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Abstract
Alcoholic liver disease progresses through several 
stages of tissue damage, from simple steatosis to al-
coholic hepatitis, fibrosis, or cirrhosis. Alcohol also af-
fects the intestine, increases intestinal permeability and 
changes the bacterial microflora. Liver disease severity 
correlates with levels of systemic bacterial products 
in patients, and experimental alcoholic liver disease is 
dependent on gut derived bacterial products in mice. 
Supporting evidence for the importance of bacterial 
translocation comes from animal studies demonstrat-
ing that intestinal decontamination is associated with 
decreased liver fibrogenesis. In addition, mice with a 
gene mutation or deletion encoding receptors for either 
bacterial products or signaling molecules downstream 
from these receptors, are resistant to alcohol-induced 
liver disease. Despite this strong association, the exact 
molecular mechanism of bacterial translocation and of 
how changes in the intestinal microbiome contribute 
to liver disease progression remains largely unknown. 

In this review we will summarize evidence for bacte-
rial translocation and enteric microbial changes in 
response to alcoholic liver injury and chronic alcoholic 
liver disease. We will further describe consequences of 
intestinal dysbiosis on host biology. We finally discuss 
how therapeutic interventions may modify the gastroin-
testinal microflora and prevent or reduce alcoholic liver 
disease progression.
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INTRODUCTION
Alcohol abuse is one of  the leading causes of  chronic 
liver disease. In its early stage, alcoholic liver disease is 
characterized by fatty infiltration of  the liver, also known 
as steatosis. Forty������ �����������  �������������� �����-four percent����  �������������� ����� of  patients consuming 
modest amounts (40-80�� ���� ������������  �������������  ����� ������������  ������������� g���� ������������  ������������� /d�� ������������  ������������� ) of  alcohol exhibit fatty 
liver, while it is even more common in heavy drinkers[1]. 
With steatosis alone, the liver continues to function well 
and few patients present with any clinical symptoms[2]. 
The most effective therapy for alcoholic steatosis is ces�
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sation of  alcohol consumption. However, if  this cannot 
be achieved, subsequent inflammation and alcoholic 
hepatitis can take place. This ultimately results in liver 
fibrosis, which is an accumulation of  scar tissue in the 
liver parenchyma that distorts the hepatic architecture. As 
hepatic fibrogenesis progresses to cirrhosis, disruption of  
the synthetic and metabolic functions of  the liver occurs. 
Increased resistance to portal blood flow results in portal 
hypertension, the clinical consequence of  which includes 
ascites, esophageal varices, and splenomegaly through 
shunting of  blood to portal caval anastamoses. Cirrhosis 
is an end-stage disease and one of  the leading causes of  
morbidity and mortality in the world, with liver transplan�
tation as the sole remedy for survival. 

Annually, over 27� ���� ���������������������������������      ���� ���������������������������������     000 people die from cirrhosis in the 
United States[3]. Half  of  all cirrhotic patients die within 2 
years of  diagnosis. Mortality from alcoholic liver disease 
(ALD) has been declining in recent years, likely due to 
improvements in clinical management of  complications 
of  ALD including portal hypertension and bleeding from 
esophageal varices[4]. A significant percentage of  cirrhotic 
patients succumb to bacterial infections with infection-
attributed mortality of  30% to 50%[5-7]. Mortality as a 
consequence of  infection is increased 20-fold in patients 
with cirrhosis. These infections include spontaneous bac�
terial peritonitis, bacteremia, pneumonia, and urinary tract 
infections. The most common pathogens involved are 
Staphylococcus aureus, Enterococcus faecalis, Streptococcus pneumo-
nia, Klebsiella spp, and Escherichia coli[����8,9]. The origin of  these 
organisms is thought to be the enteric microflora, but 
may also be associated with nosocomial infections due to 
the higher number of  invasive procedures performed in 
this patient population[10]. 

In the following article, we will review bacterial trans�
location and the changes in the intestinal microbiome 
associated with ALD. For each topic we will discuss the 
data from experimental and preclinical animal models of  
alcohol-induced liver injury followed by current evidence 
in patients with ALD. 

BACTERIAL TRANSLOCATION
Bacterial translocation is defined as the passage of  viable 
indigenous bacteria or their products, such as lipopoly�
saccharide and bacterial DNA, from the gut to extrain�
testinal sites, notably the mesenteric lymph nodes and 
the systemic circulation. In particular, lipopolysaccha�
ride (LPS) is the cell wall molecule derived from gram-
negative bacteria, and has been found to be increased in 
alcoholics with fatty liver disease or patients with alco�
holic cirrhosis[11-13]. The presence of  bacterial DNA in an 
animal model of  cirrhosis has also been established as a 
surrogate marker of  bacterial translocation, associated 
with marked inflammatory response in the host[14]. This 
migration of  bacteria and bacterial products has been 
implicated in spontaneous bacterial peritonitis and sepsis 
in patients with end-stage liver disease[15]. In addition, 
this phenomenon is also considered to play a key role in 
the pathogenesis of  liver fibrosis in experimental animal 

models of  alcohol-induced liver injury[16-18]. 

Bacterial translocation and alcoholic liver disease
There have been several studies in animal models exam�
ining the association between bacterial translocation and 
alcohol administration. Some studies have demonstrated 
no significant difference in bacterial translocation to the 
mesenteric lymph nodes or the systemic circulation after 
alcohol administration for 2 wk[19,20]. However, one report 
provides evidence for the translocation of  viable bacteria 
in rats fed alcohol as early as 14 d[21]. Bacterial products, 
including endotoxin, have also been seen translocating 
in experimental animal models of  alcohol consumption. 
A positive correlation between alcohol ingestion and 
increased systemic levels of  endotoxin have been ob�
served[22-24]. Plasma levels of  peptidoglycan, which makes 
up about 70% and 20% of  Gram-positive and Gram-
negative bacterial cell walls respectively, are also increased 
following acute administration of  alcohol in rats[25]. Dis�
crepancies in these studies might be explained by differ�
ences in species, treatment length, alcohol dose, and the 
model used to administer alcohol (drinking water or diet, 
gastric gavage, intragastric feeding tube). 

The presence of  endotoxemia in liver disease has also 
been seen in human studies. LPS is significantly higher 
in patients with alcoholic cirrhosis compared to patients 
with cirrhosis from other causes[11,12]. Endotoxemia has 
also been shown to increase with more severe liver dys�
function (Child-Pugh class) in patients with cirrhosis[26]. 
Furthermore, endotoxin is also present in patients with 
mild forms of  alcoholic hepatitis that do not have evi�
dence of  fibrosis or cirrhosis[27,28]. These studies suggest 
that bacterial translocation occurs early in ALD, and that 
the degree of  translocation of  bacterial products may be 
related to the severity of  liver injury present. There are 
many possibilities for why this occurs. As liver disease 
progresses, reduced hepatic clearance of  toxins may re�
sult in higher systemic levels of  translocated bacteria and 
bacteria products. Likewise, alcohol may directly injure 
the defensive intestinal barrier, contribute to intestinal 
dysmotility, result in bacterial overgrowth, and change the 
intestinal microflora. 

Bacterial translocation contributes to the progression of 
alcoholic liver disease
Bacterial translocation not only results in severe infec�
tions in cirrhotic patients, but also leads to the progres�
sion of  alcohol-induced liver injury and fibrosis. The 
enteric microflora may therefore play a role in augment�
ing the progression of  liver disease. One mechanism by 
which this occurs is through the activation of  the innate 
immune system in the liver. The innate immune system 
has developed phylogenetically conserved pattern recog�
nition receptors including the Toll-like receptors (TLR), 
which recognize distinct microbial products, known 
as pathogen-associated molecular patterns (PAMPs). 
PAMPs not only include LPS, but also bacterial pep�
tidoglycan, double-stranded RNA, and unmethylated 
DNA[29]. Ligand binding to PAMPs trigger intracellular 
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signaling cascades which activates downstream transcrip�
tion and expression of  a variety of  genes involved in the 
immune and inflammatory host response. PAMPs stimu�
lated by commensal enteric microflora are not necessar�
ily interpreted as disease states but rather contributes to 
maintenance of  homeostasis. For a detailed view of  the 
role of  the innate immune system in health and disease, 
we would refer to recently published reviews[30].

Animal studies have suggested integral roles for LPS 
signaling in the pathogenesis of  ALD. In particular, 
TLR4, the cellular LPS receptor, plays an important role 
in the innate immune response to bacterial translocation. 
Selective intestinal decontamination with antibiotics have 
shown to reduce plasma endotoxin levels and prevents 
liver injury in animal models of  ALD[31,32,22]. Moreover, 
mice deficient in CD14, the cellular co-receptor for LPS, 
are also resistant to alcohol-induced liver injury[17]. Similar 
findings were also noted in these mice with experimental 
hepatic injury induced by bile duct ligation[33]. However, 
the strongest evidence that supports the role LPS plays 
in ALD are studies with TLR4 mutant C3H/Hej mice 
and TLR4 deficient mice. These genetically modified 
animals demonstrate marked reductions in hepatic ste�
atosis, inflammation, and necrosis in models of  ALD, as 
compared to wildtype control mice[16,34]. Similar to TLR4, 
TLR9 is another pattern recognition receptor that is ac�
tivated by CpG motifs specific to bacterial DNA. TLR9-
deficient mice have been shown to be resistant to experi�
mentally induced liver fibrosis[35].

In patients, TLR4 is identified as one of  seven genes 
associated with an increased risk of  developing cirrhosis 
in patients with chronic hepatitis C[36]. TLR4 D299G and 
T399I single nucleotide polymorphisms are associated 
with protection from hepatic fibrosis by reduced TLR4-
mediated inflammatory and fibrogenic signaling[37]. 

Taken together, these studies highlight the important 
roles translocated bacteria and their products play in 
both hepatic fibrogenesis and infections in patients with 
chronic liver disease. Bacterial translocation must hap�
pen early for initial liver injury and fibrogenesis, while 
bacterial translocation in end-stage liver disease is partly 
responsible for the resulting infections and mortality.

Disruption of the intestinal barrier function as 
mechanism for bacterial translocation 
The mechanism behind bacterial translocation with alco�
hol ingestion is not clear. Tight junctions normally join 
together at the apicolateral membranes of  enterocytes, 
providing a mucosal barrier against paracellular diffusion 
of  intestinal contents. Damage to these protective barri�
ers may result in structural deficiencies that enable bacte�
rial translocation[38-41,28]. 

Several studies have examined oxidative stress on the 
intestinal mucosa as a possible etiology for barrier dys�
function. Acute ingestion of  alcohol has been shown to 
alter the epithelial barrier in the colonic mucosa of  rats 
via ethanol oxidation into acetaldehyde by the enteric mi�
croflora with subsequent downstream activation of  mast 
cells[42]. There is also an increase in tissue oxidative stress 

in jejunal, ileal, and colonic mucosa seen as early as 4 wk 
after alcohol administration in rats[43]. Furthermore, LPS 
is known to activate macrophages resulting in their sub�
sequent release of  pro-inflammatory cytokines, which in 
turn induce liver damage[44]. These cytokines, such as tu�
mor necrosis factor (TNF), interleukin 1β (IL-1β), iNOS, 
and IL-6, have been shown to be elevated in the distal 
ileum of  mice administered alcohol for 14 d[20]. Cytokines 
such as IL-1β and TNF are known to cause a disruption 
of  tight junctions[45].

In one study, distension of  the intercellular spaces 
below these tight junctions was observed in duode�
nal biopsies of  cirrhotic patients[46]. Alcoholic patients 
without liver cirrhosis that cease alcohol consumption 
demonstrated higher intestinal permeability in 3 d by way 
of  a chromium-51-EDTA absorption test. These find�
ing persisted beyond 2 wk in patients with evidence of  
liver cirrhosis, despite abstaining from alcohol[47]. Taken 
together, this suggests that underlying liver disease may 
prolong the damaging effects of  alcohol on the intestinal 
epithelium.

Alcohol may also exert its effects on the intestinal epi�
thelium indirectly through its oxidized metabolite, acetal�
dehyde. This has been shown both in cultured Caco-2 cell 
monolayers, as well as biopsy specimens of  the intestines, 
where acetaldehyde disrupts tight junctions and adherens 
junctions with an associated rise in tyrosine phosphoryla�
tion[48,49,52].

QUANTITATIVE AND QUALITATIVE 
CHANGES OF THE ENTERIC 
MICROFLORA
In addition to the direct and indirect toxic effects of  alco�
hol to the intestinal epithelial barrier, the quantitative and 
qualitative changes of  the enteric microflora themselves 
may contribute to bacterial translocation. For example, 
animal studies demonstrate a correlation between bacteri�
al overgrowth and bacterial translocation. Experimentally 
induced bacterial overgrowth results in bacterial translo�
cation, liver injury, and inflammation[50]. In addition, as we 
have discussed above, selective intestinal decontamina�
tion improves experimental alcoholic steatohepatitis. This 
might be mediated by a decrease in the intestinal bacterial 
burden, which subsequently results in a reduction of  bac�
terial translocation and alcoholic steatohepatitis. Further�
more, in non-cirrhotic patients that have small-intestinal 
bacterial overgrowth with colonic flora, increased intesti�
nal permeability has been observed[51].

Intestinal bacterial overgrowth in alcoholic liver disease
Bacterial overgrowth and translocation have been ob�
served in animal models of  end-stage liver disease[52,53]. In 
cirrhotic rats with bacterial translocation, there is a higher 
prevalence of  bacterial overgrowth. The prevalence of  
overgrowth in cirrhotic rats was 67%, with 47%-78% 
of  animals also exhibiting bacterial translocation[14,54-56]. 
Following experimentally-induced cirrhosis via bile duct 
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ligation, there is an increase in number of  gram-negative 
bacteria in the cecum of  animals, which includes E. Coli, 
Enterococci, Klebsiella, Pasteurella, Proteus, Pseudomonas, and 
Shigella. 

Intestinal bacterial overgrowth also occurs more fre�
quently in patients with ALD. The number of  aerobic 
and anaerobic bacteria has been found to be higher in je�
junal aspirates in patients with chronic alcohol abuse[57,58]. 
Small intestinal bacterial overgrowth has also been found 
in cirrhotic patients with increasing prevalence corre�
sponding with the severity of  liver dysfunction - as high 
as 58%-75% in cirrhotics classified Child-Pugh C[59-62]. Se�
rum antibodies to microbial components are also found 
more frequently in patients with more advanced liver dis�
ease[63]. The cultured flora from cirrhotic patients include 
Bacteroides spp., E. Coli, Corynebacerium spp�����������������  .����������������  , Klebsiella spp., 
Stomatococcus, Streptoccoci, and Veillonella spp. It is interest�
ing to note that the majority of  these bacteria come from 
oropharyngeal sources, with exception to Bacteroides, E. 
Coli and Klebsiella. Of  interest Bifidobacterium, often used in 
commercial probiotics, was reduced in the fecal flora of  
cirrhotics[64].

The reason for bacterial overgrowth in liver disease 
is not known. One hypothesis suggests that impaired 
bile flow results in bacterial proliferation and mucosal 
injury in the small intestines. Conjugated bile acids induce 
expression of  antimicrobial proteins angiogenin 1 and 
RNAse family member 4 in the enterocytes, which then 
prevents bacterial overgrowth and promotes epithelial 
cell integrity in experimental mouse models[65]. As liver 
dysfunction progresses, less conjugated bile acids are 
produced and available in the small intestines, which may 
then contribute to small intestinal bacterial overgrowth. 

Dysmotility has also been proposed as a mechanism 
for stasis and bacterial overgrowth in patients with cir�
rhosis. Alcohol has been shown to reduce gastrointestinal 
motility, which may result in a higher number of  luminal 
bacteria[66]. A delayed transit time, characterized by altera�
tion of  the migrating motor complex in the small intes�
tine, has been observed in cirrhotics[67-69]. A recent cross-
sectional study also demonstrated a higher prevalence 
of  small intestinal bacterial overgrowth with prolonged 
orocecal transit time in cirrhotic patients with hepatic en�
cephalopathy[70]. Further evidence linking overgrowth and 
intestinal transit time includes the use of  the pro-motility 
agent cisapride, which reversed small intestinal dysmotiliy 
and bacterial overgrowth in patients with cirrhosis[71]. 
These patients also exhibited further clinical improve�
ment in Child-Pugh scores and hepatic encephalopathy.

Moreover, a higher gastric pH may possibly contrib�
ute to bacterial overgrowth and translocation. Hypochlor�
hydria has been associated with an increase in bacteria in 
the jejunum in patients with cirrhosis[61,72]. A retrospective 
case-control study also noted that cirrhotic patients with 
spontaneous bacterial peritonitis had a significantly high�
er pre-hospital use of  proton pump inhibitors compared 
with controls[73]. Less gastric acid secretion with higher 
transit times from intestinal dysmotility enables bacterial 

colonization of  the upper gastrointestinal tract. With a 
reduction in protective conjugated bile acids, cirrhotic pa�
tients are predisposed to bacterial overgrowth and trans�
location.

Intestinal microbiome changes in alcoholic liver disease
The enteric microbial communities are complex and har�
bor 10 different bacterial phyla with more than 15�����  ����000 
species-level bacterial phylotypes[74]. Firmicutes and Bac�
teroidetes make up the vast majority of  these phylotypes 
in mice[75] and humans[76,77]. In healthy individuals, the 
microflora maintains a symbiotic relationship with the 
human intestine. This balance of  number, distribution, 
and composition is regulated by the innate and adaptive 
immune system including host antimicrobial proteins 
secreted from paneth cells and intestinal epithelial cells. 
Dysbiosis is known as the disruption and enteric disequi�
librium between the microbiota and colonized host, and 
has been associated with disease including inflammatory 
bowel disease[78].

One of  the first animal studies in alcoholism and en�
teric dysbiosis utilized length heterogeneity polymerase 
chain reaction fingerprinting, and demonstrated differing 
enteric microbiota composition in rats after 10 wk of  
intragastric feeding of  alcohol[79]. A subgroup of  animals 
given probiotics or prebiotics prevented dysbiosis in ani�
mals treated with alcohol. A recent animal study exam�
ined changes in the intestinal microbial community with 
the use of  deep DNA pyrosequencing of  the bacterial 
16S rRNA during the early stages of  ALD[���75�]. Following 
continuous intragastric feeding of  alcohol for 3 wk, there 
was a relative predominance of  the Bacteroidetes and 
Verrucomicrobia phylotypes in mice fed alcohol com�
pared with an abundance of  Firmicutes bacteria in the 
control group. Interestingly, Lactobacillus was significantly 
reduced in alcohol fed mice, which now explains the 
beneficial effect of  probiotic Lactobacillus in alcoholic ste�
atohepatitis shown in several reports[79,80,81]. In addition, 
Akkermansia muciniphila, a gram-negative anaerobic bacte�
ria belonging to the bacterial phylum Verrucomicrobia[82], 
was strongly induced in animals fed alcohol for 3 wk. Ak-
kermansia muciniphila is a common bacterial component of  
the human intestinal tract and has been found to degrade 
mucin in pure culture[83,84]. By degrading the intestinal 
mucus as part of  the innate immune system, bacterial 
translocation might be facilitated. However, a causal re�
lationship between an increase in intestinal Akkermansia 
muciniphila and bacterial translocation needs to be inves�
tigated in ALD in future studies. Antimicrobial effector 
molecules secreted by enterocytes and paneth cells not 
only protect against pathogenic organisms, but also play a 
role in maintaining a symbiotic relationship between the 
host and the commensal enteric microflora. A suppres�
sion of  bactericidal protein expression regenerating islet 
derived (Reg)-3b and Reg3g were observed in the small in�
testines following alcohol administration in mice, suggest�
ing a possible mechanism for qualitative and quantitative 
changes within the microbiome (Figure 1). Furthermore, 
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the treatment with prebiotics partially restored Reg3g 
protein levels, while mitigating bacterial overgrowth and 
attenuating the severity of  alcoholic steatohepatitis[���76�]. 

Although changes in the enteric microbial composi�
tion has not been studied in patients with alcohol abuse, 
intestinal dysbiosis as a consequence of  chronic alcohol 
consumption is speculated to be a possible precursor to 
bacterial translocation and a contributing factor to the 
initiation and progression of  liver disease. It is likely that 
changes to the microbiota modulate mucosal barrier 
function and antimicrobial regulators within the host in�
testinal epithelium. 

ARE ANTIBIOTICS, PROBIOTICS, 
PREBIOTICS OR SYNBIOTICS USEFUL IN 
ALCOHOLIC LIVER DISEASE?
The beneficial effect of  antibiotics on alcohol-induced 
liver disease in animal models has been discussed above. 
In patients, antibiotics have mostly been used to de�
contaminate the intestine for the treatment of  hepatic 
encephalopathy in end-stage liver disease. Antibiotic 
treatment for up to 6 mo has also been associated with 
improvement in liver function and Child-Pugh classifica�
tion of  patients with alcoholic cirrhosis[���71�]. Antibiotic-
induced changes in the composition of  the gastrointesti�
nal microflora can influence the susceptibility of  the host 
to specific enteric pathogens, including the induction of  
antibiotic resistance to other microorganisms. Antibiotics 
disturb the normal mechanisms of  microbial community 

regulation, compromising the mucosal innate immune 
defense mechanism, which can result in pathogen coloni�
zation and antibiotic resistance[85]. 

Probiotics are dietary supplements of  live microbes 
consumed by the host that benefit the health, and in�
cludes the microorganisms Lactobacillus and Bifidobacteri-
um[86]. These microbes are thought to enhance production 
of  anti-inflammatory cytokines, stimulate the secretion 
of  antibacterial proteins, and alter the intestinal micro�
flora, ultimately reducing production and translocation of  
endotoxin[87]. Pretreatment of  animals with Lactobacillus 
decreases plasma LPS and reduces the severity of  liver in�
jury. As discussed above, Lactobacillus was depleted after 3 
wk of  intragastric alcohol administration in mice[���75�]. Feed�
ing a gram-positive probiotic lactobacillus strain (species 
GG) with concomitant displacement of  gram-negative 
bacteria also protected rats from ethanol-induced liver 
injury with a decrease in systemic endotoxin levels[������80����,���81�]. 
Thus, a possible mechanism for preventing ALD is 
reversing the enteric dysbiosis associated with alcohol 
abuse.

There have been multiple studies examining the ben�
efits of  probiotics in patients with ALD. Treatment of  
20 patients with alcoholic liver cirrhosis with a probiotic 
mixture containing Streptococcus thermophilus, Bifidobacterium 
breve, Bifidobacterium longum, Bifidobacterium infantis, Lactoba-
cillus acidophilus, Lactobacillus plantarum, Lactobacillus casei and 
Lactobacillus bulgaricus (VSL#3) for up to 4 mo, results in 
decreased plasma markers for oxidative stress and mark�
edly reduced liver enzymes[88]. A randomized prospective 
trial demonstrated that probiotic treatment (Bifidobacterium 

Bacteria

Mucin

Alcohol Bacteria

Mucin

Anti-
microbial 
molecules

Bacterial translocation

Anti-
microbial 
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Figure 1  Intestinal changes following alcohol administration. A: In health, antimicrobial molecules as part of the innate immune response are secreted by intes-
tinal epithelial cells and kill enteric bacteria. B: Alcohol suppresses the expression of these molecules resulting in intestinal bacterial overgrowth and dysbiosis. This 
might contribute to bacterial translocation observed after alcohol. Alcohol might also exert a direct effect on the intestinal microflora.
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bifidum and Lactobacillus plantarum) for five days results in 
restoration of  colonic bowel flora and improvement of  
serum liver tests in patients with alcoholic liver injury[89]. 
As a defective innate immune response to enteric patho�
gens likely contributes to increased infections in patients 
with cirrhosis, another mechanism that explains the ben�
eficial effects of  probiotics could be a restoration of  neu�
trophil function. And in fact, administration of  Lactobacil-
lus casei for 4 wk restores neutrophil phagocytic activity in 
patients with alcoholic cirrhosis[90]. However, care must 
be applied when probiotics are administered to patients 
with a preexisting gut barrier leakage due to a higher 
risk of  infection. In patients with predicted severe acute 
pancreatitis, probiotic prophylaxis with a combination of  
six different strains of  probiotic strains (Lactobacillus aci-
dophilus, Lactobacillus casei, Lactobacillus salivarius, Lactococcus 
lactis, Bifidobacterium bifidum, and Bifidobacterium infantis) did 
not reduce the risk of  infectious complications and was 
associated with an increased risk of  mortality[91].

Prebiotics are complex carbohydrates that cannot be 
digested by pancreatic or intestinal enzymes and are ulti�
mately metabolized by the gut microflora. Common pre�
biotics are fructo-oligosaccharides (FOS), galacto-oligo�
saccharides, ������������ or lactulose[���86�]. The later is of  special interest, 
as it is commonly used in patients with decompensated 
cirrhosis for the treatment and prevention of  hepatic en�
cephalopathy. As mentioned earlier, oats supplementation 
as a prebiotic not only prevents alcohol-induced dysbiosis 
following 10 wk of  alcohol treatment, but reduces gut 
leakiness with subsequent reduction in endotoxin levels 
and attenuation of  liver damage in rats[79,92]. Similarly, 
FOS reduces intestinal bacterial overgrowth and alcoholic 
steatohepatitis following intragastric feeding of  alcohol 
for 3 wk in mice[���75�]. The beneficial effect of  prebiotics is 
suggested to prevent quantitative and qualitative changes 
in the microbiome associated with alcohol use. At this 
point, it is not entirely clear whether prebiotics might pre�
vent intestinal barrier leakage independent from changes 
to the microbiome. Prebiotics are very promising for fu�
ture use in patients with ALD and further clinical studies 
are needed.

Synbiotics are combinations of  prebiotics and probi�
otics. Pretreatment with synbiotics (Lactobacillus acidophilus, 
Lactobacillus helveticus and Bifidobacterium in an enriched me�
dium) effectively protects against endotoxemia and bacte�
rial translocation, as well as liver damage in the course of  
acute pancreatitis and concomitant heavy alcohol con�
sumption in rats[93].

CONCLUSION
Alcoholic liver disease remains a leading cause of  mor�
bidity and mortality worldwide. The progression of  
alcoholic liver disease to fibrosis and cirrhosis is partly 
mediated through an inflammatory response to the trans�
location of  bacteria and endotoxin. Bacterial transloca�
tion is also a contributing factor to the complications 
arising from alcoholic liver disease including spontane�

ous bacterial peritonitis, hepatic encephalopathy, por�
tal hypertension, and sepsis. There are many possible 
mechanisms for which this occurs. Bacterial overgrowth 
of  pathogenic organisms and intestinal dysmotility both 
occur in alcoholic liver disease, and may predispose the 
intestines for bacterial translocation. The oxidative stress 
resulting from exposure of  the intestines to alcohol and 
its metabolites disrupts the integrity of  the intestinal wall, 
increasing permeability to gut-derived endotoxin. There 
have also been recent advances in diagnostic technolo�
gies for research in molecular genetics. The use of  454 
pyrosequencing has enabled the qualitative and quantita�
tive examination of  the enteric microbiome. In an experi�
mental model of  alcoholic liver disease, shifts in the com�
position of  the intestinal flora have been observed along 
with downregulation of  intestinal antimicrobial proteins. 
These changes can modulate mucosal barrier function by 
disrupting the innate immune system and alter antimicro�
bial regulators in the host intestinal epithelium. This pro�
cess can facilitate bacterial translocation and more animal 
studies will be needed to firmly establish this mechanism. 
There are few therapeutic options for patients suffering 
from alcoholic liver disease, aside from abstinence and 
liver transplantation for end-stage liver disease. There is 
some limited evidence on the use of  antibiotics, probiot�
ics, and prebiotics to attenuate disease activity in patients 
with alcoholic liver disease by altering the intestinal mi�
croflora. However, large scale clinical studies examining 
the potential benefits of  probiotics and prebiotics are still 
needed before routine use of  these supplements can be 
recommended. 
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