unobservable), and are elements of what may be called
“frailty.” This argument is influential in part because of an explicit or implicit assumption
that such fixed differences in phenotypic traits are determined by heritable genetic
differences and are being maintained by evolutionary processes. We refer to this kind of
variation as “fixed heterogeneity.” The assumption that frailty is the main determinant of
individual fitness has been widely used to model and interpret data on human mortality11

and also data on animal life histories.7 We propose an alternative view of the determinants
of individual fitness. This view is rooted in the fact that the observed phenotypes of
individuals (including, e.g., size, energy stores, immune competence, metabolic state, health,
biomarkers) change over their lives, and that changes within individuals in their phenotypic
traits over any age interval may differ among individuals. Hence any one individual follows
a trajectory in a “space” of phenotypic values, and distinct individuals can follow distinct
trajectories. An individual's fitness components (survival, reproduction) at any time are
often largely determined by the individual's present (and past) phenotypic states, and so
individuals can follow different trajectories of relative fitness over the life course. These
trajectories are defined by observed values of phenotypic traits at different time points in a
life course, and we describe the dynamics of such phenotypic trajectories over time by a
stochastic (usually Markov) process. The distribution of alternative trajectories then
determines observed variation among individuals in both phenotypic traits and fitness.3 We
refer to this kind of variation as “dynamic heterogeneity.” This kind of dynamic
heterogeneity in observable phenotypes has been relatively little used to analyze and explain
variation in fitness components, although models of dynamic heterogeneity are often
estimated for animal populations3, 12 and some longitudinal models of human mortality are
similar in spirit.13, 14, 15

In the next section we explain precisely what we mean by dynamic heterogeneity and
provide an illustration from an animal population in which longitudinal data are studied
using multi-stage capture-mark-recapture models.3, 12 Following that we explain the novel
features of dynamic heterogeneity in the context of a simple mathematical model. We
indicate how this model describes the average pattern of life histories as well as the nature of
the variation among individual characteristics that is generated by dynamic heterogeneity.
We then discuss our work on other animal species and the directions for subsequent
analysis. We conclude by discussing the many connections between our work and recent
work on human mortality, disability and health, and life course theory13 and our planned
work on humans.

THE NATURE OF HETEROGENEITY
Dynamic heterogeneity

We focus on one or more observable phenotypic traits of individuals. These may include,
e.g., continuous traits such as size,16 discrete states such as reproductive maturity or
menopause17, 18 and states such as the level of reproduction in a year that may be treated as
discrete or continuous.19,3 More formally, every individual has a set of observable
phenotypic traits P and individuals born at time t have a distribution f(P,0,t) of these traits.
As an individual ages, its phenotypic traits may change for many reasons, such as
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maturation, growth, reproduction, or senescence. As a result of such processes, at age a the
trait distribution of a cohort born at time t changes from the distribution at birth to a new
distribution f(P,a, t+a). We can quantify the dynamics of phenotypic change by estimating
transition probabilities p(P2,t+1|P1,t)from the rates at which individuals change their
phenotypic state. We can also estimate the relationship between an individual's mortality
and reproduction in year t and its phenotypic state Pt in that year. It is possible that these
fitness components may depend on the individual's phenotypic trajectory and not just its
current phenotype20 but to keep things simple we assume for now that only the current state
matters (i.e., the dynamics follow a Markov process21).

We describe a single individual by its phenotypic trajectory, i.e., a sequence of phenotypic
states P0, P1, P2,... at successive times 0, 1, 2, and so on. A cohort is described by a bundle
of such trajectories, one for each individual; a population is described by many bundles of
trajectories, one for each cohort. Dynamic heterogeneity means that individuals who are in
the same phenotypic state in one year may follow distinct phenotypic trajectories in the
future, e.g., when two individuals with phenotype Pt in year t end up with different
phenotypes Pt+1, P̂t+1 in year t+1. As a result a cohort's phenotypic distribution tends to
become increasingly dispersed as the cohort ages. This dispersion is balanced by intracohort
selection that results from differences in mortality among different phenotypic states of
individuals. Over the life course, an individual's cumulative survival probability depends on
its phenotypic trajectory. In addition to survival, an individual's reproduction in any year is
also a function of its current phenotypic state, and thus reproduction will vary among
individuals of the same age. Lifetime reproduction is a function of the entire phenotypic
trajectory and can vary even among individuals who die at the same age.

Dynamic variation of this kind is generated by a stochastic process that causes individuals to
follow divergent phenotypic trajectories. To illustrate we consider data on the mute swan,
Cygnus olor, collected since 1976 on a well-known population in Abbotsbury, U.K. These
are among the best longitudinal data on a natural population22, 23 and we have reported on
these data elsewhere;3 the latter paper provides additional detail. We classify individuals
using a single discrete phenotypic trait, reproductive state. In each year each female is
categorized as being in one of five reproductive stages: immature (stage 1), having a “low”
clutch size of 1-4 (stage 2), having a “medium” clutch size of 5-6 (stage 3), having a “high”
clutch size of 7-12 (stage 4), or being non-reproductive in that year after having reproduced
at least once previously (stage 5). Capture-mark-recapture analysis12 is used to estimate a
Markov transition matrix describing the probability of moving between stages in successive
years as well as age and stage specific survival rates. In the Mute swan example and other
examples the results and their interpretation in terms of dynamic heterogeneity are fairly
robust to using different numbers of discrete classes, or different ranges to delineate
classes3. However the choice of a focal phenotype (e.g. size instead of reproductive state)
can lead to quite different transition dynamics. The use of discrete phenotypic classes versus
continuous phenotypic values, or of just one phenotypic trait versus two or more, is driven
by data quality and quantity and biological insight. When data allow, it is probably better to
use continuous phenotypic values16 rather than a large number of classes.

Figure 1 (a) displays stage trajectories for three swans: the stars indicate actual ages of last
observation and the trajectories past the stars are simulations using the estimated stage
transition rates. Survival rates depend on stage and age and thus for each trajectory in Figure
1 (a) we can compute a survivorship, as shown in Figure 1 (b). Finally Figure 1 (c) shows
the cumulative reproduction at each age. Clearly individual birds achieve rather different
lifetimes and cumulative reproduction. Using the estimated model, we can also simulate a
sample of birds that matches the data (in numbers and censoring) and find that we can
predict nicely the variation in lifetime reproductive success in the sample; see Figure 2.
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Figure 2 also drives home the point that there is very large variability among individuals in
lifetime reproduction, a quantity that is often used as a proxy for fitness. But in fact, these
birds are all members of a population that has one overall growth rate. We reviewed a
number of studies on different species3 and found that large variation in fitness components
is typical, not unusual. In studies that have been done over many generations, there is
evidence that this large variation persists over time, suggesting that this level of variation is
evolutionarily stable.

Thus dynamic heterogeneity is generated as individuals move along the life course. Even
though every individual follows the same stochastic process, the vagaries of chance produce
large differences among individuals as they age. In our fitted model, differences among
individuals in marginal fitness at any age, or in measures of lifetime fitness, generated by
dynamic heterogeneity reflect chance, not fixed differences in “frailty” or “quality.” In the
real world, differences in fixed frailty could also contribute to variation among individual
phenotypes or performance, but the detection of fixed differences has been difficult, as we
now explain.

Fixed heterogeneity
When we observe variation in fitness components among individuals, it is tempting to argue
that this variation is determined by inherent characteristics of these individuals. Suppose that
the fitness components revealed in each individual's life depend on some unobserved
individual trait(s), call them Z, that are set at birth and do not change in later life, and that an
individual's mortality and fertility vary with its trait value. In demographic work such fixed
traits are often called frailty and are assumed to affect mortality. Some ecological models
assume two correlated components of frailty that affect mortality and reproduction,
respectively. Every cohort of individuals is born with a distribution, say ϕ(Z) of trait values.
Individual fitness components such as the age at death T and lifetime reproduction M will
both vary with the trait value. A model of fixed heterogeneity attempts to infer the unknown
ϕ(Z) from the observed distribution of, say, ages at death and lifetime reproduction, and then
to explain the variance between individual fitness components in terms of the underlying
variation in values of Z. The dispersion of the distribution ϕ(Z) measures the amount of
fixed heterogeneity in the population. Variation among individuals in age at death and
lifetime reproduction is proportional to the underlying variation in Z.

While the assumption of unobservable traits may be a useful first step, it is clearly essential
to find the actual sources of fixed heterogeneity and determine whether they produce the
variation we observe. But progress has been difficult since the usual suspects for the
possible underlying traits (e.g., genetic variation or fetal condition) are often hard to
measure and the quantification of their effects outside controlled lab environments is
challenging.24, 25

A deeper question is, what maintains variation in fixed traits? If a trait affects survival or
reproduction then individuals with different trait values must differ in overall fitness and
natural selection should act to eliminate variation in the trait.26 For survival rates, previous
work has suggested several possible reasons why fixed variation may persist including the
continual injection of mutational variance27, low heritability due to a low additive genetic
contribution to the trait28, and fluctuating selection caused by environmental variability29.
But there is little empirical evidence to quantify the contribution of such processes to the
persistence of variation, in part because our understanding of the genotypephenotype
mapping is limited30.
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DESCRIBING VARIATION AMONG INDIVIDUAL LIFE HISTORIES
We now examine in a little more detail a model of dynamic heterogeneity that is relatively
simple but still applicable to many animal populations. We assume that any individual can
be in one of 3 states, immature (state 1), breeding with low reproduction (state 2), and
breeding with high reproduction (state 3). The model requires a matrix of transition
probabilities between states, conditional on survival,

Here an individual transitions to state 2 when it matures and then transitions between states
2 and 3 so long as it survives. In addition, we have survival probabilities si for each state i.
Let the fertilities for states 2, 3 be f2, f3 and define a fertility matrix

and finally a population projection matrix

where

It is worth noting that this matrix involves the elements of the transpose of the transition
probability matrix (by sometimes confusing convention). We have no age dependence in
these equations but we could easily include age dependence in the transition probabilities
and survival rates. This formulation is well known in population biology as a stage-
structured model.31 Purely as a description of mortality the model above is a version of a
multi-stage life table.32

Such a stage structured model with stages described in terms of observable phenotypes is a
general and powerful way to describe population dynamics. What is new about our work is
that we use this model not to describe population numbers, but rather to describe dynamic
heterogeneity, i.e., variation in phenotypic traits and fitness components among individuals
within a population.

Variation in the age at death T measured by its mean, variance and higher moments can be
computed explicitly in terms of the matrix S, whose powers describe the probabilities of
being alive in one of the three stages at any age. For example, the probability that an
individual survives to age at least a and is in stage i at that age is the (1, i) element of Sa-1.
The mean age at death, ET, and variance of age at death, E(T2) – (ET)2, for only one type of
offspring being born in stage 1 can be computed31 using
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and

Here e1 is a column vector of zeros except for element i = 1, I is the identity matrix,  is the
transpose of the fundamental matrix N = (I-S)–1, and a superscript T indicates a transpose.

Next consider an individual's lifetime reproduction, M. The average lifetime reproduction is
known31 to be given by

and we have derived a new formula for the variance (details are given elsewhere and are
available on request),

Here F ̂ is a matrix with only diagonal elements equal to the fi. We can also compute these
moments exactly when transitions are age and stage structured, using new formulas that we
report elsewhere (details are available on request).

An interesting feature of phenotypically structured models is that they generally predict late
age mortality plateaus. This is a consequence of the structure of Markovian models and we
find plateaus in models for plant and animal populations.33 The plateaus generated by
dynamic heterogeneity are different from those found in models with fixed frailty, a matter
we return to in the last section of this paper.

An overall measure of dynamic heterogeneity is given by the entropy, H, of the matrix Ψ
which generates all possible phenotypic trajectories. Entropy is defined34 by considering
first all sequences ω of states of some length n; let the probability of sequence ω be p(ω)

and define ; then entropy is the limit as n → ∞ of (h(n)/n). This
entropy describes the rate of diversification of trajectories conditional on survival and is

estimated as . 3 The πi are the elements of the vector
describing the stable stage distribution and K is the number of stages.3 Alternatively we can
include survival weighting and compute the entropy of a matrix based on S that describes
trajectories before death.35 We are also interested in the persistence of an individual's
current phenotypic state, i.e., if an individual is in state k at time t is it also likely to be in the
same state at a later time? A useful measure of persistence is the correlation between an
individual's states two years apart (i.e., correlation at a time lag of 2 years between states at
t, t+2). Figure 3 displays the entropy and correlation at lag 2 for a large number of species,
estimated using reproductive success as a stage variable. In general, phenotypic state has
low persistence, meaning that individuals change reproductive state frequently over the life
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course. Entropy varies considerably across species3 but the level of entropy is high, meaning
that individuals in all species follow diverse life course trajectories.

It is important to note that a pair of the matrices S, F constitutes a single life history
phenotype. These matrices generate many alternative life course trajectories. Although
individuals following distinct trajectories may have distinct marginal fitness at different
stages of the life cycle, the overall phenotype's fitness is determined by all trajectories. The
overall fitness r = logλ can also be expressed using reproductive trajectories, as the solution
of the characteristic equation,

where E indicates an expectation (i.e., average) over the probability distribution of
reproductive trajectories ω, and T is age at death. This overall fitness is the population
growth rate. Evolutionary change comes about when the elements of these two matrices
change, e.g., if a mutation produces a phenotype in which the probability to remain
immature ψ11 increases so that individuals on average take a longer time to mature. Thus
dynamic heterogeneity is intrinsic to the life history phenotype and does not require
arguments for its maintenance.

ANALYZING VARIATION AND ITS CAUSES
Although we have emphasized the difference between fixed and dynamic heterogeneity, we
certainly expect to find both kinds of heterogeneity in nature. In our picture, we expect to
find fixed and heritable variation among individuals in phenotypic transition probabilities
and mortality. In looking for such variation, our current work focuses on several questions.
In natural populations, how much fixed and dynamic heterogeneity can we detect among
individuals using multistage models in which individuals also differ in fixed traits? What do
statistical models tell us about the interaction between fixed and dynamic heterogeneity, and
do they support the hypothesis that trade-offs act via fixed latent factors? Is dynamic
heterogeneity associated with or predicted by individual covariates, environmental factors,
and temporal variability? Is there evidence for the heritability of traits that determine fixed
and dynamic heterogeneity?

A different analytical strategy that we are using for phenotypic models is to work with the
change over time and age of the distribution f(P, a, t) of phenotypic traits. A powerful way
to study this distribution is to use a generalization of the Price equation that we recently
derived and applied to longitudinal data on natural populations of mammals.36 This
generalized Price equation enables us to study the evolution of phenotypic means and
variances, and to exactly decompose changes in these moments into contributions from
selection, phenotypic plasticity, and parent-offspring transmission. There is a natural
connection between this approach and one based on estimating stage-structured models, and
we aim to explore this in forthcoming work.

Researchers working on human mortality and health have long used longitudinal models that
are similar in spirit to our stage structured approach. Recent studies have used an explicit
analysis of trajectories of observed or self-reported health state,14 and entry into and exit
from disability;37 these studies also use a Markov process to predict health status as a
phenotypic trait, but have not yet examined the nature of dynamic heterogeneity. There is
also a close connection between our view of variation as generated along the life course and
work on life course health development.13 The latter work marches with ours in focusing
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attention on the transition probabilities between stages of health and functioning as being
critical targets for study and possible intervention.

Much of our work uses data from longitudinal studies of natural populations of animals and
plants. We have also begun work on human populations, including a study by Michael
Gurven of health, biomarkers, and demography among the Tsimane.38 Our approach aims to
study a broad set of phenotypic traits, analyze transition rates between them, and then map
phenotypic trajectories onto health states. In our perspective, some phenotypic states will
map onto high risks of mortality or morbidity, and we can estimate age and state dependent
probabilities that an individual will transition into and out of such states. The population-
level age-pattern of mortality reflects the distribution of individual phenotypes between low-
risk and high-risk states. Old-age mortality plateaus are generated because individuals
continue to make transitions among risk states at all ages, and as a cohort ages it displays a
stable distribution of individuals across different risk states. These plateaus are not the result
of the differential survival of hardy individuals. The power of our approach lies in
quantifying the forces that determine phenotypic transitions and phenotypic trajectories.
Transition rates can be related to mechanistic arguments about physiology, environment and
genes. They provide the right setting in which to examine the consequences of interventions
that aim to improve health over the life course. Finally, the use of phenotypic trajectories
will make it possible to examine how much variation among individuals may be due to fixed
effects such as genotypes rather than simply to dynamic heterogeneity.
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Figure 1.
(a) Reproductive stage trajectories for female Mute swans. Reproductive stage in each year
has one of five values (see text). Observed sequences are shown for three birds and death or
disappearance is indicated by a star. Past the star we have generated one possible trajectory
by simulation using our estimated transition probabilities for the population. (b)
Survivorship for the three trajectories shown in panel (a). A key point is that survival
depends on stage and so every distinct sequence of stages (i.e., life course) determines a
potentially distinct survivorship. (c) Cumulative reproduction (CR), the number of eggs laid
to a given age, for the three trajectories shown in panel (a). Reproduction here varies by
stage and so every distinct sequence of stages (i.e., life course) determines a potentially
distinct trajectory of cumulative reproduction.
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Figure 2.
Distribution of Lifetime Reproductive Success (LRS) for female Mute swans. The observed
distribution (including potential latent factors) is shown by grey bars and the average
distribution for 50 simulated synthetic populations is shown by black bars (± standard error).
Strong fixed effects should lead to large deviances in distribution between the synthetic
populations and the observed population. LRS is right censored for some of the observed
individuals which has been taken into account for the simulations.

Tuljapurkar and Steiner Page 12

Ann N Y Acad Sci. Author manuscript; available in PMC 2012 May 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Dynamic heterogeneity across species. The vertical axis indicates the absolute correlation
between stages two years apart, and the horizontal axis the entropy for the generating matrix
of transition probabilities, scaled to a maximum value of 1.
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